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Abstract 

In this paper, the capacity of an Adaptive-Network-Based Fuzzy Inference System (ANFIS) for predicting salinity of 
the Tafna River is investigated. 

Time series data of daily liquid flow and saline concentrations from the gauging station of Pierre du Chat (160801) 
were used for training, validation and testing the hybrid model. Different methods were used to test the accuracy of our 
results, i.e. coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (E), root of the mean squared error 
(RSR) and graphic techniques. The model produced satisfactory results and showed a very good agreement between the 
predicted and observed data, with R2 equal (88% for training, 78.01% validation and 80.00% for testing), E equal (85.84% 
for training, 82.51% validation and 78.17% for testing), and RSR equal (2% for training, 10% validation and 49% for test-
ing). 

Key words: Adaptive-Network-Based Fuzzy Inference System (ANFIS), hybrid model, neuro-fuzzy, salinity, salt flow, Tafna 
River 

INTRODUCTION 

The salinity of streams and rivers is a complex hydro-
logical and environmental phenomenon due to the large 
number of obscure parameters. The processes involved in 
salinization so complex that it is difficult to establish 
a general empirical analytical model to provide accurate 
prediction. Artificial intelligence is a viable and fully justi-
fied alternative for modelling phenomena with non-linear 
behaviour [BOUZERIA et al. 2017; CHEN et al. 2008; ME-

LLITA, KALOGIROU 2008; SHAFAEI et al. 2016; SKORBIŁO-
WICZ 2009; TACHI et al. 2016]. 

In recent years, the hybrid systems which combines 
fuzzy logic and neural networks prove their effectiveness 
by explaining the most complicated hydrological and envi-
ronmental phenomena [ALVISI et al. 2006; FASHI 2016; 
KESKIN et al. 2006; OPREA et al. 2017; SUPARTA, ALHASA 
2013; TABARI et al. 2012; TALEGHANIA et al. 2017]. Ac-
cording to BURAGOHAIN and MAHANTA [2008], MAHABIR 
et al. [2006] and WANG et al. [2004] the hybrid model  
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(neuro-fuzzy) “capture” the behaviour of non-linear sys-
systems quickly and accurately, even more so than other 
methods. It is one of the most widely used models for 
predicting time series and thus provides a good basis for 
comparison [KOUJOK et al. 2008]. MARASHI et al. [2018], 
KESKIN et al. [2010], KISI [2006] and MOHANDES et al. 
[2011] confirm the performance of hybrid model 
prediction compared to neural networks and fuzzy systems. 

Neuro-fuzzy systems are currently one of the “flavours 
of the month” in the neural network and fuzzy logic 
communities. They attempt to combine the structural and 
learning abilities of a neural network with the linguistic 
initialisation and validation aspects of a fuzzy system 
[BROWN 1996]. Neural networks are interesting tools for 
recognizing patterns; they do not explain how they reach 
their decisions. Likewise, for systems of fuzzy logic which 
can run with inaccurate information, there are interesting 
way to explain their decisions but it does not automatically 
acquire the rules they use to make these decisions. These 
limitations have been a reason behind the creation of 
intelligent hybrid systems where two or more techniques 
are combined in a way to overcome the limitations of 
a single technique [CHANG, CHANG 2006; FULLER 2000]. 

The hybrid fuzzy neural networks have a tremendous 
potential to solve engineering problems. It is improper to 
expect that if the individual technologies are good then 
hybridization of technologies should turn out to be even 
better. Hybridization is performed for the purpose of 
investing better methods of problem solving [CHENNAKE-
SAVA 2008]. Using a system created on the basis of 
a hybrid approach, existing methods and algorithms can be 
improved and more effective approaches can be developed 
to solve existing problems [SKVORTSOVA et al. 2017]. 

The aim of this study is the developed a neuro-fuzzy 
model (ANFIS) capable of predict and estimate the salinity 
of the Tafna River at every moment. Three observation 
times over 13 years and more than, 420 pairs of fluid flow 
and saline concentrations were used, to evaluate the 
performance of this model. Once the model is validated, 
watershed managers can integrate it into a decision support 
system to control the chemical quality. 

HYBRID MODEL (ANFIS)  

Adaptive neuro-fuzzy inference system (ANFIS), first 
introduced by JANG [1993]. ANFIS is capable of approxi-
mating any real continuous function on a compact set-of 
parameters to any degree of accuracy [JANG et al. 1997]. 
ANFIS identifies a set of parameters through a hybrid 
learning rule combining back propagation gradient descent 
error digestion and a least squared error method. There are 
two main approaches to fuzzy inference systems, namely 
the Mamdani approaches [MAMDANI, ASSILIAN 1975] and 
the TAKAGI, SUGENO [1985] approaches. The artificial 
neural networks ANN provides connectionist structures 
and learning abilities to the fuzzy systems whereas the 
fuzzy systems offer ANN a structured framework with 
high level IF-THEN rule thinking and reasoning [AVCI 
2008; MINH et al. 2017]. The main type of association be-
tween neural networks and fuzzy systems is when a fuzzy 

inference system is put in the form of a multilayered net-
work [BUCKLEY, HAYASHI 1994], in which the weights 
correspond to the parameters of the system. Network archi-
tecture depending on the type of rules and methods of in-
ference, aggregation and defuzzification chosen. 

STRUCTURE OF HYBRID MODEL  

The fuzzy inference system under consideration has 
two inputs (x, y) and one output (f). The rule base contains 
the fuzzy if-then rules of Takagi and Sugeno’s type 
[SUGENO, KANG 1988; TAKAGI, SUGENO 1983] as follows: 

 If x is A and y is B then z is f(x, y)  (1) 

Where: A and B are the fuzzy sets in the antecedents and  
z = f(x, y) is a crisp function in the consequent. Usually  
f(x, y) is a polynomial for the input variables x and y. But it 
can also be any other function that can approximately de-
scribe the output of the system within the fuzzy region as 
specified by the antecedent. When f(x, y) is a constant, 
a zero order Sugeno fuzzy model is formed which may be 
considered to be a special case of Mamdani fuzzy infer-
ence system [MAMDANI, ASSILIAN 1975] where each rule 
consequent is specified by a fuzzy singleton. If f(x, y) is 
taken to be a first order polynomial a first order Sugeno. 
For a first order, two rule Sugeno fuzzy inference system, 
the two rules may be stated [SENGUR 2008; ÜBEYLI 2008; 
YING, PAN 2008] as: 

Rule 1: If x is A1 and y is B1 then f1 = p1x + q1y + r1  (2) 

Rule 2: If x is A2 and y is B2 then f2 = p2x + q2y + r2  (3) 

ANFIS architecture is an adaptive network that uses 
supervised learning on learning algorithm, which has 
a function similar to the model of Takagi–Sugeno fuzzy 
inference system. Figure 1 shows the scheme fuzzy reason-
ing mechanism for Takagi–Sugeno model and ANFIS 
architecture [SUPARTA, ALHASA 2013]. 

First layer  
Every node i in this layer is adaptive with a node func-

tion 

 𝑄௜
ଵ ൌ 𝜇஺௜ሺ𝑥ሻ   (4) 

Where: x is the input to node i, Ai is the linguistic variable 
associated with this node function and µAi is the member-
ship function of Ai. Usually µAi (x) is chosen as 
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Second layer 
Each node in this layer is a fixed node, which calcu-

lates the firing strength ‘wi’ of a rule. The output of each 
node is the product of all the incoming signals to it and is 
given by 

 𝑄௜
ଶ ൌ 𝑤௜ ൌ 𝜇஺௜ሺ𝑥ሻ ∙ 𝜇஻௜ሺ𝑦ሻ,    𝑖 ൌ 1, 2  (7) 
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Fig. 1. Example of Sugeno’s fuzzy if-then rule and fuzzy reasoning mechanism (a) and equivalent ANFIS architecture (b);  
source: JANG et al. [1997]. 

Third layer 
Every node in this layer is a fixed node. Each ith node 

calculates the ratio of the ith rule’s firing strength to the 
sum of firing strengths of all the rules. The output from the 
ith node is the normalized firing strength given by: 

  𝑄௜
ଷ ൌ 𝑤పതതത ൌ

௪೔

௪೔ା௪మ
,    𝑖 ൌ 1, 2  (8) 

Fourth layer 
Every node in this layer is an adaptive node with 

a node function given by: 

  𝑄௜
ସ ൌ 𝑤ഥ𝑓௜ ൌ 𝑤ഥሺ𝑝௜𝑥 ൅ 𝑞௜𝑦 ൅ 𝑟௜ሻ,    𝑖 ൌ 1, 2  (9) 

Fifth layer  
The output is obtained by summing all the outputs of 

layer 4: 

 𝑄௜
ହ ൌ ∑ 𝑤ഥ௜ 𝑓௜ ൌ

∑ ௪೔௙೔೔

∑ ௪೔೔
  (10) 

LEARNING OF HYBRID MODEL 

The adjustment of the ANFIS parameters is carried out 
during the learning phase. The first layer and the fourth 
layer contain the parameters that can be modified over 
time. In the first layer, it contains a nonlinear of the prem-
ises parameter while the fourth layer contains linear conse-

quent parameters. A hybrid algorithm proposed by JANG 
[1993] will be used in this study to train of these parame-
ters. When these lasts are obtained, input data are passed 
back to the adaptive network input, and the output generat-
ed are compared with the actual output. 

While backward path is run, the consequent parame-
ters must be in a steady state. The error occurred during the 
comparison between the output generated with the actual 
output is propagated back to the first layer. 

Next, after the consequent parameters are obtained,  
input data is passed back to the adaptive network input, 
and the output generated will be compared with the actual 
output. 

While backward path is run, the consequent parame-
ters must be in a steady state. The error occurred during the 
comparison between the output generated with the actual 
output is propagated back to the first layer. At the same 
time, parameter premises in the first layer are updated us-
ing learning methods of gradient descent or back propaga-
tion. With the use of hybrid learning algorithm that com-
bines with the recursive least square estimator and the 
gradient descent methods, it can ensure the convergence 
rate is faster because it can reduce the dimensional search 
space in the original method of back propagation. One 
level of hybrid learning is called epochs [NAYAK et al. 
2004; SUPARTA, ALHASA 2016]. 
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VALIDATION OF THE MODEL  

The coefficient of determination (R2), the root of the 
mean squared error RSR (ratio of the root mean square er-
ror to the standard deviation of measured) and the Nash–
Sutcliffe efficiency coefficient (E) were used [NASH, SUT-
CLIFFE 1970]. These parameters are given by the following 
relationships respectively:  
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Where: Qti is the measured value of the flow; 𝑄෠𝑡௜ is the 
flow calculated by the model 𝑄ത𝑡௜: is the measured average 
rate and n is the number of data. 

Data in Table 1 show the values of the RSR, R² and E 
criteria corresponding to different degree of performance 
of the model at the daily scale. 

Table 1. General performance ratings for recommended statistics 
for a daily time step 

Rating E (%) RSR (%) R2 (%) 
Very good 75 < E ≤ 100 0 ≤ RSR ≤ 50 75 < R2 ≤ 100 
Good 65 < E ≤ 7 50 < RSR ≤ 60 65 < R2 ≤ 100 
Satisfactory 50 < E ≤ 6 60 < RSR ≤ 70 50 < R2 ≤ 100 
Unsatisfactory E ≤ 50 RSR > 70 R2 ≤ 50 

Explanations: E = Nash–Sutcliffe efficiency coefficient; RSR = root of the 
mean squared error; R² = coefficient of determination. 

STUDY AREA 

The present work carried out on the Tafna River 
(Fig. 2). The Tafna River is 170 km long. It is located in 
the northwestern region of Algeria, draining the Tafna wa-
tershed with an area of 7,245 km². It is ranging from the 
Algerian-Moroccan border in the West to about 30 km East 
of Tlemcen. This river reaches the Mediterranean Sea near 
Beni-Saf city. It is located between 34°11' N and 35°19' N 
and 0°50' longitude and 2°20' W. The climate is Mediterra-
nean with two main seasons: a long, dry, hot summer–
autumn and a winter–spring with abrupt and frequent 
heavy rainfall. During the summer, most of the streams, 
especially in their downstream parts, become mostly dry 
between June and October [ZETTAM et al. 2017].  

DATA AND METHODS 

For simplicity, we assume the fuzzy inference system 
under consideration has two inputs daily liquid flow Ql 
(m3∙s–1) and daily salt concentration Cs (g∙dm–3). In this 
approch, 420 samples of liquid flow (m3∙s–1) and mean dai-
ly saline concentrations (g∙dm–3) collected over three ob-
servation periods for 13 years (from 1977 to 1979 and 
from 1982 to 1991) were used (Fig. 3). 

 
Fig. 2. Location of the study area; source: own elaboration 

Tafna watershed boundary 

Hydrometric station 
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Fig. 3. Observed data of liquid flow (Ql) and salt concentration (Cs) from 1977 to 1979 and from 1982 to 1991;  
source: Agence Nationale des Ressources Hydrauliques (ANRH) 

The flow is measured using a gauging station and sa-
line concentrations are determined in the laboratory. The 
choice of these two parameters is based on the fact that the 
liquid flow is the causal factor and the saline concentra-
tions is consequence factor. So that, we choose ‘Pierre du 
Chat’ hydrometric station which is based on their site, it is 
the outlet of the river and controls 80% of the Tafna water-
shed. 

The dataset (420 samples) has been divided into three 
subsets: training, validation and testing. 
 Training phase: the training data sample is a set of data 

that is independent follows the same population; 252 
samples (60% of the population) are used for this phase 
from 26.09.1977 to 18.05.1979 and from 18.05.1979 to 
26.01.1982. 

 Test phase: the test stage, carried out with another 
sample of pairs (Cs and Ql) randomly drawn from the 
same population but for another observation period, 
from 18.05.1988 to 01.05.1990 with 84 samples. That is 
to say 20% of the population. 

 Validation phase: the validation step, performed on 
a third sample (i.e. 20% of the population) with the 
same Cs and Ql, it allows to check the stability of the 
predictive ability from 02.05.1990 to 13.03.1991.  

RESULTS AND DISCUSSION 

The summary of statistical characteristics of the train-
ing, validation and test for observed and predicted saline 
flows are presented in Table 2. As gradually as we ob-
tained data, the values of the saline flow of the samples 
ranged from 0.023 to 80.6 kg∙s–1. This explains the influ-
ence of the runoff on the chemical quantity of the Tafna 
valley waters. 

After the calibration and validation of ANFIS, their 
performance was evaluated using graphical techniques and 
three statistical criteria: determination coefficient (R²), 
Nash–Sutcliffe efficiency coefficient (E), and the root of 
mean square error (RSR). Table 3 shows the best perfor-
mance of the proposed hybrid model, with determination 
 

Table 2. Comparison of observed and predicted daily salt flow 
(kg∙s–1) 

Phase Qs Average SD CV Min Max 

Training 
observed 5.11   8.87 1.74 0.052 80.6 
predicted 4.36   9.47 2.05 0.023 80.6 

Validatio
n 

observed 4.39   9.47 2.05 0.023 80.6 
predicted 3.43   8.05 2.05 0.043 40.3 

Testing 
observed 5.92 13.31 2.24 0.038 66.0 
predicted 5.24 10.94 2.09 0.024 50.0 

Explanations: Qs = salt flow, SD = standard deviation, CV = coefficient of 
variation. 
Source: own study. 

Table 3. Statistical parameters of ANFIS in the training, 
validation and testing 

Phase RSR (%) E (%) R2 (%) 
Training   2 85.84 88.00 
Validation 10 82.51 78.01 
Testing 49 78.17 80.00 

Explanations: RSR = root of mean square error, E = Nash–Sutcliffe 
efficiency coefficient, R2 = determination coefficient. 
Source: own study. 

coefficient (R² = 88% for training, 78.01% for validation 
and 80.00% for tests), efficiency Nash–Sutcliffe coeffi-
cient (E = 85.84% for training, 82.51% for validation) and 
root of mean squared error (RSR = 2% for training, 10% 
for validation and 49% for the tests). 

The scatter plots of observed values versus simulated 
saline flow rates analysed here are presented in Figure 4 
respectively for the training, validation and tests phases. 
These statistics clearly show that the hybrid model is close 
to the adjustment line. 

Figure 5 shows the time series of observed and ex-
pected salt fluxes during training, validation and testing. 
The model took precisely the non-linear pattern of salt 
flow during training and produced a good generalization 
during testing and validation. 

During the study period, the flow values as well as the 
salt concentration of the hybrid model were used to predict 
and fill gaps in the salt concentration series. The hybrid 
model was used to estimate the amount of salinity (Fig. 6). 
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Fig. 4. Correlation between observed and predicted values of saline flow rates: a) training, b) validation, c) testing; source: own study 

 

 

 

Fig. 5. Comparison of the predicted and observed values: a) training, b) validation, c) testing; source: own study  
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Fig. 6. Annual variation of salinity; source: own study 

Noting that the salinity of the Tafna River continues to 
increase, for example for the years 2000–2010, salinity has 
almost doubled compared to the period of 1989–1999. This 
remarkable increase in the salinity of Tafna River explains 
the effect of climate change in western Algeria, especially 
in the Tafna watershed. The average amount of chemicals 
is (786,500 t∙year–1). This significant amount is negligible 
in solid suspension transport quantification studies. This 
automatically affects the sizing calculations of the dike, 
life and dam site.  

Another advantage of this hybrid model, as previously 
reported, is to predict salt concentrations without perform-
ing chemical analyses that are generally expensive. The 
hybrid model proposed in this study is applicable to all 
hydrometric stations even in national and international  
area, i.e. it is applicable to all regions. 

CONCLUSIONS 

The key objective of this study was to evaluate the ac-
curacy of hybrid model (ANFIS) in prediction salinity of 
the Tafna River. Data collected during 13 years by Na-
tional Water Resources Agency (ANRH) were used to es-
tablish a salinity-rating curve and also acted as inputs to 
the hybrid model. 

The ANFIS model showed a better performance re-
sults in step of daily time, with coefficient of determination 
(R2 = 0.88% for training, 78.01% validation and 80.00% 
for testing), Nash–Sutcliffe efficiency coefficient (E = 
85.84% for training, 82.51% validation and 78.17% for 
testing), and the root of the mean squared error (RSR = 
0.02% for training, 0.10% validation and 0.49% for test-
ing). These encouraging results open up a number of per-
spectives, where it would be interesting to try to apply hy-
brid models (neuro-fuzzy) on a larger scale in hydrology 
and the environment. This approach should be tested on 
a large scale for the whole country and, if successful, inte-
grated into early warning systems in the event of Water 
Supply and Sanitation (WSS) water quality degradation. 
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Hybrydowy model służący modelowaniu zasolenia rzeki Tafna w Algierii 

STRESZCZENIE 

W pracy badano zdolność systemu wnioskowania rozmytego opartego na adaptacyjnej sieci (ANFIS) do przewidywa-
nia zasolenia rzeki Tafna. Do trenowania, oceny i testowania modelu hybrydowego wykorzystano serie pomiarów dobo-
wych przepływów płynu i stężeń soli ze stacji pomiarowej w Pierre du Chat (160801). Dokładność wyników testowano za 
pomocą: współczynnika determinacji (R2), współczynnika wydajności Nasha–Sutcliffe’a (E), pierwiastka średniego błędu 
kwadratowego (RSR) i technik graficznych. Model dał zadowalające wyniki i wykazywał dobrą zgodność między danymi 
obserwowanymi a przewidywanymi: R2 (88% w przypadku uczenia sieci, 78.01% walidacji i 80.00% testowania), 
E (85.84% w przypadku uczenia sieci, 82.51% walidacji i 78.17% testowania) i RSR (2% w przypadku uczenia sieci, 10% 
walidacji i 49% testowania). 
 
Słowa kluczowe: model hybrydowy, przepływ soli, rzeka Tafna, system neuronowo-rozmyty, system wnioskowania 
rozmytego (ANFIS), zasolenie 

 


