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An enhanced XFEM for the discontinuous
Poisson problem

In the paper, the extended finite element method (XFEM) is combined with a
recovery procedure in the analysis of the discontinuous Poisson problem. The model
considers the weak as well as the strong discontinuity. Computationally efficient
low-order finite elements provided good convergence are used. The combination
of the XFEM with a recovery procedure allows for optimal convergence rates in
the gradient i.e. as the same order as the primary solution. The discontinuity is
modelled independently of the finite element mesh using a step-enrichment and level
set approach. The results show improved gradient prediction locally for the interface
element and globally for the entire domain.

1. Introduction

The aim of the paper is to reach enhanced gradient predictions, as part of
the solution of the Poisson equation which represents the mathematical model of
a problem. This aim can be achieved with specific enrichment functions as it is
shown in [1], however the stability of solution as well as computational cost is
then deteriorated. The alternative approach is based on post-processing techniques
which do not influence the size of the problem and stability of the solution. During
the last decades, a great deal of effort was put in exploring stress improvement
procedures for solids and structures and to establish solution error estimates, [2, 3].
Recently, an effective technique has been proposed in [4]. In the case of discon-
tinuous problems, the XFEM approximation can recover the discontinuity of the
solution locally using enriched approximation, [5]. The XFEM solution introduce
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the discontinuity through nodal enrichment function, and controls it by additional
degrees of freedom. This allows to make the finite element mesh independent of
discontinuity location.

If an effective procedure to improve the solution is established, a coarse mesh
with low-order elements can be used in the finite element analysis. In the study, we
assess the effectiveness of the proposed approach using L2 and energy norms. The
stability of the solution is investigated using the condition number of the underling
stiffness matrix.

2. Governing equations

Let us consider a domainΩ with boundary Γ divided into the sub-domainsΩS

and ΩL , (Fig. 1). The sub-domains are separated from each other by the interface
ΓI . The boundary Γ is composed of the sets ΓD and ΓN such that Γ = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅. The normal vector n on the external boundary Γ and the outward
normal vector nI , on the interface ΓI are defined. The evaluation of function u(x)
in Ω is governed by the Poisson equation

∇q(x) + f (x) = 0 in Ω , (1)

where
q(x) = −k (x)∇Tu(x) (2)

and k is the material coefficient, and f denotes a source term.

Fig. 1. Domain Ω split into ΩL and ΩS by the interface ΓI

The essential
u(x) = uD (x) at ΓD (3)

and natural
− k (x)∇u(x) · n = qS (x) at ΓN (4)

boundary conditions are defined at ΓD and ΓN , respectively.
It is assumed that the coefficient k and the function f are discontinuous across

the interface boundary ΓI , which can be written as follows

k (x) =



kL (x) in ΩL ,

kS (x) in ΩS ,
(5)
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f (x) =



fL (x) in ΩL ,

fS (x) in ΩS .
(6)

The interface conditions define the jump of the solution and its normal gradient at
the boundary ΓI

[[u(x)]] = α(x) at ΓI , (7)
[[−k (x)∇u(x) · n]] = β(x) at ΓI . (8)

The equivalent form of the problem is derived by multiplying equation (1) by a
test function ν(x) and integrating separately in each domain. As a result, we obtain
the following weak form∫
Ω

∇ν(x)q(x)dx +
∫
Ω

ν(x) f (x)dx −
∫
ΓN

ν(x)qS (x)ds +
∫
ΓI

ν(x) β(x)ds = 0, (9)

with essential (3) and interface (7) conditions.
In order to enforce the interface condition (7) the Lagrange multipliers or

penalty methods can be applied what adds the following terms to the equation (9)
1) Lagrange method∫

ΓI

[[ν(x)]]λ(x)ds +
∫
ΓI

νλ(x)
(
[[u(x)]] − α(x)

)
ds; (10)

2) Penalty method

p
∫
ΓI

[[ν(x)]][[u(x)]]ds + p
∫
ΓI

[[ν(x]]α(x)ds, (11)

where λ and p are Lagrange multiplier and penalty parameter, respectively.
The finite element formulation of equation (9) for an element e with interface

conditions applied using penalty method gives∫
Ωh

∇ν(e)
h

(x)q(e)
h

(x)dx + p
∫
ΓI

[ [
ν(e)
h

(x)
] ] [ [

u(e)
h

(x)
] ]

ds +
∫
ΓI

ν(e)
h

(x) β(x)ds

+

∫
Ωh

ν(e)
h

(x) f (x)dx + p
∫
ΓI

[[ν(x]]α(x)ds −
∫
ΓN

ν(e)
h

(x)qS (x)ds = 0. (12)

After the basis functions are introduced, equation (12) can be written in the matrix
form

K(e)u(e) + f (e) − q(e)
S
= 0, (13)

where u(e) is a vector of nodal unknowns, andK(e), f (e) and q(e)
S

are the equivalents
of stiffness matrix, load vector and externally applied load, respectively. Their
global counterparts are computed through the usual assembly procedure.
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3. XFEM

The finite element method uses continuous approximationwithin individual el-
ement. Thus, it can only be applied to solve the discontinuous problems by aligning
the mesh with discontinuity. The XFEM is suitable for describing discontinuities in
the solution fields independent of the finite elementmesh. It is essential, however, to
locally apply special approximation functions. The enrichment area is contained to
the vicinity of a discontinuity; as a result, the size of the problem remains relatively
unchanged.

A solution characteristic of the problem is introduced by adding the enrichment
term u(x, xI )E to the standard finite element approximation u(x)C

uh (x) = u(x)C + u(x, xI )E , (14)

where
u(x)C =

∑
j∈I

Nj (x)u j . (15)

The enrichment term u(x, xI )E combines the enrichment functions Ψα(x, xI ) with
a partition of unity (PU) functions N(x) (usually element shape functions)

u(x, xI )E =
∑
j∈J

m∑
α=1

Nj (x)Ψα(x, xI )aαj , (16)

where J is the set of nodes enriched by Ψα(x, xI ), aαj are the additional degrees of
freedom, I is the set of all nodes and m is the number of enrichment functions and
xI denotes that a term depends on the interface position.

The finite elements with discontinuous approximation are enriched using the
common step-enrichment with shifted-basis, e.g. [6]

Ψj (x) = H (x) − H (xj ),

H (x) = sign(φ(x)),
(17)

where φ(x) is the level set function (distance function).
Then, the equation (13) is used to obtain unknown coefficients of approxima-

tion. Finally, directly calculated gradient q(e)
h

(x) in an element is obtained using
approximation (14)–(16) and equation (2).

4. Recovery procedure

The solution within each element is represented by equations (15) for non-
enriched and (14) for enriched elements.With this assumptions, the quantityq(e)

h
(x)

follows from equation (2). We refer to this as the directly calculated.
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It is well known that, for the low order elements (2-node element in 1D, 3-node
element in 2D, etc.) the quality of directly calculated gradient is poor as compared
to the calculated primary field. In order to improve the convergence and quality,
the recovery procedure proposed by Payen and Bathe (2012), [4] is applied to both
non-enriched and enriched elements.

In the presented formulation, the accurate prediction of the gradient is obtained
using a mixed interpolation approach. In this approach, the Lagrange multiplier
technique is utilised in order to apply physical relationship (2) over the element
volumes. The additional solution variable are then the derivative coefficients q(e)

and Lagrange multipliers λ (e), which are defined by internal degrees of freedom.
They are related only to the considered element e.

An important feature of the formulation is that the primary problem (12) is
decoupled from the calculation of the enhanced gradient q(e) (x).

In the method, the solution is enhanced with∫
Ωh

δξ (e) (x)
(
∇q(e) (x) + f (x)

)
dx = 0 (18)

and ∫
Ωh

δλ (e) (x)
(
q(e) (x) + k (e) (x)∇u(e)

h
(x)

)
dx = 0. (19)

The equation (18) enforces the equilibrium condition for the enhanced gradient,
whereas equation (19) represents the projection of the difference in enhanced and
directly calculated gradients. Equations (18) and (19) are the basic equations used
in the presented procedure.

In general analysis, the standard problem (13) is first solved for u(e)
h

(x), then
q(e) (x) is obtained from u(e)

h
(x) by applying equations (18) and (19) either to each

element e or to a set of elements in the calculation domain.
The proper choice of the interpolating function for ξ (e) (x) and λ (e) (x) is the

key to ensure a well-posed problem as well as the convergence in the optimal order.
In order to deliver improved prediction, a richer space for q(e) (x) must be assumed
than that assumed for q(e)

h
(x). The interpolating functions used in the calculation

are those proposed in [4] adopted to the considered problem

q(e) (x) = E(e)
q (x)q̄(e),

δλ (e) (x) = E(e)
λ (x)λ̄ (e)

,

δξ (e) (x) = E(e)
ξ (x)ξ̄ (e)

,

(20)

where the approximation for 1D problems is defined

E(e)
q (x) = [1 x x2],

E(e)
λ (x) = [1],

E(e)
ξ (x) = [1 x]

(21)
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and for 2D problems

E(e)
q (x) =



1 x y xy x2 y2 0 0 0 0 0 0
0 0 0 0 0 0 1 x y xy x2 y2


,

E(e)
λ (x) =



1 0 x y 2xy 0 0 y2 x2

0 1 −y 0 −y2 −x −x2 0 −2xy


,

E(e)
ξ (x) = [1 x xy].

(22)

Inserting the approximation into equations (18) and (19) one obtains the following
system



∫
Ω

ET
ξ (x)∇Eq (x)dΩ∫

Ω

ET
λ (x)Eq (x)dΩ



q =



∫
Ω

−ET
ξ (x) f (x)dΩ∫

Ω

ET
λ (x)k (x)∇Tuh (x)dΩ



. (23)

The elements cut by the interface need a special treatment. Since the solution is
discontinues, the area of calculation must be split according to the interface. In this
way, two separate equations are solved for such elements.

5. 1D solution – weak discontinuity

In order to test the procedure, 1D problem in Ω = 〈0, 1〉 is considered. The
boundary ΓI is defined by a single point xI = 0.6667. The Poisson equation (1)
has the following terms

k =



kL = 0.1 for φ(x) < 0,
kS = 1 for φ(x) > 0,

(24)

where φ(x) = x−xI . The homogeneousDirichlet boundary conditions and interface
conditions are introduced

u(0) = u(1) = 0,

[[u(xI )]] =
[ [
−k (xI )

du(xI )
dx

] ]
= 0,

(25)

what means we solve weakly discontinuous problem.
The forcing term is assumed to be a smooth function in the form

f (x) = 10 sin
(

2πx
xI

)
. (26)
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The low order finite element is used with standard C0 continuity shape func-
tions of the form

N(e) (x) =
[
1 −

x
l

x
l

]
, (27)

where l is the length of an element and x ∈ [0, l] represents its local coordinate.
In the recovery procedure an element based approach is adopted. The quadratic

approximation for the derivative is assumed. Thus, the approximation of q(e) (x) is
expressed by

q(e) (x) =
[
1 x x2

]
q(e), (28)

where q(e) denotes coefficients of approximation of the enhanced solution for an
element e.

For enriched element the enhanced solution contains two functions

q(e) (x) =



[
1 x x2

]
q(e)
L for φ(x) < 0,

[
1 x x2

]
q(e)
S

for φ(x) > 0.
(29)

Fig. 2a and Fig. 3 show the convergence curves for the 1D problem measured in
the H1 norm

H1 = ‖qexact − q‖ =

√√∫
Ω

(qexact − q)2dΩ . (30)

Local and global error norms indicate significant improvement in convergence
from O(h1) to O(h3) order when the recovery procedure is applied.

(a) Energy norm for enriched element (b) Condition numbers of the stiffness matrix

Fig. 2. 1D weak discontinuity problem
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The condition number of the underling stiffness matrix is computed according
to the L2 norm. The norm is defined as the maximum of the square root of the
column sum-of-squares

‖K‖ = max *.
,

√√
n∑
i=1

(Ki, j )2+/
-
. (31)

The condition number of the stiffness matrix is defined as [7]

κ(K) = ‖K‖‖K−1‖. (32)

Fig. 2b shows the condition numbers of the stiffness matrix for the considered
methods. As can be seen, the condition number of the system is lowest for the
Lagrange multiplier method.

Fig. 3. Energy norm for entire domain

6. 1D solution – strong discontinuity

Now we solve the problem, where the solution as well as its normal gradient
are discontinuous across the interface. The analytical solution and coefficient k are
given

u(x) =



uL (x) = sin(ωx) for φ(x) < 0,
uS (x) = cos(ωx) for φ(x) > 0,

(33)

k (x) =



kL (x) = 0.5 for φ(x) < 0,
kS (x) = 1 for φ(x) > 0,

(34)

where φ(x) = x − xI , xI = 0.6667 and ω = 10.
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The source term f , Dirichlet and interface boundary conditions follows from
analytical solution (33)

f (x) =



fL (x) = −kL (x)ω2 sin(ωx) for φ(x) < 0,
fS (x) = −kS (x)ω2 cos(ωx) for φ(x) > 0,

(35)

u(0) = 0,
u(1) = cos(ω),
[[u(xI )]] = sin(ωxI ) − cos(ωxI ),
[ [
−k (xI )

du(xI )
dx

] ]
= kL (xI )ω cos(ωxI ) + kS (xI )ω sin(ωxI ).

(36)

Fig. 4a shows convergence in enhanced gradient and Fig. 4b presents the condition
number of the stiffness matrix. The penalty parameter p was adjusted in a way
to achieve the same level of accuracy as for Lagrange method. As for the weak
discontinuity problem, the convergence in enhanced gradient reaches O(h3) order.

(a) Energy norm for enriched element (b) Condition numbers of the stiffness matrix

Fig. 4. 1D strong discontinuity

7. 2D solution – strong discontinuity

First we test the procedure for the 2D problem with straight interface. The
1D problem with strong discontinuity was extended to two dimensions, leaving
all parameters the same, as well as boundary and interface conditions. For 2D
problems, only penalty method was applied. In this case, we observe second-order
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convergence for L2 norm, first order for directly calculated gradient in H1 norm and
O(h3) order for enhanced gradient, Fig. 5a. Fig. 5b shows the condition number of
stiffness matrix for constant value of penalty parameter.

(a) Convergence in L2 and energy norms (b) Condition numbers of the stiffness matrix

Fig. 5. 2D straight interface problem

In the second example 2D interface problem with curved interface is consid-
ered, [8], the solution u, the coefficients k are given as follows

u(x) =



uL (x) = sin(x + y) for φ(x) < 0,
uS (x) = ln(x2 + y2) for φ(x) > 0,

(37)

k (x) =



kL (x) = cos(x + y) + 2 for φ(x) < 0,
kS (x) = sin(x + y) + 2 for φ(x) > 0,

(38)

where the level set function φ(x) = x2 + y2 − 0.25 represents a circle with radius
R = 0.5. The Dirichlet and interface boundary conditions, as well as the source
function f , follow from the equations (37) and (38). We consider the solution in a
square −1 < x < 1 and −1 < y < 1. The exact solution and its normal gradient are
presented in Figs 6a and 6b. The exact gradient in x and y directions are shown in
Figs 7a and 7b, respectively.

Figs 8 and 9 show the difference between enhanced and directly calculated
gradient for x and y direction and for the mesh size h = 0.1.

Fig. 10a shows the energy norm and L2 norm calculated for the entire domain.
In this case, the O(h2) order for the enhanced solution is not preserved, however,
the O(h1.5) order is reached. The similar convergence order in energy norm is
reported in [8]. Fig. 10b shows the condition number of the stiffness matrix.
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(a) Exact solution u (b) Normal gradient of u

Fig. 6. 2D curved interface problem – exact solution and normal gradient

(a) Exact gradient in x (b) Exact gradient in y

Fig. 7. 2D curved interface problem – exact gradient in x and y direction

(a) Directly calculated gradient (b) Enhanced gradient

Fig. 8. 2D curved interface problem – calculated gradient in x direction
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(a) Directly calculated gradient (b) Enhanced gradient

Fig. 9. 2D curved interface problem – calculated gradient in y direction

(a) L2 and energy norm (b) Condition number of the stiffness matrix

Fig. 10. 2D curved interface problem

8. Conclusions

In the paper, we presented the XFEM methodology for the efficient solution
of 1D and 2D Poisson problems, in which the coefficients of equation as well as
the solution and its gradient exhibit the jump across the internal interface. The
standard approach was enhanced with the recovery procedure, which allows for
better prediction of gradient with minimal computational cost. The convergence in
energy norm is also improved. However, for 1D problemswith bothweak and strong
discontinuities the O(h3) order is achieved, for 2D problems with straight interface
the convergence also reaches O(h3) order, whereas for curved interface the order
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declines to O(h1.5). The reason for observed decline in the energy convergence
order may be the approximation of the interface with linear shape functions, but
it needs further research. The originality of the proposed method comes from the
application of the recovery procedure to the elements with enriched approximation.
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