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Abstract 
 

Main goal of the paper is to present the algorithm serving to solve the heat conduction inverse problem. Authors consider the heat 

conduction equation with the Riemann-Liouville fractional derivative and with the second and third kind boundary conditions. This type of 

model with fractional derivative can be used for modelling the heat conduction in porous media. Authors deal with the heat conduction 

inverse problem, which, in this case, consists in identifying an unknown thermal conductivity coefficient. Measurements of temperature, in 

selected point of the region, are the input data for investigated inverse problem. Basing on this information, a functional describing the 

error of approximate solution is created. Minimizing of this functional is necessary to solve the inverse problem. In the presented approach 

the Ant Colony Optimization (ACO) algorithm is used for minimization. 
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1. Introduction 
 

Fractional (or non-integer) derivatives are the generalizations 

of classical derivative to the case of an order being the real 

number. There are several definitions of derivatives of this type, 

the most popular and the most often discussed in literature are the 

derivatives of Riemann-Liouville, Caputo, and Riesz [1, 2]. The 

fractional calculus has found a wide range of applications in 

modelling the anomalous diffusion processes [3]. Examples of the 

fractional derivative applications can be found in [4-6]. 

Modelling the phenomenon of heat transfer in the porous 

materials is a complicated problem. For modelling this 

phenomenon one can apply the mathematical models using the 

fractional derivatives [7-9]. The usefulness of models with 

fractional order derivatives in modelling the thermal processes in 

porous materials is described in [8]. In literature one can also find 

the descriptions of experiments showing that in case of porous 

materials, the heat transfer equation with fractional derivative 

allows to reconstruct better the temperature distribution than the 

equation with classical derivative [10]. Paper [11] shows that the 

model described by the differential equation including the 

fractional derivative with respect to time, proposed for the process 

of heat conduction in a three-layer composite carrier, allows also 

to reconstruct very well the experimental data.  

The literature also contains the papers dedicated to the inverse 

problems described by differential equations with fractional order 

derivatives. Murio's papers were the first works of this type [12-

14]. More information about the inverse heat conduction 

problems for differential equations with fractional derivatives can 

be found in [15, 16]. 
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This paper presents an algorithm dedicated for solving the 

inverse heat conduction problem based on the temperature 

measurements read in the selected points of region. The unknown 

parameter is the thermal conductivity coefficient. In the 

considered model we use the Riemann-Liouville fractional 

derivative. The direct problem is solved by using the finite 

difference method and the approximation of fractional derivative 

[17]. In order to find minimum of the function describing the error 

of approximate solution we apply the Ant Colony Optimization 

algorithm [18, 19].  

 

 

2. Problem formulation 
 

We investigate the unsteady one-dimensional problem defined 

in interval [0, 𝐿]. Let us consider the heat conduction equation 
with fractional derivative 

 

𝑐𝜌
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
=  �̂�

𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽  (1) 

 

where 𝐷 ∈ {(𝑥, 𝑡): 𝑥 ∈ [0, 𝐿], 𝑡 ∈ [0, 𝑇], 𝐿, 𝑇 ∈ ℛ+}, 𝛽 ∈ (1,2) 

denotes the order of fractional derivative, �̂� =  �̂�𝜆 is the scaled 

thermal conductivity coefficient [𝑊 (𝑚3−𝛽𝐾)]⁄ , that is the 

thermal conductivity multiplied by scaling constant �̂�  with 

numerical value of one and unit [𝑚𝛽−2] , chosen so that the right 

and left units of the equation are the same, 𝜆 is the thermal 

conductivity coefficient [𝑊 (𝑚 𝐾)]⁄ , 𝑐 is the specific heat 

[𝐽 (𝑘𝑔 𝐾)]⁄ , 𝜌 is the density [𝑘𝑔 𝑚3]⁄ ,  𝑢 [𝐾]  denotes the 

temperature, 𝑥 [𝑚] and 𝑡 [𝑠] mean the spatial variable and the 

time, respectively. Equation (1) is completed by the following 

initial-boundary conditions 

 
𝑢(𝑥, 0) = 𝑓(𝑥),    𝑥 ∈ [0, 𝐿], 

−𝜆
𝜕𝑢

𝜕𝑥
(0, 𝑡) = 𝑞(𝑡),    𝑡 ∈ (0, 𝑇], 

−𝜆
𝜕𝑢

𝜕𝑥
(𝐿, 𝑡) = ℎ(𝑡)(𝑢(𝐿, 𝑡) − 𝑢∞),    𝑡 ∈ (0, 𝑇], 

 

where ℎ is the heat transfer coefficient [𝑊 (𝑚2𝐾)]⁄  and 

𝑢∞ denotes the ambient temperature [𝐾] . 
The fractional derivative occurring in equation (1) is the 

Riemann-Liouville derivative defined by formula [1,2]: 

 

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
=  

1

Γ(2 − 𝛽)

𝜕2

𝜕𝑥2 ∫ 𝑢(𝑠, 𝑡)(𝑥 − 𝑠)1−𝛽
𝑥

𝑎

 𝑑𝑠,    𝛽 ∈ (1,2). 

 

The considered inverse problem consists in identification of 

the thermal conductivity coefficient λ which is unknown. The 

input data for inverse problem are the measurements of 

temperature taken from boundary of the region. We denote these 

data as follows 

 

𝑢(𝑥𝑝, 𝑡) =  �̂�𝑗 ,    𝑗 = 1,2, … , 𝑁, 

 

where 𝑥𝑝 is the localization of measurement point and N denotes 

the number of measurements. Basing on this information 

(temperature measurements) and the values of temperature 

computed by using the described model for the fixed value of λ, 

we create the functional defining the error of approximate 

solution 

 

𝐽(𝜆) = √∑ (𝑈𝑗(𝜆) −  �̂�𝑗)
2𝑁

𝑗=1 .  (2) 

 

In order to find the unknown parameter λ we need to minimize the 

above functional. And to find the minimum of this functional we 

use the Ant Colony Optimization algorithm. 

 

 

3. Direct problem 
 

The direct problem is solved by using the finite difference 
method. In order to use this method we create the mesh 

 

𝑆 = {(𝑥𝑖 , 𝑡𝑘): 𝑥𝑖 = 𝑖Δ𝑥, 𝑡𝑘 = 𝑘Δ𝑡, 𝑖 = 0,1, … , 𝑁, 𝑘 = 0,1, … , 𝑀}, 
 

of size  N x M and with steps Δ𝑥 =
𝐿

𝑁
, Δ𝑡 =

𝑇

𝑀
. The approximate 

values of function u in points (𝑥𝑖 , 𝑡𝑘) are denoted by 𝑈𝑖
𝑘. The 

Riemann-Liouville fractional derivative is approximated by 
formula 
 
𝜕𝛽𝑢(𝑥𝑖,𝑡𝑘)

𝜕𝑥𝛽 ≈ ∑ 𝜔(𝛽, 𝑗)𝑈𝑖−𝑗+1
𝑘𝑖+1

𝑗=0 ,          (3) 

 
where 
 

𝜔(𝛽, 𝑗) =  
Γ(𝑗−𝛽)

Γ(−𝛽)Γ(𝑗+1)
. 

 
After discretizing equation (1) and using the approximation of 

fractional derivative (3), we get (𝑖 = 1,2, … , 𝑀 − 1) the equation 
 
𝑈𝑖

𝑘+1−𝑈𝑖
𝑘

Δ𝑡
=

𝜆

𝑐𝜌(Δ𝑥)𝛽
∑ 𝜔(𝛽, 𝑗)𝑈𝑖−𝑗+1

𝑘+1 .𝑖+1
𝑗=0           (4) 

 
It is also necessary to approximate the boundary conditions. 
Boundary condition of the second kind is approximated as follows 
 

−𝜆
−𝑈2

𝑘+1+4𝑈1
𝑘+1−3𝑈0

𝑘+1

2Δ𝑥
 𝑞𝑘+1, (5) 

 
and boundary condition of the third kind is approximated as given 
below 
 

−𝜆
𝑈𝑁−2

𝑘+1−4𝑈𝑁−1
𝑘+1+3𝑈𝑁

𝑘+1

2Δ𝑥
= ℎ𝑘+1(𝑈𝑁

𝑘+1 − 𝑢∞).         (6) 

 

In result of the above approximation, for the fixed moment of 

time, we obtain the system of algebraic equations. By solving this 

system we get the approximate values of function u  

(temperatures) in the mesh points. More information about the 

numerical solution can be found in [17]. 
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4. Minimization of the functional 
 

In order to minimize the functional we use the Ant Colony 

Optimization (ACO) algorithm [18]. The inspiration for 

developing the ACO algorithm was the behavior of ant swarms in 

nature. The algorithm has been adapted for executing the parallel 

calculations. In order to describe the algorithm we introduce the 

following symbols: 

 

𝐽 − 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,    
𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠,  

𝑛𝑇 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠,  
𝑀 = 𝑛𝑇 ⋅ 𝑝 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑠 (𝑝 ∈ 𝑍),  

𝐺 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑠𝑝𝑜𝑡𝑠,  
𝑞 = 0.9, 𝜉 = 1.0 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 

 

Let us present now the description of ACO algorithm. 

 

Initialization of the algorithm 

 

1. Setting parameters of the algorithm 𝐺, 𝑀, 𝐼, 𝑛𝑇, 𝑞, 𝜉. 

2. Random generating the 𝐺 pheromone spots (solutions) and 

assigning them to set of solutions 𝑇0. 
3. Parallel computing the values of minimized function for 

every pheromone spot (solution). Sorting the elements in 𝑇0 

according to the quality of solution (descending). 

 

Iterative process 

 

4. Assigning the probabilities to the pheromone spots 

(solutions) according to formula 

   

𝑝𝑙 =  
𝑤𝑙

∑ 𝑤𝑙
𝐺
𝑙=1

      𝑙 = 1,2, … , 𝐺, 

 

where weight 𝑤𝑙 is associated to 𝑙-th solution and is given 

by formula 

 

𝑤𝑙 =
1

𝑞𝐺√2𝜋
exp (

−(𝑙−1)2

2(𝑞𝐺)2
). 

 

5. Ant chooses the 𝑙-th pheromone spot (solution) with 

probability 𝑝𝑙. 

6. Ant transforms the 𝑗-th coordinate (𝑗 = 1,2, … , 𝑛) of     𝑙-th 

pheromone spot (solution) 𝑠𝑗
𝑙 by sampling the neighborhood 

with the use of Gaussian probability density function  

𝑔(𝑥, 𝜇, 𝜎) =  
1

𝜎√2𝜋
𝑒𝑥𝑝 (

−(𝑥 − 𝜇)2

2𝜎2 ) 

          where 𝜇 = 𝑠𝑗
𝑙 , 𝜎 =

𝜉

𝐺−1
∑ |𝑠𝑗

𝑝
− 𝑠𝑗

𝑙|𝐺
𝑝=1 . 

7. Repeating steps 5-6 for each ant. 𝑀 new pheromone spots 

(solutions) are obtained. 

8. Dividing the population into  𝑛𝑇 sets. Calculating the  value 

of minimized function for each new solution in population 

(parallel computation). 

9. Adding new solutions to set 𝑇𝑖, sorting set 𝑇𝑖 and removing 

𝑀 worst solutions. 

10. Repeating steps 3-9 𝐼 times. 

By knowing the values of parameters 𝐺, 𝑀 and 𝐼 we are able to 

determine the number of evaluations of the objective function 

during the algorithm execution, which is equal to 𝐺 + 𝑀 ⋅ 𝐼. 

 

 

5. Results 
 

In the numerical example we consider the following data: 

 

𝐿 = 3.825 [𝑚𝑚],     𝑇 = 71.82 [𝑠],     𝑐 = 900[𝐽 𝑘𝑔𝐾],⁄  

𝜌 = 2106 [𝑘𝑔 𝑚3]⁄ ,     𝑢∞ = 298 [𝐾],     𝑓(𝑥) = 573.15 [𝐾] 
𝑞(𝑡) = 0,     ℎ(𝑡) = 2.42𝑡2 − 5𝑡 + 78.07,     𝛽 = 1.08 
 

In the presented example the investigated inverse problem 

consists in identification of the thermal conductivity coefficient 

𝜆 = 𝑎, (𝑎 ∈ ℝ) in the form of a constant. The experiment assumes 

that the sample was characterized by 22.5% degree of porosity, 

hence the exact value of thermal conduction coefficient is equal to 

𝜆 = 0.225𝜆𝑝 + 0.775𝜆𝑎 ≈ 184. The restored parameter was 

searched in interval [120, 250]. In order to generate the input data 

we used the mesh 200 × 3990 (space × time), while for solving 

the inverse problem we used the mesh 100 × 1995 (Δ𝑥 =
0.03825, Δ𝑡 = 0.036). To run the ACO algorithm we used the 

following parameters: 𝑎 ∈ [120, 250],   𝐺 = 12, 𝑀 = 16,  𝐼 =
55, 𝑛𝑇 = 4.  

Table 1 presents the results of parameter 𝜆 reconstruction for 

various input data (disturbed by various pseudorandom error). In 

each considered case we received similar results. The errors of 

thermal conductivity reconstruction are minimal and they do not 

exceed 0.5%. 

 

Table 1. 

Results of calculations (𝜆 – reconstructed value of thermal 

conductivity coefficient) 

noise 𝝀 error [%] functional 

value 

0% 184.53 0.29 0.101 

2% 184.48 0.26 22103.097 

5% 184.80 0.43 143170.148 

 

Table 2 compiles the errors of temperature reconstruction in the 

measurement point for the identified values of thermal 

conductivity coefficient. These errors are minimal and of similar 

level for various input data. This is due to the fact that the 

reconstructed 𝜆 coefficients are close to each other and oscillate 

around 184. 

 

Table 2. 

Errors of temperature reconstruction in measurement point 

(Δ𝑚𝑒𝑎𝑛 – mean absolute error, Δ𝑚𝑎𝑥 – maximal absolute error, 

𝛿𝑚𝑒𝑎𝑛- mean relative error, 𝛿𝑚𝑎𝑥 – maximal relative error) 

 0% 2% 5% 

𝚫𝒎𝒆𝒂𝒏 [𝑲] 6.2 ⋅ 10−3 1.7 ⋅ 10−2 7.4 ⋅ 10−2 

𝚫𝒎𝒂𝒙 [𝑲] 1.2 ⋅ 10−2 2.2 ⋅ 10−2 1.3 ⋅ 10−1 

𝜹𝒎𝒆𝒂𝒏 [%] 1.2 ⋅ 10−3 3.4 ⋅ 10−3 1.6 ⋅ 10−2 

𝜹𝒎𝒂𝒙 [%] 2.2 ⋅ 10−3 4.6 ⋅ 10−3 3.1 ⋅ 10−2 
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Finally, Figure 1 presents the reconstruction of temperature in the 

measurement point in case of 5% error input data. Both lines 

(reconstruction and measurements) are very similar, so the 

temperature calculated from the model fits very well to the 

measurements. 

 

 
Fig. 1. Reconstructed temperatures (dotted line) and 

measurements (solid line) in case of 5% error input data 

 

 

6. Conclusions 
 

This article presented the one-dimensional heat conduction 

model with fractional Riemann-Liouville derivative. Model of this 

kind can be used for describing the phenomenon of heat 

conduction in the porous materials. The algorithm for solving the 

discussed inverse heat conduction problems, based on the Ant 

Colony Optimization algorithm, was also presented. The executed 

numerical example showed that the considered algorithm 

reconstructs very well the value of thermal conductivity 

coefficient, despite the disturbances of input data. 
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