
981Bull. Pol. Ac.: Tech. 66(6) 2018

Abstract. Thread mapping is one of the techniques which allow for efficient exploiting of the potential of modern multicore architectures.
The aim of this paper is to study the impact of thread mapping on the computing performance, the scalability, and the energy consumption for
parallel dense linear algebra kernels on hierarchical shared memory multicore systems. We consider the basic application, namely a matrix-ma-
trix product (GEMM), and two parallel matrix decompositions (LU and WZ). Both factorizations exploit parallel BLAS (basic linear algebra
subprograms) operations, among others GEMM. We compare differences between various thread mapping strategies for these applications.
Our results show that the choice of thread mapping has the measurable impact on the performance, the scalability, and energy consumption of
the GEMM and two matrix factorizations.

Key words: computation performance, OpenMP standard, nonnegative matrix factorization, thread mapping, energy consumption.

Studying OpenMP thread mapping for parallel linear algebra
kernels on multicore system

B. BYLINA* and J. BYLINA
Marie Curie-Skłodowska University, Institute of Mathematics, Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Determining the efficiency of the thread mapping depends
on the machine and the application. There is not a single thread
mapping strategy that suits all the applications. In this work,
we are going to try to state rules which guide us to determine
efficient thread mapping to improve the performance, the scal-
ability, power and energy consumption of parallel numerical
linear algebra applications on shared memory multithreaded
machines with hierarchical memory.

Efficient parallel numerical algorithms and their implemen-
tations on different contemporary parallel machines are crucial
for engineering applications and computational science. One of
the important problems of numerical linear algebra is the ma-
trix factorization which is the matrix decomposition into factor
matrices of a simpler structure or of some specific properties.
The most known factorizations are the LU, QR, and Cholesky
factorizations. In this work, we study the LU factorization, and
another less known form of the factorization, namely the WZ
factorization. We assume that the factorized matrix is dense,
non-singular, square. For both factorizations (LU and WZ), we
consider block versions which use a standard set of basic linear
algebra subprograms (BLAS) [9]. BLAS collects all the vec-
tor-matrix operations.

The basic matrix operation, namely the matrix multiplica-
tion (GEMM) from BLAS library was analyzed. Furthermore,
we considered GEMM which was implemented in Intel MKL
library (Math Kernel Library [16]). and discussed a multi-
threaded version of the block LU factorization which is avail-
able in the Intel MKL library too. Another factorization which
we considered was the WZ factorization which uses level 3
BLAS routines. The WZ factorization was introduced in [11].
It was a novel method for solving linear systems in parallel,
for SIMD (single instruction multiple data, [12]) computers.
A tiled WZ factorization (here, ‘tiled’ means a block version
[3] with all the blocks being square matrices of the same size)
was implemented by the authors with the use of multithreaded

1. Introduction

The advance of the shared memory multicore and manycore
architectures caused a rapid development of one type of paral-
lelism, namely the thread level parallelism. This kind of paral-
lelism relies on splitting the program into subprograms which
can be executed concurrently. Each of such subprograms is
performed by one or more software threads.

A software thread is a running sequential part of the program
and there are also hardware threads. A hardware thread is an in-
dependent physical processing unit – as seen by the operating
system. Such a hardware thread can execute one sequential soft-
ware thread at any particular moment. Operating systems on
the shared memory multicore and manycore architectures run
numerous software threads and these threads share a complex
hierarchical memory. Since the architecture consists of many
processing units, these software threads have to be assigned to
appropriate processing units (that is, hardware threads). Such
an assignment is called thread mapping [8]. Using inadequate
thread mapping strategies can produce a bad utilization of the
computing power and the memory hierarchy. The adequate ones
should be used to efficiently exploit the potential of modern
multiprocessors.

The thread mapping can also improve the energy efficiency
of parallel applications by reducing the execution time. Energy
consumption will be reduced proportionally since the processor
is in a high power-consumption state for less time. Energy ef-
ficiency is being recently considered as important as raw per-
formance and has become a critical aspect of the development
of scalable systems.

*e-mail: beata.bylina@umcs.pl

Manuscript submitted 2017-11-28, revised 2018-04-21, initially accepted
for publication 2018-06-04, published in December 2018.

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 6, 2018
DOI: 10.24425/bpas.2018.125800

982

B. Bylina and J. Bylina

Bull. Pol. Ac.: Tech. 66(6) 2018

BLAS operations and the OpenMP standard on multicore ar-
chitectures.

We studied the OpenMP thread mapping strategies for ma-
trix decompositions on multicore architectures in our work
[6]. The results show that the choice of thread affinity has the
measurable impact on the executed time of the matrix fac-
torizations. Here, we extend this investigation into analyzing
the performance, the scalability and the energy efficiency.
We also add power profiles based on Intel՚s RAPL (Intel
Running Average Power Limit) [13] technology that allows
measuring power and energy seamlessly by using hardware
counter technology available on multicore processors. We not
only investigate the matrix decompositions but also add the
research GEMM operation, which is a component of the matrix
decompositions.

The rest of this paper is organized as follows. In Section 2,
we present different thread mapping strategies. Section 3 re-
views the matrix decompositions, namely LU and WZ. Sec-
tion 4 shows the results of numerical experiments carried out on
shared memory multicore architectures and evaluates different
thread affinities for all GEMM and matrix factorizations. Fi-
nally, Section 5 concludes our research and presents the future
plans.

2. Thread mapping strategies

Most operating systems have smart algorithms to allocate
software threads on multicore architectures. They model the
structure of the underlying hardware in order to describe the
distance between units. Computer machines have the hierar-
chical structure in which hardware threads share a common
core including functional units and first level cache. Logically,
a computer system can be treated like a tree of packages, cores,
and hardware threads. Each package contains one or more
cores, and each core contains one or more hardware threads.
Figure 1 presents the topology of the hardware used in our
experiments. In our studies, we have machines consisting of
2 packages each; each package consists of 12 cores and each
core has 2 hardware threads.

In order to avoid the operating system moving threads
around, it is possible to bind a thread. The goal of the thread
mapping is to bind software threads to the hardware threads in

such a way that memory accesses to data shared between soft-
ware threads are optimized and all the cores are equally loaded.
Thread mapping aims to improve the performance and en-
ergy efficiency. Thus, it is important to choose an appropriate
thread mapping strategy. Some thread mappings can be applied
directly through options of the runtime environment without
modifying the parallel application. There are various utilities
to control the thread mapping on a modern Linux system. The
OpenMP 4.0 or 4.5 [17] specification provides the vendor-neu-
tral and environment variables
which specify how the software threads in a program are
bound to hardware threads. These two environment variables
are often used in conjunction with each other.
is used to specify the places in the multicore architecture to
which the threads are mapped (for example cores, threads).
Cores denote that the software thread can migrate between
cores. Threads denote that the software thread cannot migrate
between cores. is used to specify the mapping
policy which determines how the threads are bound to places
(for example ,). Spread mapping denotes that the
OpenMP runtime distributes the threads as evenly within the
places in the system, as possible. Close mapping denotes that
the OpenMP runtime packs the threads in the same place, as
closely to one another.

We consider several examples of binding software threads to
hardware threads. Let the number of the software threads be equal
to 24. Let Ti denote ith hardware thread (where i = 0, …, 23),
STi denote ith software thread.

Example 1. For

we have the following binding:
● ST0 is bound to T0,
● ST1 is bound to T24,
● ST2 is bound to T1,
● ST3 is bound to T25,

● ST22 is bound to T11,
● ST23 is bound to T35.

It means that each core has exactly two software threads,
P1 package is idle, the hyperthreading is used, and there is no
thread migration.

Fig. 1. The topology of the hardware used in the experiments (P – package, C – core, T – thread)

983

Studying OpenMP thread mapping for parallel linear algebra kernels on multicore system

Bull. Pol. Ac.: Tech. 66(6) 2018

Example 2. For

we have the following binding:
● ST0 is bound to T0,
● ST1 is bound to T12,
● ST2 is bound to T1,
● ST3 is bound to T13,

● ST22 is bound to T11
● ST23 is bound to T23.

It means that both packages are loaded evenly. Each core has
exactly one software thread, the hyperthreading was not used,
and there is no thread migration.

Some vendors recommend setting the thread mapping
on the OpenMP threads to associate them with a particular
processing units. The Intel OpenMP runtime library has the
ability to bind OpenMP threads to physical processing units.
The environment variable in the Intel compilers
allows adjusting software threads to hardware threads. This en-
vironment variable has got the following form:

       level, type

We can set the level of the granularity to or .
Software threads can migrate between processing units in accor-
dance with the operating system preferences. Averting the mi-
gration inhibits transferring temporary data between cores and
caches. Forcing the static mapping of the threads of a particular
program can give a performance growth. If the granularity is
set to , the threads can migrate – although only within one
core. To forbid threads to migrate at all, the granularity should
be set to .

The optional modifier in the vari-
able leads to printing the mapping information. This informa-
tion regards the machine topology e.g. the number of packages,
the number of cores in each package, the number of hardware
threads for each core and the actual software threads pinned
to hardware threads (for the granularity) or sets of the
hardware and software threads (for the granularity). This
modifier allows checking the thread mapping in our
examples.

The environment variable for CPU can have
the following main values for type: , , and

. Threads remain unbound for the value. However,
in this case, the operating system assigns threads according
to its own algorithm. If is set to , it
means that all threads are put close together. The new thread
is first allocated to one core until the core reaches its max-
imum load. For the value, all threads are put far apart.

 spreads threads evenly across the system. The new
thread is firstly allocated to the package that has the lightest
load. is the opposite of .

We consider several examples of binding software threads
to hardware threads. Let the number of the software threads be
equal 24. Let Ti denote ith hardware thread (where i = 0, …, 23)
and STi denote ith software thread.

Example 3. For
        , 

we have the following binding:
● ST0 is bound to T0,
● ST1 is bound to T24,
● ST2 is bound to T1,
● ST3 is bound to T25,

● ST22 is bound to T11,
● ST23 is bound to T35.

It means that the P1 package is idle. Each core has exactly two
software threads, the hyperthreading was used, and there is lack
of the thread migration. This is like Example 1.

Example 4. For
        , 

we have the following binding:
● ST0 is bound to T0,
● ST1 is bound to T12,
● ST2 is bound to T1,
● ST3 is bound to T13,

● ST22 is bound to T23,
● ST23 is bound to T11.

It means that both packages are loaded evenly. Each core has
exactly one software thread, the hyperthreading was not used,
and there is lack of the thread migration. This is like Example 2.

3. Matrix decomposition

The decomposition of a matrix or the factorization of a matrix
is used to solve an n£n system of linear equations [1, 11], to
find the inverse of the matrix, to compute the determinant of
the matrix or as the preconditioning for iterative methods [4, 5].
The LU decomposition factorizes a matrix into two matrices,
namely a lower triangular matrix L and an upper triangular ma-
trix U. For improving computing performance, a block version
of the LU decomposition is applied in high performance com-
puting. The block LU decomposition is a matrix decomposition
of a block matrix into a lower block triangular matrix L and an
upper block triangular matrix U. The block version of the LU
decomposition was implemented in LAPACK (Linear Algebra
PACkage) [1] That implementation is based on BLAS. The par-
allelism of that block version of the LU factorization arises from
the use of a multithreaded BLAS. The MKL library provides
exactly such an implementation of BLAS and such a parallel
version of the block LU decomposition.

In the latter [2] the concept of tiled algorithms is reminded
and a class of parallel tiled linear algebra algorithms (LU, QR
and Cholesky factorization) for multicore architectures is pre-
sented. In our work, we investigate the tiled WZ decomposition.
The WZ factorization is described in [7, 11, 15]. Let’s assume
that A is a square nonsingular matrix of the size n£n (we con-
sider only even n, for simplicity’s sake). We are to find matrices

984

B. Bylina and J. Bylina

Bull. Pol. Ac.: Tech. 66(6) 2018

W and Z that fulfill WZ = A where the matrices W and Z have
the structure shown in Fig. 2 – here, gray fields are non-zeros.
The main diagonal of the matrix W consists only of ones. The
second diagonal consists of zeros.

These diagonals divide the matrix into four triangles. The
left and right triangles contain non-zeros, and the top and
bottom ones contain only zeros. The matrix Z has non-zeros
where the matrix W has zeros or ones – and vice versa.

The first part of the WZ factorization algorithm consists of
setting successive parts of columns of the matrix A to zeros.
In the first step, we do that with the elements in the 1st and
nth columns – from the 2nd row to the n ¡ 1st row. Next, we
update the inner submatrix A of the size (n ¡ 2)£(n ¡ 2) and
for k = 2, …, n/2 we zero elements in the kth and (n ¡ k + 1) st
columns – from the (k + 1)st row to the (n ¡ k)th row.

In order to achieve high efficiency of the WZ factorization
algorithm on a shared memory multicore system, we use a tiled
algorithm. The tiled WZ factorization algorithm performs the
majority of its floating-point operations (flop) using the level 3
BLAS operations, which use the memory hierarchy. That hier-
archy is utilized very efficiently, and thus, the modern BLAS
implementations achieve almost the peak performance of the
processor. Let’s assume that the A is a square nonsingular ma-
trix of an even size n and it is partitioned into r£r (r is also
even) parts (r of each side – rows and columns). The tiled WZ
algorithm consists of repeating four stages r/2 times.

Stage 1 consists in the WZ factorization of a matrix built
from four corner blocks of the input matrix. Stage 2 computes
2s (where s = n/r) columns of the matrix W – s right columns
and s left columns. Stage 3 computes 2s rows of the matrix
Z – s bottom rows and s top rows. Stage 4 updates the inner
submatrix A – that is, A without outer 2s columns and 2s rows.
In the next step, the algorithm is repeated for this inner matrix.

The tiled algorithm for the WZ factorization will be based
on the following set of elementary operations.
●   . This subroutine performs a sequential WZ fac-

torization for matrix B.
●   . This BLAS sub-

routine is used to compute X = A–1 ¢ B (denoted by), or
X = B ¢ A–1 (denoted by), where X and B are s£s ma-
trices, A is a unit () or non-unit (), upper () or
lower () triangular matrix.

●   . This BLAS subroutine is used to compute
A = –B ¢ C + A, where A, B, and C are s£s matrices.

●   . This BLAS subroutine is used to
compute A = –B ¢ C + D, where A, B, C, and D are s£s
matrices.
Algorithm 1 presents the tiled WZ factorization algorithm

expressed by the above-mentioned operations (, ,
,) for a nonsingular matrix A partitioned

into r£r blocks. The matrices W and Z are the results of this
algorithm.

Fig. 2. The form of the result matrices in the WZ factorization

B. Bylina, J. Bylina

processor. Let’s assume that the A is a square nonsingular ma-
trix of an even size n and it is partitioned into r× r (r is also
even) parts (r of each side — rows and columns). The tiled WZ
algorithm consists of repeating four stages r/2 times. Stage 1
consists in the WZ factorization of a matrix built from four
corner blocks of the input matrix. Stage 2 computes 2s (where
s = n

r) columns of the matrix W — s right columns and s left
columns. Stage 3 computes 2s rows of the matrix Z — s bot-
tom rows and s top rows. Stage 4 updates the inner submatrix
A — that is, A without outer 2s columns and 2s rows. In the
next step, the algorithm is repeated for this inner matrix.

The tiled algorithm for the WZ factorization will be based
on the following set of elementary operations.

• . This subroutine performs a sequential WZ
factorization for matrix B.

• . This BLAS
subroutine is used to compute X = A−1 ·B (denoted by),
or X = B ·A−1 (denoted by), where X and B are s× s ma-
trices, A is a unit () or non-unit (), upper () or lower
() triangular matrix.

• . This BLAS subroutine is used to com-
pute A =−B ·C+A, where A, B, and C are s× s matrices.

• . This BLAS subroutine is used
to compute A =−B ·C+D, where A, B, C, and D are s× s
matrices.

Algorithm 1 presents the tiled WZ factorization algorithm
expressed by the above-mentioned operations (, ,

,) for a nonsingular matrix A partitioned
into r× r blocks. The matrices W and Z are the results of this
algorithm.

4. Numerical experiments
4.1. Environment. In this section, we compare the differ-
ent thread mapping strategies on a shared hierarchical mem-
ory multicore architecture. We present the performance, the
speedup, power and energy consumption. These evaluations
were conducted by the execution of parallel versions of the
following applications:

• a multithreaded implementation of GEMM routines from the
MKL library which computes a matrix multiplication. This
operation is denoted by GEMM.

• a multithreaded implementation of the routine from
the MKL library, which computes the complete LU factor-
ization of a general matrix with pivoting. In our case, the
matrices are square of the size n×n. In the implementation
of the routine the panel factorization (factorization
of a block of columns) is used, as well as the level 3 BLAS
routines (and). This LU factorization is de-
noted by LU.

• a parallel tiled WZ factorization with the use of level 3
BLAS routines (and) and the OpenMP stan-
dard (denoted by TWZ(r)-OpenMP). OpenMP is used to
parallelize loops (lines: 9, 18 and 25 in Algorithm 1) with

scheduler.

Algorithm 1 Tiled WZ factorization algorithm for even r
based on four elementary operations
Require: A, r
Ensure: W, Z

1: for k ← 1,r/2−1 do
2: k2 ← r− k+1
3: The WZ for the corner blocks of A, STAGE 1

4: B ←

[
Akk Akk2

Ak2k Ak2k2

]
, (B, WB, ZB)

5:

[
Wkk Wkk2

Wk2k Wk2k2

]
← WB,

[
Zkk Zkk2

Zk2k Zk2k2

]
← ZB

6: Computing the kth and k2nd columns of W — STAGE 2
7: Zkk D Zkk2
8: E Zk2k D Zk2k2
9: for i ← k+1,k2 −1 do

10: Aik2 Aik D ;
11: E Wik2 Aik2
12: Aik Wik2 Zk2k ;
13: Zkk Wik Aik
14: end for
15: Computing the kth and k2nd rows of Z — STAGE 3
16: Wkk D Wk2k
17: E D Wkk2 Wk2k2
18: for i ← k+1,k2 −1 do
19: Ak2i D Aki ;
20: E Zk2i Ak2i
21: Aki Wkk2 Zk2i ;
22: Wkk Zki Aki
23: end for
24: The update of the matrix A — STAGE 4
25: for j ← k+1,k2 −1 do
26: for i ← k+1,k2 −1 do
27: Ai j Wik Zk j ;
28: Ai j Wik2 Zk2 j
29: end for
30: end for
31: end for

Table 1
Hardware and software used in the experiments

CPU Intel R©Xeon E5-2670 v.3 (Haswell)

cores 2 sockets × 12 cores = 24 cores
threads 48 threads
Clock speed 2.30 GHz
Level 1 instruction cache 32kB per core
Level 1 data cache 32kB per core
Level 2 cache 256 kB per core
Level 3 cache 30 MB
Host memory 128 GB
Compiler Intel icc 16.0.0
BLAS, LAPACK MKL 2016.0.109

Table 1 shows details of the specification of the hardware
and software used in the numerical experiment.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

4. Numerical experiments

4.1. Environment. In this section, we compare the different
thread mapping strategies on a shared hierarchical memory mul-
ticore architecture. We present the performance, the speedup,
power and energy consumption. These evaluations were con-
ducted by the execution of parallel versions of the following
applications:

985

Studying OpenMP thread mapping for parallel linear algebra kernels on multicore system

Bull. Pol. Ac.: Tech. 66(6) 2018

● a multithreaded implementation of GEMM routines from
the MKL library which computes a matrix multiplication.
This operation is denoted by GEMM.

● a multithreaded implementation of the routine from
the MKL library, which computes the complete LU factor-
ization of a general matrix with pivoting. In our case, the
matrices are square of the size n£n. In the implementation
of the routine the panel factorization (factorization
of a block of columns) is used, as well as the level 3 BLAS
routines (and). This LU factorization is de-
noted by LU.

● a parallel tiled WZ factorization with the use of level 3
BLAS routines (and) and the OpenMP stan-
dard (denoted by TWZ(r)-OpenMP). OpenMP is used to
parallelize loops (lines: 9, 18 and 25 in Algorithm 1) with

 scheduler.
Table1 shows details of the specification of the hardware

and software used in the numerical experiment.

Table 1
Hardware and software used in the experiments

CPU Intel ®Xeon E5‒2670 v.3 (Haswell)

cores 2 sockets

threads 48 threads

Clock speed 2.30 GHz

Level 1 instruction cache 32kB per core

Level 1 data cache 32kB per core

Level 2 cache 256 kB per core

Level 3 cache 30 MB

Host memory 128 GB

Compiler Intel icc 16.0.0

BLAS, LAPACK MKL 2016.0.109

All applications were compiled with using the following
options: , , , . Here, the op-
tion generates instructions for the highest instruction set and
the processor available on the compilation host machine. The

 and options link the program with two libraries
(MKL and OpenMP). The last one, , orders the compiler to
optimize the code automatically with the use of vectorization
and parallelization (among others). The MKL library already
provides vectorized implementations of BLAS routines.

All floating point calculations were performed with the
double precision. The input matrices were generated by the
authors. They were random (all off-diagonal elements were
generated with the use of a uniform distribution) matrices with
a dominant diagonal (diagonal elements were increased above
the sum of all the other elements in the same row – to ensure
the existence of the factorization without pivoting). The ma-
trices’ sizes are chosen as powers of two (and their multiples,
namely: 128, 256, 512, 1024£{1, …, 14}). Because using the
power of two can be a bad idea for cache layout we tested
additionally codes for other matrix sizes (namely as a multiple

of 1000 {1000, 2000, …, 15 000}) only for GEMM and LU
factorization from MKL library. The number of tiles equals
r = 128 was tested for WZ factorization (a different number
of tiles was tested in [6]).

The times were measured with the use of a standard func-
tion, namely from OpenMP Standard. We set
the number of the OpenMP threads using the
environment variable. The MKL uses OpenMP and thus, this
variable enables a parallel execution with the given number of
threads.

Another environment variables used in the tests are
 and , which are set to one of the

three values:
●       ,     denoted

by (see Example 1)
●       ,     de-

noted by (see Example 2).
Another environment variable used in the tests is

delivery Intel, which is set to one of the three settings:
\begin{itemize}

●           ,  denoted
by (see Example 3)

●           ,  denoted
denoted by (see Example 4)

●       denoted by .
To better control assigning software threads to hardware

threads we chose the granularity as . Such a setting
enables treating each hardware thread separately. Thus, each
software thread is mapped to one hardware thread. If we used
the granularity, one core would be treated as a unit con-
taining two software threads (because it consists of two hardware
threads through hyperthreading) and can cause thread migration.

The MKL procedures are available in the form of precom-
piled DLLs. However, they use the OpenMP standard internally,
and thus, the user can set the above-mentioned environment
variables and these variables do influence the MKL behavior
(they are not compile-time settings but the run-time ones). The
MKL is built to allow such a tuning and the affinity mapping
can be adjusted by a user during launching the application.

We begin by introducing our energy consumption measure-
ment methodology along with the metrics used to analyze the
results on the multicore system.

4.2. Performance. In our experiments, we use the number of
floating-point operations per second (flops) as a metric. The
number of floating point operations for GEMM equals n3. Both
the LU factorization and the WZ factorization have the number
of floating point operations equal 2/3n3 + O(n2), so this numer
approximately equals 2/3n3.

Thus, to obtain the metric in Gflops (= 109 flops) we use
the following formulas

n3

T ¢ 109
, for GEMM

2n3

3 ¢ T ¢ 109
, for both factorization matrix

986

B. Bylina and J. Bylina

Bull. Pol. Ac.: Tech. 66(6) 2018

where T is the execution time of a measured implementation.
This metric allows comparing all applications with the same
measure.

Figures 3, 4 and 5 present the performance (in Gflops)
of the GEMM, LU, and WZ for the fixed number of threads

as a function of the matrix size depending on the thread
mapping.

The thread mapping had an important impact on the per-
formance of all the tested applications. All three applications
are the most efficient for or , and the least
efficient for and – and they do not depend on
the matrix size. Such results were connected with the fact the
multicore machine was evenly loaded for or
and one package was idle for and . The same
results were obtained for the matrix size being powers of two
(or the multiple of powers of two) as and for the multiple of
1000. The decrease in the performance was observed only for
4096 and 8192 matrix size and it seemed to be connected with
the cache size. In the latter part of the article, we will only in-
vestigate the matrix size being the multiple of the power of two.

4.3. Speedup. Figure 6 presents the speedup of the GEMM, LU
and WZ for the fixed matrix size as the function of the number
of threads depending on the thread mapping in relation to the
application version executed on one core. These figures show
the scalability of applications when the number of threads is
increased on the multicore system. Our algorithm scales well

Fig. 3. The performance of GEMM from the MKL library

 0

 100

 200

 300

 400

 500

 600

 700

 0 2048 4096 6144 8192 10240 12288 14336

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, GEMM, number of threads=24

close
spread

none
compact

scatter
no settings

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000 12000 14000 16000

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, GEMM, number of threads=24

close
spread

none
compact

scatter
no settings

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000 12000 14000 16000

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, GEMM, number of threads=24

close
spread

none
compact

scatter
no settings

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000 12000 14000 16000

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, GEMM, number of threads=24

close
spread

none
compact

scatter
no settings

Fig. 4. The performance of LU from the MKL library

Fig. 5. The performance of authors’ WZ implementation

 0

 100

 200

 300

 400

 500

 600

 700

 0 2048 4096 6144 8192 10240 12288 14336

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, WZ, number of threads=24

close
spread

none
compact

scatter
no settings

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2000 4000 6000 8000 10000 12000 14000 16000

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, LU, number of threads=24

close
spread

none
compact

scatter
no settings

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2000 4000 6000 8000 10000 12000 14000 16000

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, LU, number of threads=24

close
spread

none
compact

scatter
no settings

 0

 100

 200

 300

 400

 500

 600

 700

 0 2048 4096 6144 8192 10240 12288 14336

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, WZ, number of threads=24

close
spread

none
compact

scatter
no settings

 0

 100

 200

 300

 400

 500

 600

 700

 0 2048 4096 6144 8192 10240 12288 14336

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, WZ, number of threads=24

close
spread

none
compact

scatter
no settings

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2000 4000 6000 8000 10000 12000 14000 16000

pe
rfo

rm
an

ce
 [G

flo
ps

]

matrix size

CPU, LU, number of threads=24

close
spread

none
compact

scatter
no settings

987

Studying OpenMP thread mapping for parallel linear algebra kernels on multicore system

Bull. Pol. Ac.: Tech. 66(6) 2018

up to 24 threads. To achieve the best speedup, it is the advisable
to use all the physical cores (here, 24 threads), without hyper-
threading (the MKL trims the number of the threads down to
the number of physical cores, because the hyperthreading gives
almost no improvement when the cache is well utilized). The
hyperthreading also impairs the results for in some cases
and it does not improve the results.

However, we can see a speedup breakdown in all these Fig-
ures. It is caused by the fact that the machine frequency is not
always the same (thanks to turbo boost mode it is higher when
the machine is less loaded and lower when it is more loaded).
Also, it can seem that the breakdown should be somewhat ear-
lier – but we do not know the real frequencies used (apart from
the fact they are between a producer-specified minimum and
maximum).

All three implementations scale best with regard to the
threads and to the matrix size when the environment variables
are set to or .

4.4. Power and energy. In this section, we focus on a detailed
study of power and energy characteristics. We measured the
power and the energy consumption of three numerical algo-

rithms with different settings of the thread mapping. The Intel
RAPL counter monitor was considered as the measurement tool
with an adjustable sampling rate that we set to 100 ms, similarly
to the work [10]. This sampling rate was sufficient to show
important transitions. Using the RAPL, values can be read from
the Intel processor’s registers and the power consumption of
the CPU and DRAM can be estimated in a very accurate way.
We measured the power and energy for two CPUs (denoted by
Package 0 and Package 1) and two DRAMs (denoted by DRAM
0 and DRAM 1) because our system was dual-socket, thus al-
lowing us to see which of the subsystems was more heavily
loaded.

In this section, we show the results for a selected matrix of
the size 14336. The results are very similar for other sizes of
matrices. For these experiments, we use the optimal number of
threads and the thread count is equal to the number of physical
cores, namely 24.

4.4.1. Power. Figure 7 shows three graphs of the power con-
sumption of GEMM for matrix size of 14336 with different
settings of the thread mapping (we obtained the similar graphs
for LU and WZ). On each graph, we can see three levels of the

Fig. 6. The speedup of GEMM (A) and LU (B) from the MKL library, and of the authors’ WZ implementation (C)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

sp
ee

du
p

number of threads

CPU, WZ, n=14336

close
spread

none
compact

scatter
no settings

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

sp
ee

du
p

number of threads

CPU, LU, n=14336

close
spread

none
compact

scatter
no settings

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

sp
ee

du
p

number of threads

CPU, GEMM, n=14336

close
spread

none
compact

scatter
no settings

A B

C

988

B. Bylina and J. Bylina

Bull. Pol. Ac.: Tech. 66(6) 2018

power usage. The first one is idle or low power and is equal
to about 20 W for both packages and close to 0 W for both
DRAMs. The second level is the memory allocation and is equal
to about 40 W for Package 0 and without change for Package 1
(still 20 W) and about 5 W for DRAM 0 and without change for
DRAM 1 (0 W). The third one is the proper computation and
the power depends on the thread mapping (in Section \4.4.3 we
study the energy consumption for this level).

For (we obtained the similar graphs for)
we see that Package 0 consumes over 120 W, Package 1 about
110 W, DRAM 0 consumes about 20 W and DRAM 1 about
10 W. For (we obtained the similar graphs for  )
we see that Package 0 consumes over 120 W, Package 1 about
20 W. For no settings (we obtained the similar graphs for

 ), we can see that the results are not so balanced – some-
times one package uses more energy, sometimes the other one.
The same goes for memory. For , both the sockets were
loaded with computations – although one of the sockets had
to manage the work division. For , only one socket was
used, thus, the running time extended. For no settings, we can
see that the thread migration takes place because the loads of
both sockets are different at various moments.

4.4.2. Power efficiency. We investigated the whole system
which implies adding idle, or unused, components to any metric.
We assumed a metric of the number of floating-point operations
per second per Watt (flop/s/W) (as [14]). Table 2 compares the
effects of the thread mapping on the power efficiency for three
applications. We obtained better power efficiency for the thread
mapping from the vendor-neutral runtime system OpenMP set-
tings. The best power efficiency is achieved for and

. In these cases, we observe load balanced system.
The worst power efficiency is achieved for , or

. The machine is badly load balanced in the case of
 and .

Table 2
Power efficiency [Gflop/s/W] for different thread mapping

for GEMM, LU and WZ factorization

no settings

GEMM 3.58 4.53 2.89 3.53 4.53 2.90

LU 2.09 2.78 1.79 1.99 2.69 1.86

WZ 1.88 2.41 2.41 1.88 2.38 2.38

Fig. 7. The power profiling of GEMM from the MKL library with RAPL (A: ; B: ; C: no settings)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

Po
w

er
 [W

at
ts

]

Time [seconds]

CPU, GEMM, number of threads=24, n=14336, spread

Package 0
Package 1

DRAM 0
DRAM 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

Po
w

er
 [W

at
ts

]

Time [seconds]

CPU, GEMM, number of threads=24, n=14336, spread

Package 0
Package 1

DRAM 0
DRAM 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

Po
w

er
 [W

at
ts

]

Time [seconds]

CPU, GEMM, number of threads=24, n=14336, spread

Package 0
Package 1

DRAM 0
DRAM 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

Po
w

er
 [W

at
ts

]

Time [seconds]

CPU, GEMM, number of threads=24, n=14336, close

Package 0
Package 1

DRAM 0
DRAM 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

Po
w

er
 [W

at
ts

]

Time [seconds]

CPU, GEMM, number of threads=24, n=14336, no settings

Package 0
Package 1

DRAM 0
DRAM 1

A B

C

989

Studying OpenMP thread mapping for parallel linear algebra kernels on multicore system

Bull. Pol. Ac.: Tech. 66(6) 2018

The best power efficiency we obtained for GEMM. The
worst power efficiency we obtained for WZ factorization.

4.4.3. Energy. When considering energy consumption, we
considered the whole system which implies adding the energy
consumption for all components namely Package 0, Package 1,
DRAM 0 and DRAM 1. In Fig. 8 we see energy consumption of
the computation level only for six tested settings of the thread
mapping in three applications. It can be clearly seen that using
the or no settings for GEMM and LU factorization and

 and for WZ factorization consumes more en-
ergy than and for GEMM and LU factoriza-
tion and than , , and no settings for WZ
factorization which may be expected. and no settings
behave differently for GEMM and LU factorization than for
WZ factorization.

consumption of the matrix decompositions which use BLAS op-
erations in their implementations. Our results showed that there
is one thread mapping strategy adapted for block-based numer-
ical dense linear algebra on shared memory multicore architec-
tures. For the matrix decomposition, the environment variable
should be set to or because in this way we
efficiently exploit the potential of modern shared memory mul-
ticore machines and energy saving. With this setting, threads
are put far from each other (as on different packages) which
provides a better usage of hardware resources (uniform load)
and reduces the execution time and the energy consumption.

In future works, the authors plan to research the impact of
the thread mapping on numerical dense linear algebra on Intel
Xeon Phi and to compare it with the results obtained in this
work. The authors are going to use the vendor-neutral BLAS
library and evaluate the results for other compilers on multicore
and manycore architectures.

References
 [1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-

garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen: LAPACK Users’ Guide, Society for Industrial
and Applied Mathematics, Philadelphia, PA, Third Edition, 1999.

 [2] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of
parallel tiled linear algebra algorithms for multicore architec-
tures”, Parallel Computing, 35 (1), 38–53 (2009).

 [3] B. Bylina, “The Block WZ factorization”, Journal of Computa-
tional and Applied Mathematics 331, 119–132 (2018).

 [4] B. Bylina and J. Bylina, “Incomplete WZ factorization as an al-
ternative method of preconditioning for solving Markov chains”,
PPAM, volume 4967 of Lecture Notes in Computer Science,
99–107 (2007).

 [5] B. Bylina and J. Bylina, “Influence of preconditioning and
blocking on accuracy in solving Markovian models”, Applied
Mathematics and Computer Science, 19 (2), 207–217 (2009).

 [6] B. Bylina and J. Bylina “OpenMP thread affinity for matrix
factorization on multicore systems”, Proceedings of the 2017
Federated Conference on Computer Science and Information
Systems, volume 11 of Annals of Computer Science and Infor-
mation Systems, 489–492 (2017).

 [7] S. Chandra Sekhara Rao, “Existence and uniqueness of WZ fac-
torization”, Parallel Computing, 23 (8), 1129–1139 (1997).

 [8] M. Diener, E. H. M. Cruz, M. A. Z. Alves, P. O. A.Navaux,
and I. Koren “Affinity-based thread and data mapping in shared
memory systems”, ACM Comput. Surv., 49 (4), 64:1–64:38 (Dec.
2016).

 [9] J. Dongarra, J. DuCroz, I. S. Duff, and S. Hammarling, “A set of
level-3 Basic Linear Algebra Subprograms”, ACM Trans. Math.
Software, 16, 1–28 (1990).

 [10] J. Dongarra, H. Ltaief, P. Luszczek, and V. M.Weaver, “Energy
footprint of advanced dense numerical linear algebra using tile
algorithms on multicore architectures”, 2012 Second Interna-
tional Conference on Cloud and Green Computing, 274–281
(Nov. 2012).

 [11] D. J. Evans and M. Hatzopoulos, “A parallel linear system
solver”, International Journal of Computer Mathematics, 7 (3),
227–238 (1979).

 [12] M. J. Flynn. “Some computer organizations and their effective-
ness”, IEEE Trans. Comput., 21 (9), 948–960 (Sep. 1972).

Fig. 8. The energy consumption with RAPL for different thread map-
ping for GEMM, LU and WZ factorization

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

GEMM LU WZ

En
er

gy
 [J

]

CPU, number of threads=24, n=14336

close
spread

none
compact

scatter
no settings

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

GEMM LU WZ

En
er

gy
 [J

]

CPU, number of threads=24, n=14336

close
spread

none
compact

scatter
no settings

 consumed about 22% less energy than .
 consumed about 23% less energy than .

The largest energy consumption is for LU factorization with
. The smallest energy consumption is for GEMM with

 and .

5. Conclusion

In this article, we analyzed the OpenMP thread mapping mech-
anism for numerical dense linear algebra on a shared memory
multicore architecture. We focused on the decompositions
of square dense nonsingular matrices into two factors. Such
a problem is of computationally intensive nature. To reduce
computing time significantly and to use the contemporary com-
puters architectures, the authors considered a partition of the
matrix A into blocks or tiles and the use of BLAS operations
among others GEMM.

The paper highlights the significant impact of thread map-
ping on the performance, the speedup and power and energy

990

B. Bylina and J. Bylina

Bull. Pol. Ac.: Tech. 66(6) 2018

 [13] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and
D. Rajwan, “Power-management architecture of the intel mi-
croarchitecture code-named sandy bridge”, IEEE Micro, 32 (2),
20–27 (Mar. 2012).

 [14] M. Weiland and N. Johnson, “Benchmarking for power consump-
tion monitoring”, Computer Science – Research and Develop-
ment, 30 (2), 155–163 (May 2015).

 [15] P. Yalamov and D. J. Evans, “The WZ matrix factorisation
method”, Parallel Computing, 21 (7), 1111–1120 (1995).

 [16] Intel Math Kernel Library, 2014. http://software.intel.com/en-us/
articles/intel-mkl/

 [17] OpenMP Architecture Review Board: OpenMP application pro-
gram interface version 4.5, May 2015.

