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Abstract
This paper describes a synthetic aperture radar system for tactical-level imagery intelligence installed on
board an unmanned aerial vehicle. Selected results of its tests are provided. The system contains interchange-
able S-band and Ku-band linear frequency-modulated, continuous wave radar sensors that were built within
a frame of a research project named WATSAR, conducted by the Military University of Technology and
WB Electronics S.A. One of several algorithms of radar image synthesis, implemented in the scope of the
project, is described in this paper. The WATSAR system can create online and off-line radar images.
Keywords: unmanned aerial vehicle (UAV), synthetic aperture radar (SAR), Range–Doppler algorithm
(RDA), imagery intelligence (IMINT) system.
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1. Introduction

Radar imaging techniques, such as synthetic aperture radar (SAR), enable the acquisition of
high-resolution terrain images, comparable with aerial photography, but images can also be cap-
tured in foggy, dusty, or low ambient light environments [1–3]. This makes them complementary
to optical systems, which require better visibility conditions. Therefore, these images are espe-
cially useful in military operations, which are often carried out in reduced visibility conditions
over the battlefield and must be performed both day and night. Many civilian applications, such
as observations of forest fires, can also benefit from these unique features of SAR.

This paper describes an unmanned aerial vehicle (UAV)-based SAR system, named WATSAR,
elaborated and manufactured by the Military University of Technology (Warsaw, Poland) and WB
Electronics S.A. (Ożarów Mazowiecki, Poland) in the years 2012–2016. Its primary application is
to tactical-level imagery intelligence (IMINT). Since manned airborne platforms are considerably
expensive, the aim of the project team was to install the system on board a mini UAV called FlySar,
which was built by Flytronic (Gliwice, Poland).
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This paper is organized as follows. The structure of the system is presented in Section 2 and
its main components are described in Sections 3–6. Selected results of the tests of the system are
demonstrated in Section 7, whereas Section 8 contains concluding remarks.

2. System structure

The system, shown in Fig. 1, includes a part installed on board a UAV and a ground-based
part. The on-board and ground-based parts exchange commands, status information, and radar
and navigation data via a dedicated C-band radio link. Some of the most important elements of
the on-board part, including the radar sensor and the navigation instruments, are visible in the
payload compartment, shown in Fig. 2. The UAV and the elements of the ground-based part of
the WATSAR system are presented in Fig. 3.

Fig. 1. A block diagram of the unmanned aerial vehicle (UAV)-based synthetic aperture radar (SAR) system.

The on-board part includes a transmitter/receiver module of the radar sensor with an antenna
system and a data storage module, an on-board SAR processor, an integrated navigation system,
and an on-board data transmission system. The system offers two levels of quality of the produced
radar images. The received radar echo signals are stored in the data storage module for post-
mission off-line synthesis of high-quality terrain images. At the same time, the signals are
range-compressed and processed by the SAR processor to form lower resolution online SAR
images. The resultant online images are transmitted to the ground-based station during UAV
flight. The navigation system is mainly used to compensate for the adverse influence of the UAV
flight instabilities on the quality of SAR images. The ground-based part includes a remote-control
station and a data analysis station, which control the airborne part of the system and synthesize
off-line radar images, respectively. The remote-control station sends its commands and receives
data from the UAV with the use of a receiver/transmitter station.
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Fig. 2. A photo of radar sensor and navigation equipment of the UAV-based SAR system.

Fig. 3. Photos of WATSAR system: a) Mini-UAV designed and produced in WATSAR project; b) remote-control
station; c) data analysis station and d) receiver/transmitter station.

3. Radar sensors and antenna system

During the project, two types of linear frequency-modulated, continuous wave (LFM-CW)
radar sensors were developed for two different operating frequency bands: 2.91 GHz (S-band)
and 15.9 GHz (Ku-band). Due to the greater wavelength, the SAR system with the S-band sensor
is less sensitive to trajectory instabilities, but the use of the Ku-band sensor provides much
better image resolution due to the wider band of the transmitted signal. The choice between the
frequency bands is made by replacing one type of sensor with another, which can be easily and
quickly performed in the field between two successive missions.

Block diagrams of S- and Ku-band sensors are shown in Fig. 4 and Fig. 5, respectively. Each
sensor is composed of an FM-CW exciter and a microwave header. The exciter is responsible
for generating the LFM-modulated sounding signal, processing the demodulated echo signals,
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digitizing and storing them in the system memory as complex samples for off-line SAR image
synthesis.

Fig. 4. A block diagram of the S-band radar sensor.

Fig. 5. A block diagram of the Ku-band radar sensor.

The microwave header [4] contains a power amplifier of the sounding signal and a receiver
front-end with a quadrature demodulator of the echo signal. Additionally, the header of the
Ku-band sensor contains an up-converter from 2.91 GHz to 15.9 GHz in its transmitting path.

The abbreviations used in Fig. 4 and Fig. 5 that were not previously explained in this paper
are as follows: PA – Power Amplifier, LNA – Low Noise Amplifier, BPF – Band Pass Filter, HPF
– High Pass Filter, LPF – Low Pass Filter, ADC – Analog to Digital Converter, CFFT – Complex
Fast Fourier Transform, VCO – Voltage Controlled Oscillator, PLL – Phase Locked Loop, ETH
– Ethernet ports.

The microwave header shown in Fig. 5 (Ku-band header), responsible for shifting the signal
carrier frequency between 2.91 GHz and 15.9 GHz, is the most crucial and challenging component
of the designed radar sensors. Block diagrams explaining its construction in more detail are
presented in Fig. 6 (transmitting part) and Fig. 7 (receiving part). Both figures contain photos and
symbols of the used microwave elements.

The transmitting part contains an up-converter with a triple-balanced mixer and a frequency
synthesizer used as a local oscillator. The frequency range of the oscillator is 12.4 to 13.4 GHz. The
following microwave components are used: (1) a triple-balanced mixer TB 0218 from Miteq; (2)
a bandpass filter FI-15.9-400-10 from MCLI; (3) a frequency synthesizer HMC807LP6CE from
Analog Devices; (4) two medium-power microwave amplifiers A2CP18615 from Teledyne; (5)
a medium-power microwave amplifier A2CP18625 from Teledyne, and (6) a directional coupler
C8-10 from MLCI.
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Fig. 6. A block diagram of the transmitting part of the Ku-band microwave header.

Fig. 7. A block diagram of the receiving part of the Ku-band microwave header.

The microwave amplifiers used in the transmitting part can be connected in a cascade without
considering their excitation. This is possible due to the very small value of the S12 parameter of
their scattering matrix.

The receiving part contains the following microwave components: (1) a bandpass filter FI-
15.9-400-10S from MCLI, (2) a low-noise microwave amplifier WBA80180B from WanTcom, and
(3) an I/Q demodulator IRM0218LC2Q from Miteq. The WBA80180B amplifier is a wideband
microwave amplifier working in the frequency range of 8 to18 GHz with a gain of 35 dB and
a noise factor equal to 2 dB.

To estimate the key parameters of the SAR system, the output signal-to-noise ratio (SNROUT)
was calculated. This calculation should consider the input signal-to-noise ratio (SNRIN ) as well
as effects of two-dimensional (2D) signal processing, including azimuth and range compression
[1, 5, 6]. These effects can be expressed in terms of the azimuth processing gain GA and the range
processing gain GR, and the relationship between the output and input signal-to-noise ratios is as
follows [3]:

SNROUT = 2GAGRSNRIN , (1)

GA =
ΘaR
2vTi

, (2)

GR = BTi , (3)

where: Θa is the antenna beam width in the azimuth direction, R is the horizontal range to the
object, v is the velocity of the UAV, Ti is the LFM ramp modulation time, and B is the bandwidth
of the sounding signal.
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The expected input signal-to-noise ratio (SNRIN ) can be obtained from the radar range
equation. The input SAR receiver signal power Ps is given by:

Ps =
PtGtGrλ

2σ

(4π)3R4
s

, (4)

where: Pt is the transmitted power, Gt is the transmitting antenna gain, Gr is the receiving antenna
gain, λ is the wavelength, σ is the radar cross-section of the object, and Rs is the slant range to
the object.

The radar cross-section σ for the SAR system is given by:

σ = σ0 Ar , (5)

where σ0 is a surface scattering coefficient (its values can vary from −25 dB to 20 dB) and Ar is
a surface resolution coefficient, defined as:

Ar = ∆R∆a, (6)

where ∆R is the horizontal range resolution and ∆a is the azimuth resolution. Finally, (4) can be
written as:

Ps =
PtGtGrλ

2σ0∆Rd
2(4π)3R4

s

, (7)

where d is the physical antenna length in the azimuth direction and d = 2∆a.
The noise power at the input of the SAR receiver is expressed as:

PN = k [TA + 290 (FLNAL − 1)] B, (8)

where: k is the Boltzmann constant, TA is the antenna noise temperature, FLNA is the noise figure
of the microwave amplifier, and L is the antenna line losses.

Substituting (7) and (8) into (1), the formulae can be obtained for SNROUT min and SNROUT max,
corresponding to Rs max and Rs min, respectively, which are the distances to the closest and farthest
objects illuminated by the antenna main beam, respectively:

SNROUT min = 2GA(Rs max)GR
PtGtGrλ

2σ0 min∆Rmaxd
2k

[
TA + 290 (FLNAL − 1)

]
(4π)3R4

s max

SNROUT max = 2GA(Rs min)GR
PtGtGrλ

2σ0 max∆Rmind
2k

[
TA + 290 (FLNAL − 1)

]
(4π)3R4

s min

, (9)

where ∆Rmin and ∆Rmax are the horizontal range resolution values at the distances Rmin and Rmax,
respectively.

Equation (9) enables to calculate the following parameters: the dynamic range of A/D con-
verters or the required transmitted power for assumed parameters of the SAR system, such as
a required SNROUT, the period of the LFM signal, the bandwidth of the sounding signal, the
antennas’ parameters, and velocity and altitude of the flight of the UAV. The main parameters of
both S-band and Ku-band radar sensors are provided in Table 1.

Dedicated patch antenna systems were developed for each frequency band. The 2.91 GHz
antenna is a 2D in-phase radiator array. The radiators are half-wave dipoles. The dipoles were
placed on opposite sides of the substrate. A photo of the antenna is shown in Fig. 8.
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Table 1. Comparison of parameters of S-band and Ku-band radar sensors.

Parameter Symbol Unit
Radar Sensor

S-band Ku-band

Centre frequency f0 GHz 2.91 15.9

Sounding signal bandwidth B MHz 100 184

LFM ramp modulation time Ti ms 1 1

LFM ramp repetition frequency Fp Hz 826 826

Power transmitter Pt dBm +20 +20

Power transmitter balance ∆Pt dBm ±1 ±1

Linearity LFM ∆ f /B – 4 × 10−4 4 × 10−4

Fig. 8. A photo of the 2.91 GHz antenna with a reflector.

The 15.9 GHz antenna was designed as a microstrip 4×6 array. It is powered by a power distri-
bution system implemented using Wilkinson and T dividers. Details of the antenna construction
are shown in Fig. 9.

a) b)

Fig. 9. Photos of the 15.9 GHz antenna: a) from the side of radiators; b) from the side of the power distribution system.

In Table 2, a comparison of the measured main parameters of the two antenna system types
is presented.
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Table 2. Comparison of main parameters of the S-band and the Ku-band antennas.

Parameter Unit
Antenna system

S-band Ku-band

Center frequency GHz 2.91 15.9

Bandwidth MHz 400 2 · 250

Beam-width in H-plane degrees 19.0 14.0

Beam-width in E-plane degrees 29.0 28.0

Side lobe level in H-plane dB −15.0 −11.0

Side lobe level in E-plane dB −20.0 −13.0

Gain dBi 15.8 13.8

4. Image synthesis algorithm

Due to the instability of the trajectory of the UAV platform, a modified version of the Range–
Doppler Algorithm (RDA) [1, 5] was implemented in the system. The modifications enable to
apply navigation corrections that describe the deviations of the actual platform trajectory from
the assumed ideal trajectory. The corrections are computed by the navigation system and are
used in the SAR algorithm to compensate for echo signals’ phase changes resulting from the
instabilities.

The RDA enables to obtain the SAR image much faster than time-domain algorithms, but
implementing the platform motion compensation in the RDA is much more difficult. This is
because the RDA computes the image for several range lines at a time with the same reference
function.

In order to consider the navigation corrections along the trajectory, the modified Range–
Doppler Algorithm divides the acquisition session into smaller parts in which the corrections
may be assumed constant, and creates SAR sub-images.

The width of a sub-image does not need to be correlated with the size of the synthetic aperture
(SA); however, the trajectory associated with a sub-image must be longer than the width of the
corresponding sub-image by the SA length. A simplified block diagram of the modified RDA is
shown in Fig. 10.

In the LFM-CW radar sensor the down-converted raw signal comprises a mixture of harmonic
echo signals having frequencies dependent on the distance from the radar to the object.

The first step of the algorithm is the fast Fourier transform in the range direction, which plays
a role of the range compression in LFM-CW radar systems. The subsequent steps of the algorithm
are performed for each of the sub-images separately. In the next step, the range-compressed signal
is transformed to the Doppler frequency domain (along the azimuth dimension) and the Range Cell
Migration Compensation procedure is performed. Simultaneously the reference function of the
SAR system is compensated for the motion errors computed for the centre of the synthetic aperture.
After that the azimuth compression procedure is executed as the fast convolution (multiplication
of spectra) of the raw signal and the motion-compensated reference function. The product of the
two spectra is transformed to the time domain, therefore the algorithm of computing each of the
sub-images may be described as follows:

G(p, q) = FFT−1
A

{
FFTA [sR (m, n)] FFTA

[(
frefMC (m)

)]}
, (10)
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where FFTA and FFT−1
A represent the fast Fourier transform and the inverse fast Fourier transform

in the azimuth direction, respectively; sR (m, n) is the down-converted and range-compressed raw
SAR signal; and frefMC (m) is the motion-compensated SAR reference function.

Fig. 10. A simplified block diagram of the modified Range–Doppler Algorithm.

The direct and inverse Fourier transforms were computed with the algorithms included in the
library functions provided by the development environment that was used for implementing the
system.

5. Integrated navigation system

Due to the small dimensions of the platform, its interaction with the atmosphere leads to
unfavourable UAV position and velocity changes that modulate the received echo signal and
cause mismatch between the signal and the assumed reference function. The on-board integrated
navigation system (Fig. 11) was elaborated to calculate navigational corrections for the online
and off-line SAR image synthesis algorithms, where they were used to correct the phases of the
echo signal. The corrections represent estimated differences between the real and the assumed
UAV positions and its velocity along a presumed rectilinear trajectory. The system includes a nav-
igation data processing module (NDPM), an inertial measurement unit (IMU) KVH 1750 and
an INS/GNSS unit SBG Ekinox-D, capable of receiving real-time kinematic (RTK) corrections
from the ground data analysis station. The algorithms implemented in the NDPM mainly include
inertial navigation, Kalman filtering, and estimation of navigational corrections [8, 9]. Given the
RTK corrections, the position of the UAV can be estimated with centimetre-level accuracy in
the horizontal plane. In theory, in order to obtain a fully-focused SAR image, the position error
should be less than a quarter of the wavelength (0.019 m); however, the achieved navigation results
enable to obtain good-quality images with a relatively small computation effort in comparison
with the autofocusing methods.
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Fig. 11. A block diagram of the integrated navigation system.

6. Radio link and communication system

The exchange of data between the ground-based and on-board parts of the system is accom-
plished using a C-band radio link. The system is similar to the one used for communication with
the mini-UAVs FlyEye (produced by WB Electronics) and currently used by the Polish Armed
Forces. However, it was adopted to the new and larger FlySar platform by the UAV producer,
Flytronic company.

Considering the demanding environment in which the UAV operates and the complexity of the
propagation processes, orthogonal frequency-division multiplexing (OFDM) was implemented.
To increase the operating range of the system, its ground station was equipped with an autonomous
high-gain directional-antenna system, capable of tracking the UAV during flight. Adaptive alloca-
tion of power, based on the correlation between the distance from the ground station to the UAV
and the noise level in the radio link, was applied to prolong the time of operation and increase the
operating range of the system.

The main parameters of the radio link are presented in Table 3.

Table 3. Parameters of the radio link.

Parameter Value
Frequency band C

Mode half duplex
Type of multiple access TDMA

Transmission lags < 100 ms
Operating range ≤ 30 km

Bitrate ≤ 30 Mbps
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7. Results of trials

All the WATSAR system in-flight tests were performed at an airfield in Kamien Slaski, Poland.
During the described tests, only the 15.9 GHz sensor was used.

A typical flight path of the UAV is shown in Fig. 12. The blue line represents a trajectory
acquired from the INS; it is very smooth but diverges from the true trajectory along with the time of
flight. The red line represents a more accurate trajectory from the INS/GNSS integrated navigation
system. SAR images were synthesized mainly for quasi-rectilinear sections of stadium-shaped
trajectories. The flight speed of the UAV was about 85 km/h.

Fig. 12. A typical flight path of the UAV during tests.

The radar images obtained during various measurement campaigns have been presented in
[7]. The SAR image in Fig. 13 was obtained with the 15.9 GHz sensor and computed with the
modified RDA in the off-line mode. The presented image differs from the one presented in [7] as
it was taken from a relatively high altitude of over 400 m and includes a larger urban area. Most
other experiments were carried out during flights at altitudes between 150 and 300 m. Due to the
greater distance to the observed area, the image synthesis algorithm required a longer synthetic
aperture to maintain the assumed resolution. The obtained azimuth resolution of the image was
about 80 cm and the range resolution was about 1 m.

a) b)

Fig. 13. a) An aerial photography and b) an SAR image of the south part of Kamien Slaski, Poland.
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8. Conclusions

This paper presents a UAV-based SAR system, dedicated mainly for IMINT, its main algo-
rithms, and selected results of its trials. The elements of the system, given its modular topology,
can be enhanced separately, which makes the system flexible for future development. Currently,
the main goal of the team is to reduce the system weight and size to enable its installation on
even smaller platforms, such as FlyEye from WB Electronics. Further optimization of the image
synthesis algorithms is also planned to improve the quality of the SAR images in the online
operation mode.
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