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Abstract The thermodynamic properties, which are the important bulk
properties for solids, have been investigated for ZrB2 under pressure through
the quasi harmonic Debye model. The dependences of thermal expansion,
Gruneisen parameter, Debye temperature and specific heat on pressure P
are successfully obtained. The obtained results are in a good agreement
with the available experimental and other theoretical data.
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1 Introduction

Transition metal diborides are of interest for fundamental reasons as well
as for practical applications. The diborides are members of a broad class of
materials known as the boron-rich solids [1], which consist of extended net-
works of covalently bonded boron (B) atoms stabilized through donation of
electrons from the metal atoms. Although the structures of the diborides
are unique, their physical properties are somewhat similar to those of ni-
trides and carbides; they are extremely hard and have very high melting
points [2]. The diborides are good electrical conductors with resistivities
that are often lower than those of the parent metal. They are attractive
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for the same types of applications as other hard, refractory materials, such
as in composites and in hard coatings. Traditional applications of such
materials are based on their interesting combination of mechanical and
transport properties. Thus, in order to extend our present understanding
regarding the behaviour of these materials to external influences as well
as for the future technological developments, the thermodynamic proper-
ties of ZrB2 compound has been investigated under pressure through the
quasi-harmonic Debye model.

2 Quasi-harmonic Debye model

The non-equilibrium Gibbs function is given by [3,4]

G∗(V ; P, T ) = E(V ) + PV + AV ib (Θ(V ); T ) , (1)

where E(V ) is the total energy per unit cell, P is the pressure, V is the cell
volume, PV corresponds to the constant hydrostatic pressure condition, T
is the absolute temperature, and Θ(V ) is the Debye temperature.

The vibrational term, AV ib(Θ(V ); T ), is given by

AV ib(Θ(V ); T ) = nKT ×
[
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where n is the number of atoms in the molecule, and K is the Boltzmann
constant. The Debye integral is expressed as [3]
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For an isotropic solid, Θ is given by
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where ~ is the Planck constant (divided by 2π) M and Bs represents the
molecular mass per formula unit and the adiabatic bulk modulus respec-
tively. The adiabatic bulk modulus is approximated as [3]

Bs ∼ B(V ) = V

(
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)

. (5)
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The Poisson ratio and f(σ) are given by [4]
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6B + 2G
, (6)
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where B and G are the bulk modulus and shear modulus, respectively. The
non-equilibrium Gibbs function is minimized with respect to volume:

[∂G∗(V ; P, T )

∂V

]

P,T
= 0 . (8)

Thus, the expressions for isothermal bulk modulus, heat capacity and the
thermal expansion coefficient [3] are given by

BT (P, T ) = V
[∂2G∗(V ; P, T )

∂V 2

]

P,T
= 0 , (9)
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α =
γCV

BT V
, (11)

where k is the Boltzmann’s constant. The Grüneisen parameter is given by

γ = −d ln Θ(V )

d ln V
. (12)

3 Results and discussion

The density functional theory (DFT) Hamiltonian has been used where the
electronic correlation and the exchange potential are chosen according to
the Perdew-Zunger-Ceperly functional [5,6]. A first principles calculation
with a relativistic analytic pseudopotential of Hartwigsen, Goedecker and
Hutter (HGH) [7] scheme in the frame of density functional theory within
LDA has been applied. The HGH type pseudopotential requires about
10 parameters. In our calculations, the kinetic energy cut-off criterion of
10 hartree is adopted to get the convergence of 10−7 Hartree in energy.
The total energy and the ground state wave functions are calculated on a
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10×10×10 k-point mesh. All the total energy electronic structure calcula-
tions are implemented through the Cambridge Serial Total Energy Package
(CASTEP), a shared-source academic and commercial software package –
Fortran based program [8,9].

First principles calculations of the total energy, E, of AlB2 are the basis
for the determination of the equation of state. The energy is calculated as
a function of unit cell volume, V . It is then minimized as a function of
the c/a ratio (a and c lattice parameters) for the selected volume. Since
the experimental lattice parameters ratio is 1.0827 [10], we thus calculate a
series of different c/a ratios from 1.080 to 1.085. It is found that the most
stable structure of hexagonal close packed (HCP) AlB 2 (i.e., the normal-
ized volume Vn=V/V 0 = 1.0, where V 0 is the equilibrium volume at zero
pressure) corresponds to the ratio c/a of about 1.084.

Table 1: Energy values given together with the primitive cell volumes for HCP AlB2.

V 169 170 171 172 173 174 175 176

E -7.70216 -7.7023 -7.70237 -7.7024 -7.70241 -7.7024 -7.70234 -7.7022

In Tab. 1, the energy values have been given together with the primitive
cell volumes, corresponding to the c/a value of 1.084. The crystal structure
of ZrB2 is designated as AlB2-type transition metal diboride with the space
group symmetry P6/mmm. It is simply a hexagonal lattice in which close
packed TM (transition metal) layers are present alternative with graphite-
like B layers. Choosing appropriate primitive lattice vectors, the atoms are
positioned at TM (0,0,0), B (13,16,12), in the unit cell. The equilibrium
lattice parameters are given in Tab. 2. The obtained results are consistent
with the available theoretical results [11–13] and the experimental data
[14–17].

To calculate the elastic constants under hydrostatic pressure P , we use
the strains to be non-volume conserving, which are appropriate for the
calculation of the elastic wave velocities. The elastic constants Cijkl with
respect to the finite strain variables are defined as [18–20]

Cij = [∂σij(X)/∂ekl]x ,

where σij and ekl are the applied stress and Eulerian strain tensors and
X and x are the coordinates before and after the deformation. For the
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Table 2: Structural parameters of ZrB2.

a(Å) c(Å) c/a

Present 3.1732 3.5349 1.114

Ref. [13] 3.1768 3.559 1.120

Ref. [12] 3.1832 3.5464 1.114

Ref. [11] 3.1970 3.5610 1.114

Ref. [14] 3.1693 3.5313 1.114

Ref. [16] 3.1700 3.5320 1.114

Ref. [15] 3.1650 3.5407 1.120

Ref. [17] 3.1680 3.5230 1.112

isotropic stress, we have [19–21]

Cijkl = cijkl +
P

2

(

2δijδkl − δilδjk − δikδji

)

,

Cijkl =
( 1

V (X)

∂2E(X)

∂eij∂eki

)

x
,

where cijkl denotes the second-order derivatives with respect to the in-
finitesimal strain (Eulerian). The fourth-rank tensor C has generally 21
independent components. However, this number is greatly reduced when
taking into account the symmetry of the crystal.

The five-independent elastic constants for hexagonal crystal ZrB2 have
been calculated using the stress–strain relation upto pressures of 100 GPa
and are given in Tab. 3. We found that the five-independent elastic con-
stants increase linearly with pressure. If structure is mechanically stable,
the five independent elastic constants should satisfy the well-known Born
stability criteria [22], i.e.

C12 > 0, C33 > 0, C44 > 0 ,

C66 = (C11 − C12)/2 > 0 ,

(C11 + C12)C33 − 2C2
13 > 0 .

Further, the elastic constants also satisfy the Born stability criteria [22].
Thus, ZrB2 is stable mechanically and there is no phase transition up to
100 GPa of pressure.
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Table 3: Elastic constants for ZrB2.

Pressure Constants

GPa C11 C12 C13 C33 C44

0 562 56 120 432 244

10 600 68 165 485 272

20 641 82 198 526 298

30 678 96 238 582 336

40 730 112 285 626 368

50 795 131 315 678 398

60 850 148 338 712 428

70 910 168 372 758 451

80 960 178 389 786 469

90 1005 189 398 812 476

100 1050 200 410 855 498

The Grüneisen parameter γ is based on the lattice’s change in volume as the
temperature changes. The dependence of Grüneisen parameter on pressure
and temperature of ZrB2 have been determined and given in Tabs. 4 and 5.

Table 4: Grüneisen parameter of ZrB2.

Pressure Grüneisen parameter γ

GPa 300 K 600 K 900 K 1100 K

0 1.96 1.94 1.93 1.89

20 1.76 1.75 1.74 1.73

40 1.64 1.63 1.62 1.61

60 1.54 1.53 1.52 1.51

80 1.45 1.44 1.43 1.42

100 1.38 1.37 1.36 1.35

The above results are due to the fact that the effect of temperature on
Grüneisen parameter is not as significant as that of pressure.
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Figure 1: The dependences of Grüneisen parameter γ with pressure P.

Table 5: Values of Grüneisen parameter γ with temperature.

Temperature Grüneisen parameter γ

K 0 GPa 5 GPa 10 GPa 15 GPa

0 1.88 1.83 1.79 1.75

500 1.90 1.85 1.80 1.76

1000 1.94 1.88 1.84 1.79

1500 1.99 1.93 1.87 1.82

2000 2.04 1.97 1.90 1.86

From the graphical representations in Figs. 1 and 2, it is evident that
at a given pressure, with the temperature, Grüneisen parameter γ increases
with temperature. At fixed temperature γ decreases with pressure. As the
temperature goes high, Grüneisen parameter decreases more with the in-
crease of pressure. This shows that the effect of pressure is significant on
the Grüneisen parameter.
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Figure 2: The dependences of Grüneisen parameter with temperature.

Table 6: Values of thermodynamic parameters with pressure.

Pressure Θ CV

GPa 1800 K 300 K 1800 K 300 K

0 0 0 0 0

20 0.20 0.15 0 -0.05

40 0.35 0.25 0 -0.09

60 0.46 0.35 0 -0.13

80 0.56 0.45 0 -0.16

100 0.65 0.52 0 -0.20

The values of heat capacity CV and the Debye temperature Θ as a
function of pressure, P , are given in Tab. 6 and their ratios are shown in
Fig. 3. The ordinate is showing the ratio of the heat capacity and Debye
temperature.

The Debye temperature increases non-linearly at constant temperature
with increasing pressures. This indicates the change of the vibration fre-
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quency of particles. However, with the applied pressures, the heat capacity
decreases. The values of Debye temperature for ZrB2 with temperature at
different pressures are written in Tab. 7.

Figure 3: The dependences of thermodynamic parameters with pressure.

At temperature range of 0 to 500 K, the Debye temperature decreases
at low pressure. The lowered magnitude of Debye temperature becomes
small as pressure is increased. The variation of Debye temperature is very
minute at a pressure of 10 GPa. Therefore, the importance of pressure on
Debye temperature is much greater than that of temperature.

4 Conclusions

The description of lattice parameters of ZrB2 compound has been given.
The five-independent elastic constants have been calculated using the stress-
strain relation. It is found that ZrB2 is stable mechanically and there is no
phase transition up to 100 GPa of pressure. It is also found that the Debye
temperature increases monotonically. Furthermore, the high temperature
leads to a smaller Debye temperature. But the high pressure gives birth
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Table 7: Values of Debye temperature, Θ, with temperature at different pressures.

Temperature Debye temperature

K 0 GPa 5 GPa 10 GPa

0 545 567 587

50 545 567 587

100 544.8 566 586

150 544 566 586

200 543 565 585

250 542 564 584

300 541 562 582

350 539 561 581

400 537 559 579

450 535 556 577

500 533 553 575

to a larger Debye temperature in the wide range of pressures and temper-
atures. It is also shown that when the temperature is constant, the Debye
temperature increases almost linearly with increasing pressures. However,
the heat capacity decreases with the increasing pressures, as is due to the
fact that the effect of increasing pressure is the same as decreasing tempera-
ture. It has been observed that at given pressure, the Grüneisen parameter
increases dramatically with the temperature; while at fixed temperature,
the Grüneisen parameter decreases dramatically with pressure, however,
as the temperature goes higher, the Grüneisen parameter decreases more
rapidly with the increase of pressure. These results are due to the fact that
the effect of temperature on the ratio Grüneisen parameter (γ) is not as
significant as that of pressure, and there will be a large thermal expansion
at a low-pressure.
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