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experimental data is approximated by means of fractional-order 
(FO) empirical transfer functions. The results demonstrate that 
FO models represent conveniently the dynamics of the inductor, 
while requiring a limited number of parameters.

Having these ideas in mind, this paper is organized as fol-
lows. Section 2 introduces the main tools adopted in the study 
of the inductor, namely the concepts of FC, the empirical FC 
models, and the EIS. Section 3 models the inductor electrical 
impedance and analyses its behavior. Finally, Section 4 draws 
the main conclusions.

2. Fundamental Concepts

This section outlines the mathematical tools adopted in the fol-
low-up.

2.1. Fractional Calculus. We can find in the literature sev-
eral definitions of fractional derivatives and integrals [24]. Re-
searchers use mostly the Riemann-Liouville (RL), the Grün-
wald-Letnikov (GL) and the Caputo (C):
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1. Introduction

An ideal inductor is characterized by the impedance Z( jω) =
jωL, where j =

√
−1, the parameter L denotes the induc-

tance, ω = 2π f represents the angular frequency and f is the
frequency. However, such device has no physical correspon-
dence, since the model ignores the ohmic resistance of the
winding, the parasitic capacitance between neighbor turns, the
hysteresis and eddy-current losses in the magnetic core, and
the skin effect in the wire. Additionally, the nonlinearities are
dependent on the amplitude and frequency, being more critical
at higher frequencies [1].

Classical models describe a real inductor by means of equiv-
alent electric circuits, where the inductor is associated in se-
ries/parallel with resistances and capacitors. However, these
models reveal difficulties in describing the nonlinear and the
skin effects that characterize many inductors, and their accu-
rate modeling is a challenging exercise [2].

Fractional calculus (FC) generalizes the concepts of stan-
dard differential calculus to non-integer orders [3, 4, 5]. Re-
cently, FC was adopted for modeling natural and artificial sig-
nals and systems characterized by power-law behavior, long
range memory effects, non-locality, and fractal properties [6,
7, 8, 9, 10, 11], opening new avenues towards the generaliza-
tion of classical laws, devices and systems [12, 13, 14, 15, 16,
17, 18].

In the field of electromagnetism, the tools of FC were ap-
plied successfully to describe the behavior of electric machines
[19, 20, 21] and other devices [22, 12]. Specifically for model-
ing inductors, Schäfer and Krüger [1, 2] showed that fractional
models are suitable for describing hysteresis losses in the in-
ductor core.

In this paper we adopt FC to describe an inductor [23]. The
electrical impedance spectroscopy (EIS) technique is used for
measuring the equivalent impedance of the device, and the ex-
perimental data is approximated by means of fractional-order
(FO) empirical transfer functions. The results demonstrate that
FO models represent conveniently the dynamics of the induc-
tor, while requiring a limited number of parameters.

Having these ideas in mind, this paper is organized as fol-
lows. Section 2 introduces the main tools adopted in the study

of the inductor, namely the concepts of FC, the empirical FC
models, and the EIS. Section 3 models the inductor electrical
impedance and analyses its behavior. Finally, Section 4 draws
the main conclusions.

2. Fundamental Concepts
This section outlines the mathematical tools adopted in the
follow-up.

2.1. Fractional Calculus We can find in the literature sev-
eral definitions of fractional derivatives and integrals [24].
Researchers use mostly the Riemann-Liouville (RL), the
Grünwald-Letnikov (GL) and the Caputo (C):
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where Γ(·) represents the Euler’s gamma function, the oper-
ator [·] calculates the integer part, h is the time increment and
{t,a} ∈R (t > a) are the upper and lower limits of the interval,
respectively.

For a large class of functions, the RL, GL and C formula-
tions can be considered “equivalent” since they lead to identi-
cal results [25]. Moreover, since in many practical applications
we consider a = 0, we often adopt Dα

t to denote the general-
ized “differintegral” operator.

The Laplace, for zero initial conditions, and the Fourier
transforms yield the expressions:
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1. Introduction

An ideal inductor is characterized by the impedance Z( jω) = jωL, 
where j =  –1, the parameter L denotes the inductance, ω = 2π f 
represents the angular frequency and f  is the frequency. How-
ever, such device has no physical correspondence, since the 
model ignores the ohmic resistance of the winding, the parasitic 
capacitance between neighbor turns, the hysteresis and eddy-cur-
rent losses in the magnetic core, and the skin effect in the wire. 
Additionally, the nonlinearities are dependent on the amplitude 
and frequency, being more critical at higher frequencies [1].

Classical models describe a real inductor by means of equiv-
alent electric circuits, where the inductor is associated in se-
ries/parallel with resistances and capacitors. However, these 
models reveal difficulties in describing the nonlinear and the 
skin effects that characterize many inductors, and their accurate 
modeling is a challenging exercise [2].

Fractional calculus (FC) generalizes the concepts of standard 
differential calculus to non-integer orders [3‒5]. Recently, FC 
was adopted for modeling natural and artificial signals and sys-
tems characterized by power-law behavior, long range memory 
effects, non-locality, and fractal properties [6‒11], opening new 
avenues towards the generalization of classical laws, devices 
and systems [12‒18].

In the field of electromagnetism, the tools of FC were ap-
plied successfully to describe the behavior of electric machines 
[19‒21] and other devices [12, 22]. Specifically for modeling in-
ductors, Schäfer and Krüger [1, 2] showed that fractional models 
are suitable for describing hysteresis losses in the inductor core.

In this paper we adopt FC to describe an inductor [23]. 
The electrical impedance spectroscopy (EIS) technique is used 
for measuring the equivalent impedance of the device, and the 
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where Γ(¢) represents the Euler’s gamma function, the oper-
ator [¢] calculates the integer part, h is the time increment and 
{t, a} 2 
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tance, ω = 2π f represents the angular frequency and f is the
frequency. However, such device has no physical correspon-
dence, since the model ignores the ohmic resistance of the
winding, the parasitic capacitance between neighbor turns, the
hysteresis and eddy-current losses in the magnetic core, and
the skin effect in the wire. Additionally, the nonlinearities are
dependent on the amplitude and frequency, being more critical
at higher frequencies [1].

Classical models describe a real inductor by means of equiv-
alent electric circuits, where the inductor is associated in se-
ries/parallel with resistances and capacitors. However, these
models reveal difficulties in describing the nonlinear and the
skin effects that characterize many inductors, and their accu-
rate modeling is a challenging exercise [2].

Fractional calculus (FC) generalizes the concepts of stan-
dard differential calculus to non-integer orders [3, 4, 5]. Re-
cently, FC was adopted for modeling natural and artificial sig-
nals and systems characterized by power-law behavior, long
range memory effects, non-locality, and fractal properties [6,
7, 8, 9, 10, 11], opening new avenues towards the generaliza-
tion of classical laws, devices and systems [12, 13, 14, 15, 16,
17, 18].

In the field of electromagnetism, the tools of FC were ap-
plied successfully to describe the behavior of electric machines
[19, 20, 21] and other devices [22, 12]. Specifically for model-
ing inductors, Schäfer and Krüger [1, 2] showed that fractional
models are suitable for describing hysteresis losses in the in-
ductor core.

In this paper we adopt FC to describe an inductor [23]. The
electrical impedance spectroscopy (EIS) technique is used for
measuring the equivalent impedance of the device, and the ex-
perimental data is approximated by means of fractional-order
(FO) empirical transfer functions. The results demonstrate that
FO models represent conveniently the dynamics of the induc-
tor, while requiring a limited number of parameters.

Having these ideas in mind, this paper is organized as fol-
lows. Section 2 introduces the main tools adopted in the study

of the inductor, namely the concepts of FC, the empirical FC
models, and the EIS. Section 3 models the inductor electrical
impedance and analyses its behavior. Finally, Section 4 draws
the main conclusions.

2. Fundamental Concepts
This section outlines the mathematical tools adopted in the
follow-up.

2.1. Fractional Calculus We can find in the literature sev-
eral definitions of fractional derivatives and integrals [24].
Researchers use mostly the Riemann-Liouville (RL), the
Grünwald-Letnikov (GL) and the Caputo (C):
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where Γ(·) represents the Euler’s gamma function, the oper-
ator [·] calculates the integer part, h is the time increment and
{t,a} ∈R (t > a) are the upper and lower limits of the interval,
respectively.

For a large class of functions, the RL, GL and C formula-
tions can be considered “equivalent” since they lead to identi-
cal results [25]. Moreover, since in many practical applications
we consider a = 0, we often adopt Dα

t to denote the general-
ized “differintegral” operator.

The Laplace, for zero initial conditions, and the Fourier
transforms yield the expressions:
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 (t > a) are the upper and lower limits of the interval, 
respectively.

For a large class of functions, the RL, GL and C formula-
tions can be considered “equivalent’’ since they lead to identical 
results [25]. Moreover, since in many practical applications we 
consider a = 0, we often adopt Dt

α to denote the generalized 
“differintegral’’ operator.

The Laplace, for zero initial conditions, and the Fourier 
transforms yield the expressions:

 L{Dt
α f (t)} = sαL{ f (t)}, (4)

 F{Dt
α f (t)} = ( jω)αF{ f (t)}, (5)

where s denotes the Laplace variable, and L  and F  represent 
the Laplace and Fourier operators, respectively. These trans-
forms allow the generalization of classical tools, such as the 
root locus, Bode, Nyquist and state-space methods, to FO sys-
tems [26, 27].

The Mittag-Leffler function, Eα(t), is defined by:

 Eα(t) = 
m=0

1

∑ tm

Γ(αm + 1)
, (6)

establishing a relationship between exponential and power law 
behaviors that occur for integer and fractional dynamics, re-
spectively [9]. Its Laplace transform is given by:

 L{Eα(§atα)} =  sα ¡ 1

sα ¨a
. (7)

2.2. Empirical FO Models. For an experimental spectrum, we 
need a model that fits the numerical values, having in mind 
some parsimony in the total number of parameters [28, 29]. 
Several empirical models were proposed [30] in the scope of the 
dielectric relaxation phenomenon. The integer-order Debye (D) 
model [31] does not describe adequately the response of many 
materials, since it neglects relaxing effects and long-memory 
phenomena [32, 33].

The Cole-Cole (CC), Cole-Davidson (CD) and Havril-
iak-Negami (HN) models generalize the integer-order descrip-
tion [34‒36]. These empirical expressions are, in fact, particular 
cases of FO models [37, 38]. In the Fourier domain, the D, CC, 
CD and HN are given my the expressions [38]:

	 ε̃D( jω) = 
ε¤( jω) ¡ ε1
ε0 ¡ ε1

  =  1
1 + jωτ

, (8)

	 ε̃CC( jω) =  1
1 + ( jωτ)α

, (9)

	 ε̃CD( jω) =  1
(1 + jωτ)β

, (10)

	 ε̃HN( jω) =  1
[1 + ( jωτ)α ]β

, (11)

where 0 < α, β ∙ 1, ε̃ is the complex susceptibility, {ε0, ε1} 
are the low and high-frequency limits of the complex dielectric 
permittivity, ε¤, and τ denotes the relaxation time.

Models (9‒11) are ubiquitous in natural and artificial 
phenomena, and often are denoted as Randles cell, constant 
phase element, or fractance, and have been under investigation 
[39, 40]. One open question concerns the units of the parameters 
involved, but no effective measurement units have been pro-
posed for a fractor. Usually, this is not an issue in real systems 
as we may use a scaling term to give a result in real integer 
order units [41, 42].

2.3. Electrical Impedance Spectroscopy. The EIS technique 
measures the electrical impedance of a specimen object [9, 43]. 
The EIS is straightforward to implement, avoiding complicated 
and time consuming procedures. The EIS has been used in the 
description of vegetable [44, 45] and animal [46, 47] tissues, 
food liquids [48, 49], materials [50, 51], devices [52, 53], and 
elements [54, 55].

The EIS starts by applying to the sample electric sinusoidal 
input signals, and registering the amplitude and phase shift of 
the output steady-state sinusoidal voltage, v(t), and current, i(t):

 v(t) = Vcos(ω t + θV), (12a)

 i(t) = I cos(ω t + θI), (12b)

where {V, I } and {θV, θI} are the amplitudes and phase shifts 
of the voltage and current, respectively.

The signals v(t) and i(t) can be represented in the Fourier 
domain:

 V( jω) = V ¢ e jθV, (13a)

 I( jω) = I ¢ e jθI, (13b)

where the impedance Z( jω) is given by:

 
Z( jω) = 

V( jω)

I( jω)
 = 

V

I
 ¢ e j(θV ¡ θI) =

Z( jω) = jZ( jω)j ¢ e j arg[Z( jω)] .
 (14)

3. EIS Analysis of an Inductor

Different equipment can be used for measuring impedances 
in the scope of the EIS. Commercial impedance analyzers are 
often adopted, since they are easy to use and accurate. They in-
ject an adjustable frequency, constant amplitude, sinusoidal AC 
current through the sample under test and measure the voltage 
drop across it.

The main disadvantage of the commercial impedance an-
alyzers is their high cost. Moreover, custom solutions using 
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ra-based distance, J, between the experimental, Ze, and model, 
Zm, impedances:

 

J = 
1
L k =1

L

∑ ¢ 
µ
jRe[Ze( jωk)] ¡ Re[Zm( jωk)]j
jRe[Ze( jωk)]j + jRe[Zm( jωk)]j

 +

J + 
jIm[Ze( jωk)] ¡ Im[Zm( jωk)]j
jIm[Ze( jωk)]j + jIm[Zm( jωk)]j

¶
,

 (16)

where Re[¢] and Im[¢] represent the real and imaginary parts.
Expression (16) captures the relative error of the curve fit-

ting. This avoids saturation effects that occur when using the 
standard Euclidean norm due to the simultaneous presence of 
large and small values.

A good fit occurs for the 5-parameter model:

 Zm( jω) = K ¢ 

³
1 +  jω

z

β́

³
1 +  jω

p
ά , (17)

where K = R = 0.6 is the inductor resistance. Expression (17) 
represents a compromise between model complexity and quality 
of fitting between experimental and analytical results.

The polar, Nichols and Bode diagrams of the experimental, 
Ze( jω), and approximating FO model, Zm( jω), are depicted in 
Fig. 2 for the excitation voltage Vab = 5 V. The charts reveal the 
adequacy of expression (17) when modeling the inductor. For 
the other values of Vab the results are identical.

Table 1 summarizes the values of the parameters and 
the fitness function obtained for the 10 excitation voltages 
Vab = {1, ¢¢¢, 10} V. Figure 3 depicts the variation of the set of 
parameters and fit error {z, β, p, α, J} with Vab. We observe that 
the parameters decrease for increasing values of the excitation 
voltage. The fitness function, J, is minimal for intermediate 
values of Vab, corresponding to a closer fit between Zm( jω) 
and Ze( jω).

Fig. 1. Experimental set-up EIS for measuring Z( jω)

general purpose equipment may be advantageous when the 
specifications of the impedance analyzers are not compatible 
with the specimens to be studied [56, 57].

The diagram of Fig. 1 shows the experimental set-up ad-
opted herein [9, 43] using general purpose equipment. The 
inductor is connected in series with an adaptation metal film 
resistance, Rs = 27 Ω, for achieving good signal/noise ratio, 
while avoiding interference at high frequencies [58]. A Hew-
lett Packard/Agilent 33220 A function generator applies a si-
nusoidal AC voltage with amplitude Vab to the circuit (i.e., 
the voltage divider) and a Tektronix TDS 2002C two channel 
oscilloscope measures the voltages Vab and Vcb. The oscillo-
scope bandwidth is 70 MHz, with DC vertical accuracy of 
±(3%£ reading + 0.1 div + 1 mV), and delta time accuracy 
equal to ±(1 sample interval + 100 ppm£ reading + 0.6 ns).

The tested inductor has a closed iron core, a resistance 
R = 0.6 Ω, measured by a Keithley 2000 digital multimeter by 
means of the 4-wire method, and an inductance L = 11.5 mH, 
measured with a Escort ELC-131D LCR bridge at the frequency 
of 120 Hz. The experiments consist of 10 sets of measurements 
with exciting voltages Vab = {1, ¢¢¢, 10} V. For each fixed-am-
plitude Vab the impedance Z( jω) is obtained for the frequency 
range 2π  ¢ 10 ∙ ω ∙ 2π  ¢ 104 rad/s, at L = 27 logarithmically 
spaced points using the expression:

 Z( jω) = Rs ¢ 
µ

Vab( jω)

Vcb( jω)
 ¡ 1

¶
, (15)

where the signals vab(t) = Vabcos(ωt) and vcb(t) = Vcbcos(ωt + θ)  
are measured directly by the oscilloscope, and θ denotes the 
phase shift between vcb(t) and vab(t).

3.1. The Five-parameter Model. The FO models are fitted 
into the experimental data in order to minimize the Canber-

Table 1 
Values of the parameters of the model and the fitness finction for 

Vab = {1, ¢¢¢, 10} V

Vab z β p α J

1 38.96 0.92 8400 0.60 0.22

2 33.93 0.93 6200 0.55 0.16

3 32.67 0.92 6600 0.54 0.13

4 28.90 0.92 5100 0.54 0.11

5 28.90 0.92 5500 0.54 0.13

6 26.39 0.92 4800 0.54 0.10

7 22.62 0.90 4000 0.52 0.10

8 21.36 0.90 4000 0.52 0.14

9 16.34 0.86 4200 0.51 0.15

10 15.71 0.86 3900 0.50 0.20
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Figure 4 depicts the Nichols diagrams of the inductor ob-
tained with the experimental impedances, for Vab = {1, ¢¢¢, 10} V. 
The points corresponding to the same frequency are also con-
nected [59], so that we have the locus of constant frequency/
amplitude versus variable amplitude/frequency. We observe 
that the impedance Ze depends on Vab, reflecting the nonlinear 
nature of the device. At low frequencies Ze is more sensitive to 
the excitation voltage, meaning that the non-linear component 
represents a larger part of the total value.

The results demonstrate that model (17) yields a quantitative 
description and reliable characterization of the inductor. Never-
theless, the number of model parameters necessary is high and 
the adherence between the heuristic model and the experimental 
data in Fig. 2 is limited.

3.2. The Asymptotic Model. In subsection 3.1 we adopted 
a model covering all measured spectrum. However, it was ob-
served that the curve fitting was not completely satisfactory 
at low frequencies. So, the question remains of using a simple 
model that adjusts adequately the experimental data while de-
scribing the main characteristics of the inductor. In this per-
spective, this subsection tests a model that fits the asymptotic 
behavior of Ze( jω) at low, mid and high frequencies (to be 

Fig. 2. Diagrams of the experimental and model impedances, Ze( jω) and Zm( jω), of the inductor for Vab = 5 V: a) – Polar; b) – Nichols; c) – Bode
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denoted by the subscripts L, M and H ). This strategy has the 
advantages of being simple and requiring a small number of 
parameters. However, it is not clear what is the “adequate’’ 
bandwidth for describing the inductor, and we may overlook 
some part of the spectrum containing relevant information.

We consider the asymptotic approximation of the experi-
mental data, Ze( jω), by means of the model:

jZL( jω)j = K = R

arg [ZL( jω)] = 0
,  ω < ωL , (18)

jZM( jω)j = KM ¢ ωαM

arg [ZM( jω)] = π
2
αM  + θM

,  ωL  ∙ ω ∙ ωM , (19)

jZH( jω)j = KH ¢ ωαH

arg [ZH( jω)] = π
2
αH

,  ω > ωH , (20)

where {ωL, ωM, ωH} are the limit frequencies for calculating the 
asymptotic approximations. These values were tested manually 
and therefore at present state their choice is not automatic. The 
resulting asymptotic model has no physical meaning, in the 
sense that it does not describe a real-world system. However, 
expressions (18‒20) fit well the experimental data and, as we 
shall demonstrate, give a reliable description of the measure-
ments.

Figure 5 depicts the Bode diagram of the experimental data 
and the asymptotic model for Vab = 5 V and {ωL, ωM, ωH} =  
= {20, 300, 1000} Hz. The low-frequency approximation is 
omitted since the inductor is described by its resistance. For 
the other excitation voltages the frequency response is similar. 
Table 2 summarizes the values of the parameters {KM, αM, θM} 
and {KH, αH} obtained for Vab = {1, ¢¢¢, 10} V. Figure 6 depicts 
the variation of the two sets. We verify that KM and θM are sen-
sitive to Vab, while the remaining three parameters have limited 
variations, with particular emphasis to the fractional order αH 
that remains constant.

Table 2 
Values of the parameters of the assymptotic model for 

Vab = {1, ¢¢¢, 10} V

Vab KM αM θM KH αH

11 0.02 0.92 –0.00 1.20 0.45

12 0.03 0.89 –0.17 1.30 0.45

13 0.02 0.94 –0.12 1.33 0.45

14 0.03 0.92 –0.09 1.31 0.45

15 0.02 0.97 –0.21 1.36 0.45

16 0.02 0.99 –0.26 1.40 0.45

17 0.03 0.95 –0.26 1.40 0.45

18 0.02 0.99 –0.37 1.40 0.45

19 0.02 0.99 –0.45 1.40 0.45

10 0.03 0.94 –0.44 1.40 0.45

Fig. 4. The Nichols diagrams of the inductor obtained with the ex-
perimental impedances, for Vab = {1, ¢¢¢, 10} V. The black/red lines 
represent Ze for constant/variable amplitude Vab versus variable/

constant frequency ω
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4. Conclusions

In this paper we used EIS to determine the electrical impedance 
of an inductor and we adopted FO models to describe the exper-
imental data. We tested both a 5-parameter fractional model and 
several independent asymptotic expressions. In both cases we 
observe FO behavior not captured with classical descriptions.
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