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Stability of linear continuous-time fractional order systems

with delays of the retarded type
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Abstract. New frequency domain methods for stability analysis of linear continuous-time fractional order systems with delays of the retarded

type are given. The methods are obtained by generalisation to the class of fractional order systems with delays of the Mikhailov stability

criterion and the modified Mikhailov stability criterion known from the theory of natural order systems without and with delays. The study

is illustrated by numerical examples of time-delay systems of commensurate and non-commensurate fractional orders.
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1. Introduction

In the last decades, the problem of analysis and synthesis of

dynamical systems described by fractional order differential

(or difference) equations has been the subject of many papers.

For review of the previous results see [1–9], for example.

The stability problem of linear continuous-time fractional

order systems without delays was studied in [5, 9–14].

Time delay systems of natural order were studied in [15–

19] and of fractional order in [20–24].

The aim of the paper is to present the new frequency do-

main methods for stability analysis of linear continuous-time

fractional order systems with delays of the retarded type. The

proposed methods are based on the Mikhailov stability criteri-

on and the modified Mikhailov stability criterion known from

the stability theory of natural order systems [16, 17, 25–27].

To the best of the author knowledge, frequency domain

methods for stability analysis of linear fractional order sys-

tem with delays have not yet been proposed.

2. Problem formulation

Consider a linear fractional system with delays described by

the transfer function

P (s) =

q0(s) +
m2∑
j=1

qj(s) exp(−srβj)

p0(s) +
m1∑
i=1

pi(s) exp(−srhi)

=
N(s)

D(s)
, (1)

where r is such a real number that 0 < r ≤ 1, the fraction-

al degree non-trivial polynomials pi(s) and qj(s) with real

coefficients have the forms

pi(s) =

n∑

k=0

aiks
αk , i = 0, 1, ...,m1, (2)

qj(s) =

m∑

k=0

bjks
δk , j = 0, 1, ...,m2, (3)

where αk and δk are real non-negative numbers and a0n 6= 0,

b0m 6= 0.

Without loss of generality we will assume that αn >
αn−1 > · · · > α1 > α0 = 0; δm > δm−1 > · · · > δ1 > δ0 ≥
0 and real non-negative delays βj and hi satisfy the inequal-

ities βm2
> βm2−1 > · · · > β1, hm1

> hm1−1 > · · · > h1.

Exactly as in [21], for s 6= 0 and any real v, we define

sv to be exp(v(log |s|+ j arg s)), and a continuous choice of

arg s in a domain leads to an analytic branch of sv . We make

normally the choice −π < arg s < π for s ∈ C\R−, where

C denotes the set of complex numbers and R− denotes the

negative real axis.

The fractional degree characteristic quasi-polynomial of

the system (1) has the form

D(s) = p0(s) +

m1∑

i=1

pi(s) exp(−srhi). (4)

By generalisation of classification of the natural degree

quasi-polynomials (see [15, 17–19], for example) to the frac-

tional degree characteristic quasi-polynomials we obtain the

following.

The fractional degree characteristic quasi-polynomial

(4) is

• of the retarded type if deg p0(s) > deg pi(s) for all

i = 1, 2, ...,m1,

• of the neutral type if deg p0(s) = deg pi(s) for at least one

i = 1, 2, ...,m1.

We will consider the time-delay systems of the retarded

type, i.e. the systems satisfying the assumption deg p0(s) >
deg pi(s) for all i = 1, 2, ...,m1.

Moreover, we assume that deg q0(s) > deg qj(s), j =
1, 2, ...,m2, deg p0(s) > deg q0(s) in order to deal with strict-

ly proper systems and that N(s) and D(s) have no common

zeros.
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Theorem 1 [20]. Let P (s) of the form (1) be the strictly

proper transfer function, where N(s) and D(s) have no com-

mon zeros. Then the fractional order system described by the

transfer function (1) is bounded-input bounded-output (BIBO)

stable (shortly stable) if and only if P (s) has no poles with

non-negative real parts, i.e.

D(s) 6= 0 for Res ≥ 0. (5)

The characteristic quasi-polynomial D(s) satisfying the

condition (5) we will called the stable quasi-polynomial.

Similarly as in the case of fractional order systems with-

out delays [9], we introduce the following classification of the

fractional order systems with delays.

The fractional order system with delays described by the

transfer function (1) is:

• of a commensurate order if

αk = kα (k = 0, 1, ..., n)

and δk = kα (k = 0, 1, ...,m),
(6)

where α > 0 is a real number,

• of a rational order if it is of commensurate order and

α = 1/q, where q is a positive integer (in such a case

0 < α ≤ 1),
• of a non-commensurate order if (6) does not hold.

A numerical algorithm for stability testing of fractional

order systems with delays (of non-commensurate order, in

general) was given in [23]. This algorithm is based on us-

ing the Cauchy integral theorem and solving an initial-value

problem.

In this paper we give the new frequency domain neces-

sary and sufficient conditions for stability of fractional degree

characteristic quasi-polynomials (4). First, the characteristic

quasi-polynomial of commensurate degree will be analysed

and the frequency domain method for stability will be giv-

en. Next, the frequency domain method for stability analysis

of the characteristic quasi-polynomial of non-commensurate

degree will be proposed.

3. The main results

The system with delays of a fractional commensurate order is

described by the transfer function (1) with

pi(s) =

n∑

k=0

aiks
kα, i = 0, 1, ...,m1, (7)

qj(s) =
m∑

k=0

bjks
kα, j = 0, 1, ...,m2. (8)

In such a case, applying substitution λ = sα in (7), (8)

and (1) we obtain the associated transfer function of a natural

order of the form

P̃ (λ) =

q̃0(λ) +
m2∑
j=1

q̃j(λ) exp(−λr/αβj)

p̃0(λ) +
m1∑
i=1

p̃i(λ) exp(−λr/αhi)

=
Ñ(λ)

D̃(λ)
, (9)

where

p̃i(λ) =

n∑

k=0

aikλ
k, i = 0, 1, ...,m1, (10a)

q̃j(λ) =

m∑

k=0

bjkλ
k, j = 0, 1, ...,m2, (10b)

are natural number degree polynomials.

Hence, in the case of a system with delays of a fraction-

al commensurate order we can consider the natural degree

quasi-polynomial

D̃(λ) = p̃0(λ) +

m1∑

i=1

p̃i(λ) exp(−λr/αhi), (11)

associated with the characteristic quasi-polynomial (4) of

a fractional order.

Now we prove the following result, known in the stability

theory of fractional degree polynomials [5, 9–12].

Lemma 1. The fractional quasi-polynomial (4) of commen-

surate degree satisfy the condition (5) if and only if all the

zeros of the associated natural degree quasi-polynomial (11)

satisfy the condition

| argλ| > α
π

2
, (12)

where argλ denotes the main argument of the complex num-

ber λ, i.e. argλ ∈ (−π, π].

Proof. From Theorem 1 it follows that the boundary of the

stability region of fractional quasi-polynomial (4) is the imag-

inary axis of complex s-plane with the parametric description

s = jω, ω ∈ (−∞, ∞). Zeros of fractional quasi-polynomial

D(s) of the form (4) and the associated natural degree quasi-

polynomial D̃(λ) of the form (11) satisfy the relationship

λ = sα. Hence, the boundary of the stability region in the

complex λ-plane of the natural degree quasi-polynomial (11)

has the parametric description

λ = (jω)α = |ω|αejαπ/2, ω ∈ (−∞, ∞). (13)

All the zeros of quasi-polynomial (11) lie in the stability

region with the boundary (13) if and only if (12) holds. This

completes the proof.

It is easy to see that for 0 < α ≤ 1 the condition (12)

holds for the zeros of quasi-polynomial (11) lying in the sta-

bility region shown in Fig. 1. This region is reduced to the

open left half-plane of the complex λ-plane for α = 1.

From (12) and Fig. 1 it follows that if 1 < α < 2 then the

“stability region” is a cone in the open left half-plane.

From the fundamental properties of distribution of zeros

of quasi-polynomials (see, for example, [15–19]) it follows

that natural degree quasi-polynomial (11) of the retarded type

always has at least one chain of asymptotic zeros satisfying

the conditions

lim
|λ|→∞

Reλ = −∞, lim
|λ|→∞

Imλ = ±∞.
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Fig. 1. Stability region of fractional quasi-polynomial (4) of com-

mensurate degree in the complex λ-plane (λ = sα with 0 < α ≤ 1)

Therefore, the condition (12) with α > 1 does not hold

for the asymptotic zeros of quasi-polynomial (11). Hence, we

have the following important lemma.

Lemma 2. The fractional quasi-polynomial (4) of commen-

surate degree (the condition (6) holds) is not stable for any

α > 1.

In the stability theory of polynomials or quasi-polynomials

of natural degree, the asymptotic stability (all zeros have neg-

ative real parts) and more a general case of stability, namely

the D-stability (all zeros lie in the open region D in the open

left half-plane of the complex plane), are considered [16, 25].

From the above and Lemma 1 we have the following lem-

mas.

Lemma 3. The fractional quasi-polynomial (4) of commen-

surate degree is stable if and only if the associated natural

degree quasi-polynomial (11) is D-stable, where parametric

description of the boundary of the region D has the form (13)

with 0 < α ≤ 1 (see Fig. 1).

Lemma 4. The fractional quasi-polynomial (4) of commensu-

rate degree with 0 < α ≤ 1 is stable if the associated natural

degree quasi-polynomial (11) is asymptotically stable, i.e. all

zeros of this quasi-polynomial have negative real parts (the

condition (12) holds for α = 1).
By generalisation of the Mikhailov theorem (see [16, 25,

26], for example) to the fractional degree characteristic quasi-

polynomial (4) of commensurate degree one obtains the fol-

lowing theorem.

Theorem 2. The fractional characteristic quasi-polynomial (4)

of commensurate degree is stable if and only if

∆arg
0≤ω<∞

D(jω) = nπ/2, (14)

which means that the plot of D(jω) with ω increasing from

0 to +∞ runs in the positive direction by n quadrants of the

complex plane, missing the origin of this plane.

Proof. Because D̃((jω)α) = D(jω), the condition (14) is

necessary and sufficient for D-stability of natural degree quasi-

polynomial (11) [16]. Hence, the proof follows from Lem-

ma 3.

The plot of the function D(jω), where D(jω) = D(s)
for s = jω (D(s) has the form (4)) will be called the gen-

eralised (to the class of fractional degree quasi-polynomials)

Mikhailov plot.

Checking the condition of Theorem 2 is on the whole

difficult, because

1) D(jω) quickly tends to infinity as ω grows to ∞,

2) the delay terms in D(s) generate an infinite number of

spirals for s = jω and ω ∈ [0, ∞).

Therefore, in practice Theorem 2 is not reliable. More-

over, this theorem is true only in the case of commensurate

degree fractional quasi-polynomials.

To avoid difficulty 1), we introduce the rational function

ψ(s) =
D(s)

wr(s)
, (15)

instead of fractional degree quasi-polynomial D(s) of the

form (4).

In (15) wr(s) is the reference fractional polynomial (or

fractional quasi-polynomial) of the same degree αn as quasi-

polynomial (4). We will assume that this polynomial is sta-

ble, i.e.

wr(s) 6= 0 for Res ≥ 0. (16)

The reference fractional polynomial wr(s) can be chosen

in the form

wr(s) = a0n(s+ c)αn , c > 0, (17)

where a0n is the coefficient of sαn in polynomial p0(s) of the

form (2) for i = 0.

Note that the reference polynomial (17) is stable for c > 0,

The main result of the paper is as follows.

Theorem 3. The fractional characteristic quasi-polynomial (4)

(of commensurate or non-commensurate degree) is stable if

and only if

∆arg
ω∈(−∞,∞)

ψ(jω) = 0. (18)

Proof. From (15) for s = jω it follows that

∆arg
ω∈(−∞,∞)

ψ(jω) = ∆arg
ω∈(−∞,∞)

D(jω) − ∆arg
ω∈(−∞,∞)

wr(jω).

(19)

The reference polynomial wr(s) of the same fractional de-

gree as quasi-polynomial (4) is stable by assumption. There-

fore, the fractional quasi-polynomial (4) is stable if and only if

∆arg
ω∈(−∞,∞)

D(jω) = ∆arg
ω∈(−∞,∞)

wr(jω), (20)

which holds if and only if (18) is satisfied.

The plot of the function ψ(jω), ω ∈ (−∞,∞) (ψ(s)
is defined by (15)) we will call the generalised modified

Mikhailov plot.

The condition (18) of Theorem 3 holds if and only if the

generalised modified Mikhailov plot ψ(jω) does not encircle

the origin of the complex plane as ω runs from −∞ to ∞.
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Form (15), (4) and (17) we have

lim
ω→±∞

ψ(jω) = lim
ω→±∞

D(jω)

wr(jω)
= 1 (21a)

and

ψ(0) =
D(0)

wr(0)
=
a00 + a10 + · · · + am10

a0ncαn

. (21b)

From the above it follows that the generalised modified

Mikhailov plot encircles or crosses the origin of the complex

plane if ψ(0) ≤ 0. Hence, we have the following lemma.

Lemma 5. The fractional characteristic quasi-polynomial (4)

of commensurate or non-commensurate degree is not stable if

a00 + a10 + · · · + am10

a0n
≤ 0.

Theorem 3 and Lemma 5 are the generalisation to the

fractional quasi-polynomials case of results given in [10] and

[11] for the fractional polynomials (of commensurate and non-

commensurate degree, respectively).

4. Illustrative examples

Example 1. Check the stability of the fractional order system

with delays and with characteristic quasi-polynomial of the

form

D(s) = s3/2 − 1.5s− 1.5s exp(−sh) + 4s1/2 + 8. (22)

For α = 1/2 and λ = sα = s1/2 from (22) one ob-

tains the following associated fractional quasi-polynomial of

natural degree

D̃(λ) = λ3 − 1.5λ2 − 1.5λ2 exp(−λ2h) + 4λ+ 8. (23)

From Lemma 3 it follows that fractional quasi-polynomial

(22) of commensurate degree is stable (the condition (5)

holds) if and only if the natural degree quasi-polynomial (23)

is D-stable, where the region D is shown in Figure 1 with

α = 1/2.

Substituting h = 0 in (22) and (23) we obtain, respec-

tively, the fractional and natural degree polynomials D(s) =
s3/2−3s+4s1/2+8 and D̃(λ) = λ3−3λ2+4λ+8. Polynomial

D̃(λ) has the following zeros: λ1 = −1, λ2,3 = 2± j2. Zeros

λ2 and λ3 lie on the boundary of D-stability region, which

means that polynomial D̃(λ) is not D-stable and the fractional

quasi-polynomial (22) is not stable for h = 0. In [24] it was

shown (see also [23]) that the fractional quasi-polynomial (22)

is stable for a few intervals of values of the delay h, where

H1 = (0.04986, 0.78539) is the first interval of stability.

We check the stability of the fractional characteristic

quasi-polynomial (22) with h = 0.1.
The plot of the function (15) for s = jω and ω ∈ [0, 500],

where D(s) has the form (22) for h = 0.1 and wr(s) =
(s+ 5)3/2, is shown in Figure 2. According to (21) we have

ψ(0) = 8/53/2 = 0.7155, lim
ω→∞

ψ(jω) = 1. The plot is sym-

metrical with respect to the real axis for negative values of

frequency ω. This plot does not encircle the origin of the

complex plane, which means that the fractional system with

characteristic quasi-polynomial (22) with h = 0.1 is stable,

according to Theorem 3.

Fig. 2. Plot of (15) for s = jω, ω ∈ [0, 500), wr(s) = (s + 5)3/2

Example 2. Consider the control system shown in Figure 3

with a fractional order plant described by the transfer function

P (s) =
e−0.5s

1 + s0.5
(24)

and fractional PID controller

C(s) = K +
I

sλ
+Dsµ, (25)

where λ = 1.1011, µ = 0.1855, K = 1.4098, I = 1.6486,

D = −0.2139 [8].

Fig. 3. The feedback control system

The characteristic quasi-polynomial of the closed-loop

system has the form

D(s) = sλ+1/2 + sλ + (Ksλ +Dsλ+µ + I)e−0.5s

= s1.6011 + s1.1011 + (1.4098s1.1011 − 0.2139s1.2866

+ 1.6486)e−0.5s.

(26)

The control system with characteristic quasi-polynomial

(26) is stable if and only if all zeros of (26) have negative

real parts.

For stability analysis we apply Theorem 3 with the ref-

erence polynomial wr(s) = (s + 10)1.6011. In this case the

function (15) has the form

ψ(s) =
D(s)

(s+ 10)1.6011
, (27)

where D(s) is given by (26).

The plot of function (27) for s = jω, ω ∈ (−∞, ∞), is

shown in Fig. 4, where

lim
ω→±∞

ψ(jω) = 1, ψ(0) = 1.6486 / 101.6011 = 0.0413.

(28)
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Fig. 4. Plot of the function (27) for s = jω, ω ∈ (−∞, ∞)

From Fig. 4 it follows that the generalised modified

Mikhailov plot ψ(jω) does not encircle the origin of the com-

plex plane. This means that the fractional control system with

characteristic quasi-polynomial (26) is stable, according to

Theorem 3.

5. Concluding remarks

New frequency domain methods for stability analysis of lin-

ear fractional order systems with delays of the retarded type

have been given. The methods have been obtained by gener-

alisation of the Mikhailov stability criterion and the modified

Mikhailov stability criterion (known from the theory of nat-

ural order systems without and with delays) for the case of

fractional order systems with delays.

In particular it has been shown that:

• the fractional quasi-polynomial of commensurate degree

(of the form (4) with (7)) is unstable for α > 1 (Lem-

ma 2),

• the fractional quasi-polynomial of commensurate degree is

stable if and only if the associated natural degree quasi-

polynomial (11) is D-stable, where the stability region D

is shown in Figure 1 with 0 < α ≤ 1 (Lemma 3),

• the fractional characteristic polynomial (4) (of commensu-

rate or non-commensurate degree) is stable if and only if

the plot of the rational function ψ(jω), ω ∈ (−∞, ∞),
where ψ(s) is defined by (15), called the generalised mod-

ified Mikhailov plot, does not encircle the origin of the

complex plane (Theorem 3).
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