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Abstract. Dissipative Particle Dynamics (DPD) is a simulation method at mesoscopic scales that bridges the gap between molecular dynamics
and continuum hydrodynamics. It can simulate efficiently complex liquids and dense suspensions using only a few thousands of virtual
particles and at speed-up factors of more than one hundred thousands compared to Molecular Dynamics. Lowe’s approach provides a powerful
alternative to the usual DPD integrating schemes. Here, we demonstrate the details and potential of Lowe’s scheme. We compute viscosity,
diffusivity and Schmidt number values and we present comparison of wormlike chain models under shear with experimental and Brownian
Dynamics results forλ-phage DNA.
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1. Multiscale modelling

TheMolecularDynamics(MD)methodissuitableforsimulating
very small volumes of liquid flow, with linear dimensions of the
order of 100 nm or less and for time intervals of several tens of
nanoseconds. It can deal effectively with nano-domains and is
perhapstheonlyaccurateapproachinsimulatingflowsinvolving
very high shear where the continuum or the Newtonian
hypothesis may not be valid. For length scales less than
approximately ten molecules the continuum hypothesis breaks
down for liquids [1], and MD should be employed to simulate
the atomistic behaviour of such a system. For larger systems,
however, multiscale approaches that rely on the efficiency of
continuum-based discretizations have to be employed. To this
end, the coupling of MD to Navier-Stokes equations can extend
the range of applicability of both approaches and provide a
unifying description of liquid flows from nano-scales to larger
scales. Such effort has been underway by many research groups
(e.g. Nie et al., 2004 [2], and references therein); however, the
proposed algorithms are rather complicated and not fully
satisfactory. Analternative,potentiallyverypowerfulandsimple
approach, is a method developed in the mid 1990s primarily in
Europe: the dissipative particle dynamics (MD) method. It has
features of both the MD and the lattice Boltzmann method
(LBM) [3], and can be thought of as a coarse-grained version of
MD, but it employs dissipative and stochastic forces to account
for the eliminated degrees of freedom. The initial model was
proposed by Hoogerbrugge & Koelman [4] as a simulation
method to avoid the artifacts associated with traditional LBM
simulations while capturing spatio-temporal hydrodynamic
scales much larger than those achievable with MD.

The dissipative particle dynamics (DPD) model consists
of particles which correspond to coarse-grained entities, thus
representing molecular clusters rather than individual atoms.

The particles interact with each other through a set of pre-
scribed (conservative and stochastic) and velocity-dependent
forces [4,5]. Specifically, there are three types of forces acting
on each dissipative particle: (a) a purely repulsive conserva-
tive force, (b) a dissipative force that reduces velocity differ-
ences between the particles, and (c) a stochastic force directed
along the line connecting the centers of the particles. The last
two forces effectively implement a thermostat so that thermal
equilibrium is achieved. Correspondingly, the amplitude of
these forces is dictated by the fluctuation-dissipation theorem
[5] that ensures that in thermodynamic equilibrium the system
will have a canonical distribution. All three forces are modu-
lated by a weight function which specifies the range of interac-
tion or cut-off radiusrc between the particles and renders the
interaction local.

A conceptual picture then of DPD is that of soft micro-
spheres randomly moving around but following a preferred di-
rection dictated by the conservative forces. DPD can be inter-
preted as a Lagrangian discretization of the equations of fluc-
tuating hydrodynamics as the particles simultaneously follow
the classical hydrodynamic flow while exhibiting thermal fluc-
tuations. The consistency of the fluctuations is governed by the
principles of statistical mechanics.

2. Complex fluids

Several complex fluid systems in industrial and biological ap-
plications (DNA chains, polymer gels, lubrication) are char-
acterized by inherent time and length scales that range from
the atomistic level to a millimeter and beyond, often spanning
several orders of magnitude. Traditional molecular dynamics
techniques attack the problem at the microscopic level, while
continuum models may fail to capture smaller interactions be-
cause they resort to averaging techniques or pre-defined as-
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sociation rules. Dilute polymer solutions are a typical exam-
ple, since individual polymer chains form a group of molecules
large by atomic standards but still governed by forces similar to
intermolecular ones. Therefore, they form large repeated units
exhibiting slow dynamics with possibly non-linear interactions
(Fig. 1).

Fig. 1. Polymer chains (tethered spheres) suspended in a solvent of
DPD particles (smaller dots)

The DPD method is very attractive for the computer sim-
ulation of polymer solutions, since by employing bead-spring
representations of the polymer chains we can formulate and
compare a variety of realistic conservative inter-bead forces.
We focus on using the basic DPD framework in order to for-
mulate, implement and compare different models for polymer
chains in dilute solutions. In order to appreciate the poten-
tial and computational complexity of DPD, in the following
section we summarize the governing equations for simple and
complex fluids, and subsequently we present Lowe’s scheme
and physical results.

3. The DPD equations
The system consists ofN particles having equal mass (for sim-
plicity) m, positionsri, and velocitiesui. The aforementioned
three types of forces exerted on a particlei by particlej are
given by

Fc
ij = F (c)(rij)eij ,

Fd
ij = −γωd(rij)(uij · eij)eij ,

Fr
ij = σωr(rij)ξijeij ,

whererij = ri − rj , uij = ui − uj , rij = |rij | and the
unit vectoreij = rij

rij
. The parametersγ andσ determine the

strength of the dissipative and random forces, respectively, the
ξij are symmetric Gaussian random variables with zero mean
and unit variance, andωd andωr are weight functions.

All forces act within a sphere of radiusrc, which defines
the length scale of the system. By averaging the Lennard-Jones
potentials or the corresponding molecular field over the rapidly
fluctuating motions of atoms over short time intervals, an ef-
fective average potential [6] is obtained of the form shown in

Fig. 2 that is a soft, repulsive-only interaction. A linear ap-
proximation of this is as follows [7]:Fc

ij = aij(1− rij)eij for
rij ≤ rc = 1 and is otherwise zero. Unlike the hard Lennard-
Jones potential which is unbounded atr = 0, the soft potential
employed in DPD has a finite valueaij at r = 0. To find the
value ofaij we follow the process laid out by Groot & Warren
[7] and Groot & Rabone [8], i.e., we match the dimensionless
compressibility of the DPD system with that of the MD sys-
tem, namely

κ−1|DPD =
1

kBTDPD

[
∂pDPD

∂ρDPD

]

T

=
1

kBTMD

[
∂ρMD

∂ρDPD

] [
∂pMD

∂ρMD

]

T

= Nmκ−1|MD

(1)

whereρ is the number density,Nm =
(∂ρ)MD

(∂ρ)DPD

is the coarse-

graining parameter ,kB is the Boltzmann constant andT the
temperature of the system. We note that “DPD” refers to sim-
ulation and that in MD we haveNm = 1. Then, from an em-
pirical equation of state for DPD fluids, Groot & Warren [7]
obtainaij ≡ a through

κ−1|DPD ≈ 1 + 0.2
aρDPD

kBTDPD
.

By matching the diffusion constant (DDPD) in the DPD
simulation with that of water (Dwater) we find the DPD time
scale as

τ =
NmDDPDr2

c

Dwater
∝ N5/3

m .

This time scale and the soft potential explain why the DPD
method is several orders of magnitude faster than straightfor-
ward MD. With respect to the latter, the soft potential removes
the “caging effect” of an atom so that the diffusivity of atoms
is increased by a factor of 1000, depending on the thermostat.
We note that Lowe’s [9] approach, which employs an Andersen
thermostat, does not decrease the Peclet number. The effect of
the time scale is to decrease the corresponding CPU time in
proportion to the coarse-graining parameterNm; hence the to-
tal speed-up with respect to MD is1000 × Nm × N

5/3
m for a

given system volume. Thus, forNm = 5 and10 the speed-up
factor is 73,000 and 464,000, respectively!

The time evolution of DPD particles is described by New-
ton’s law

dri = uiδt; dui =
Fc

iδt + Fd
i δt + Fr

i

√
δt

mi
,

whereFc
i =

∑
i6=j Fc

ij is the total conservative force acting on
particlei; Fd

i andFr
i are defined similarly. The random force,

which represents Brownian motion, appears with a factor of√
δt in the velocity increment. The dissipative and random

forces, characterized by strengthsωd(rij) andωr(rij) respec-
tively, are coupled through the fluctuation-dissipation theorem
[5] as follows:

ωd(rij) =
[
ωr(rij)

]2 = max{(1− rij

rc
)2, 0}

σ2 = 2γkBT.
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Fig. 2. Lennard-Jones potential and the soft-repulsive potential which
results after averaging

4. Lowe’s scheme
The most widely used DPD integrating scheme is the velocity-
Verlet algorithm [10] – a popular version of which is outlined

by Groot and Warren [7]. Lowe’s algorithm, on the other hand,
introduced in 1999 [9,11] is a scheme based on the Ander-
sen thermostat [12] with the particle velocities corrected every
timestep using the Maxwell velocity distribution. In absence of
conservative forces, which are integrated in the velocity-Verlet
manner, the scheme is shown to be independent of the cho-
sen timestep∆t [11]. The core operation in Lowe’s method
involves re-equilibration of the particle momenta at one step
with an updated inter-particle relative velocity drawn from a
Gaussian distribution.

The method conserves momentum and introduces an extra
parameterΓ so that in the limiting case ofΓ×∆t ≈ 1 thermal-
ization/dissipation occurs every time-step. Peters [13] recently
introduced a modification of Lowe’s scheme by keeping the
centroid velocity of a particle-pair unchanged before and after
the re-equilibration. This results in an attractive scheme, still
independent of the chosen time-step (as opposed to the Ver-
let approach) that also discretizes the originalDPD equations.
Here we outline the basic Lowe scheme in Table 1. The fun-
damental difference between Lowe’s and the velocity-Verlet
scheme is that dissipative and random forces are not explictly
calculated in the former.

Table 1
Overview of the traditional Lowe’s approach for a polymer system

Γ: thermalization parameter

I rs
i
←− rs

i
+ (∆t)us

i
+ (∆t)2

2m Fc
i

: SOLVENT

I rp
i
←− rp

i
+ (∆t)up

i
+ (∆t)2

2m

[
Fc

i
+ Fp

i

]
: POLYMER

I ∀(i,j) F̂c
i

(
rs

rp

)
: SOLVENT, POLYMER

I ∀(i,j) F̂p
i
(rp) : POLYMER

I usi ←− usi + ∆t
2m

[
Fc

i
+ F̂c

i

]
: SOLVENT

I upi ←− upi + ∆t
2m

[(
Fc

i
+ Fp

i

)
+

(
F̂c

i
+ F̂p

i

)]
: POLYMER

I ∀ Np distinct pairsi, j such thatrij < rc : SOLVENT, POLYMER

• Generate a Gaussianξij with µ = 0, σ2 = 1

• Formu◦
ij
· eij = ξij

√
2kBT

m

• Generate a uniform distributionψ
Np

• If ψ
Np

< Γ×∆t ≤ 1:

2∆ij = eij (u
◦
ij
− uij ) · eij

ui ←− ui + ∆ij

uj ←− uj −∆ij

B Fc
i
←− F̂c

i
: SOLVENT, POLYMER

B Fp
i
←− F̂p

i
: POLYMER

B Analyzer
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5. The wormlike chain
Unlike the MD equations, the DPD equations are stochastic
and nonlinear since the dissipative force depends on the veloc-
ity. The conservative forces present in the usual DPD equa-
tions can be tailored in such a way so as to describe a vari-
ety of interactions – e.g. Lennard-Jones (LJ), Hookean dumb-
ells, Finitely Extensible Non-Linear Elastic (FENE) springs
and van der Waals forces – as long as they are derivable from
a given potentialV (rij).

Figure 1 shows polymeric chains moving freely in a DPD
solvent ofN particles. These chains consist of beads (DPD
particles) subject to the standard DPD forces: soft repulsive
(conservative), dissipative and random. In addition to these
forces, they are subject to intra-polymer forces, arising from
different combinations of spring laws between consecutive
beads on a chain (bonded interactions) and possibly excluded
volume repulsions (non-bonded interactions).

Polymer models of biological importance (DNA, proteins)
have been known to be governed by stiff interactions. The
worm-like chain [14–16] can be thought of as a continuous
curve in three-dimensional space. Of importance is the per-
sistence lengthλp, which is a measure of the chain’s stiffness
and is the average length over which the orientation of a curve
segment does not change (“persists”). We will focus on the
bead-spring representation of the model, which approximates
a portion of the worm-like chain with a force law given by the
Marko-Siggia [17] expression

F (c) =
kBT

λp

[ 1
4(1−R)2

− 1
4

+ R
]
,

where

R =
|~ri − ~ri−1|

Lspring
=

r

Lspring
i = 2, 3, 4, ..., M

and Lspring is the maximum allowed length for each chain
(spring) segment. The expression is accurate for large values
of the ratioLspring/λp and exact asr → 0 or r → Lspring.

The Marko-Siggia spring law is an averaged quantity, lo-
cally approximating flexible rods. The derivation of the for-
mula accounts for coarse-graining microscopic elements of a
long chain (such as bead-rod), by use of statistical mechanics.
However, in order to use the Marko-Siggia law in molecules
with more than two beads (dumbbells), some authors [18] ac-
count for the different stiffness of the beaded counterparts by
altering the persistence lengthλp of the sub-chains. Detailed
analysis of such arguments [19] has shown that it is possible
to minimize the errors arising by the introduction of beads and
sub-chains. Throughout this work we will adopt the analy-
sis presented in [19] for stainedλ-phage DNA molecules as-
sumed to haveL = 21.1 µm (fully extended length) and
λp = 0.053 µm (persistence length). The correction we will
apply will linearly approximate the ratio of effective to true
persistence length, for three different regions of the extension:
low force, half-extended spring and high-force regimes. More
specifically, we define the ratio

λ? =
λp [EFFECTIVE]

λp [TRUE]

so that whenλ? = 1 no correction is applied. The tables in
[19] suggest a high, medium and zero correction for the low-
force, half-extension and high-force regions respectively. We
go one step further to introduce a linear fit to the suggested
correction values forN -bead chains:

λ? ≈ (1.0− ẑ)× 0.022× (N − 1) + 1, if N ≤ 20

λ? ≈ (1.0− ẑ)× 0.025× (N − 1) + 1, if N > 20,

where0 ≤ ẑ ≤ 1 is the instantaneous fractional extension
of the whole molecule in the stretching direction. The above
expressions approximate fairly accurately the values given in
[19] and are implemented in all instances ofN > 2 for the
Marko-Siggia spring force in this work.

6. Shear response of wormlike chains

The results presented in this section aim to simulate the re-
sponse ofλ-phage DNA molecules under steady shear, and
compare the DPD results with corresponding results from
Brownian Dynamics (BD) and experimental data. The worm-
like chain (WLC) described in section 5 is used for all DNA
simulations and Underhill & Doyle’s [19] persistence length
(λp) correction always applies to our results forM > 2.
Bouchiat’s [20] correction for the dumbbell case produced sta-
tistically similar results to the original Marko-Siggia (M-S)
model. Since theλp correction studies in [19] were done with
the M–S formula, we do not use Bouchiat’s version.

DNA molecules under steady shear have been extensively
studied in experimental [21] and computational [22,23] works.
In 1999, Smith et al. [21] performed a benchmark study of
λ-DNA molecules in uniform shear flow of shear ratesγ̇ <
4.0 1

s employing a∼ 50 µm gap in solvents with viscosities
µ = 60, 220 cP . These stained bacteriophage molecules have
a contour lengthL ∼ 21 µm and longest relaxation times of
6.3 s (in the60 cP solution) and19 s (in the220 cP solution).
A typical molecule contains roughly 400 persistence lengths
and hence can be considered flexible. Using DPD we investi-
gated the dynamics of a single WLC. The moving boundaries
at y = 0, y = Ly are modeled using Lees-Edwards boundary
conditions [24]: particles leaving the domain aty = 0, Ly are
advanced/retarded by an increment of∆r = Uxt,−Uxt re-
spectively in thex−direction, wheret is the time elapsed from
an appropriate origin of times andUx denotes twice the shear
velocity of each boundary. Moreover, the velocity of the par-
ticle is increased/decreased byUx,−Ux, accounting for both
the imposed boundary condition and the velocity discontinu-
ity between the two walls. This correction is essential, since
the dissipative forces depend on the relative pairwise veloc-
ities. The rest of the boundaries are treated periodically for
all the solvent DPD particles. To avoid unphysical period-
icity artifacts, polymer beads only undergo an elastic colli-
sion in the y-direction:(u, v, w)BEAD → (u,−v, w)BEAD

andry → ry − (∆t)vBEAD. Different chain sizes were ac-
commodated by storing the polymer coordinates without map-
ping them back in the original domain. This allowed the intra-
polymer forces to be calculated properly, while the collective

398 Bull. Pol. Ac.: Tech. 53(4) 2005



Simulation ofλ-phage DNA in microchannels using dissipative particle dynamics

solvent-solvent and polymer-solvent interactions were calcu-
lated with the mapped (periodic) images. The effect of the
simulation box sizeLx × Ly × Lz for the presented results
was investigated and proved to be negligible. For the results
shown, a periodic box of dimensions10×20×5 was used in a
fluid of 4000 DPD particles. The conservative force amplitude
was fixed toaij = 75 kBT/ρ, as in [7].

In order to properly simulateλ-phage DNA molecules un-
der steady shear, we define the dimensionless Weissenberg
number of the flow asWe = γ̇τ , for a shear ratėγ. Here,
τ is the polymer’s longest relaxation time, which is com-
puted by fitting an exponential analytical curve to the aver-
age mean-square extension; this is not necessarily the end-to-
end value. This approach provides a relaxation time nearly
the same (within10%) with that obtained by fitting the late-
time tail of the mean-square radius of gyration

〈
Rg

2
〉
. Figure

3 shows the fitted results. The calculated mean-square exten-
sion of an initially 30%-extended chain was fitted with〈x2〉 =
〈x2〉0 + xi

2e−t/τ to obtain the chain relaxation timeτ . Here,
xi

2 is the initial stretch and〈x2〉0 is the equilibrium value.
Equating the area under both curves fixed the free parameter of
the fit. Figure 4 shows the calculated average molecular (max-
imum projected) extension and the experimental data [21] ver-
susWe, with varying bead numbers and corresponding relax-
ation times. The asymptotic value for20 beads (≈ 0.51) is in
agreement with the corresponding one (0.47) from BD calcu-
lations [22]. Remarkably, the results for the average extension
are not so sensitive to coarse-graining, i.e. the number of beads
used for constantL, in the tested range. The self-consistency
of the parameters was verified from the equilibrium mean-
square end-to-end distance of a 2-bead dumbbell, computed as
〈S2〉 ≈ 8.56, in close agreement with the theoretical value of

8.92 given by [16]〈S2〉 = 2Lspλp

(
1− λp

Lsp
(1− e−Lsp/λp)

)
.

While most curves presented in Fig. 4 employ the widely used
velocity-Verlet scheme for time integration, we have also in-
cluded results for 2 beads using Lowe’s method withΓ = 4.5.
We will revisit the topic but we digress in the next section to
discuss diffusion and the effect of Schmidt number (Sc) in the
DPD simulations.

Fig. 3. Decay of the average mean-square extension
〈
x2

〉
and the

corresponding exponential fit for a wormlike chain of 5 beads in a
Newtonian solvent using Lowe’s method (Γ = 4.5)

7. Dynamics: diffusion and viscosity

The characterization of the simulated fluid in DPD is of major
importance for the understanding of the strengths and weak-
nesses of the method. In this section we examine fundamental
quantities, such as kinematic viscosityν = µ/ρ and diffusion
coefficientDT and their dependence on the specific parameters
of each DPD integrating scheme.

Fig. 4. Mean WLC fractional extension versusWe compared to BD
[22] and DNA experiments [21] data. The results presented use Groot
& Warren’s [7] velocity-Verlet (σ = 3) and Lowe schemes (Γ = 4.5)

The peculiar velocitỹui of particle i is defined as̃ui =
ui− ū(x), whereū(x) is the stream velocity at positionx. For
a system ofN particles of massmi each, we define theαβ-
component of the stress tensor through the Irving-Kirkwood
formula [25]

Sαβ = − 1
LxLyLz

〈
N∑

i=1

miũiαũiβ +
N∑

i=1

N∑

j>i

rijαFijβ

〉
,

(2)
whereFijβ is theβ-component of the net force acting on par-
ticle i due to particlej, andrijα is theα-component of their
relative position vector. It is interesting to note here that equa-
tion [2] is directly applicable in its current form to the velocity-
Verlet method but not Lowe’s scheme, which lacks explicit cal-
culation of dissipative/random forces. To this end, we propose
a modification of Eq. 2 to incorporate the velocity re-equilibra-
tions∆ij in Lowe’s scheme interpreted as an additional force
term:

Sαβ =− 1
LxLyLz

〈
N∑

i=1

miũiαũiβ

+
N∑

i=1

N∑

j>i

rijαFijβ +
N∑

i=1

N∑

j>i

mirijα
∆ijβ

∆t

〉
,

(3)

where∆t is the simulation timestep. The dynamic viscosityµ
of the fluid is determined under shear through the total shear
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stressSxy (x is the direction of the shear andy the wall-normal
direction) through

µ =
Sxy

γ̇
, γ̇ =

Ux

Ly
,

and therefore the kinematic viscosity isν = µ
ρ = µLxLyLz

N .
Here,γ̇ is not to be confused with the dissipative force coeffi-
cientγ.

In this work we will, however, use a different approach
for calculating the viscosity. Backer et al. [26] suggested the
periodic Poiseuille flow method, which consists of simply su-
perimposing a constant forcegx,−gx in thex-direction for all
particlesi with riy

> Ly/2, riy
< Ly/2 respectively. Then,

for a periodic simulation box of lengthLy in they−direction,
number densityρ, velocity profileU(y) in thex-direction and
dynamic viscosityµ the following formula holds:

ρgx(Ly

2 )2

12µ
=

2
Ly

∫ y=
Ly
2

y=0

U(y)dy.

Regarding the Poiseuille profile method, it is interesting to
note that:

1. It eliminates possible artificial side-effects from impo-
sition of other types of boundary conditions, since it results in
a fully periodic flow with all the advantages spatial periodicity
has to offer combined with a Poiseuille profile.

2. Both opposite Poiseuille profiles can be used to obtain
better ensemble averages.

3. Backer et al. [26] have demonstrated that it is more
accurate than other already existing methods.

4. Our studies for both velocity-Verlet and Lowe’s methods
indicate a negligible disagreement ofO(10−4) between the
computed viscosity values via the shear stress and Poiseuille
flow methods, rendering both methods equivalent for all prac-
tical purposes.

Figure 5 shows such a profile with the corresponding av-
eraged one, together with the parabolic least-squares fit. The
area under the right curve can be calculated either by directly
integrating the fitted quadratic or by standard integration rules.
All results presented here use analytic integration of the fitted
quadratic.

The velocity autocorrelation function (VAF) can reveal in-
formation for the underlying nature of a dynamical process.
We construct it as follows: Given an appropriate origin of time,
we denote the value of all three components of the velocity
vector asu|t=0 = {u|t=0, v|t=0, w|t=0}. The velocity compo-
nents at an arbitrary instant0 ≤ t = T are recorded, and the
scalar quantity

Cu|t=T =
1
N

N∑

i=1

u|t=0 · u|t=T

is the VAF; for short, we writeCu(t) = 〈ui(0) · ui(t)〉. The
VAF provides valuable information about the system’s under-
lying frequencies, and when it decays to zero ast →∞, it can
be integrated to calculate the diffusion coefficientDT :

DT =
1
3

∫ t=∞

t=0

Cu(t) dt.

Fig. 5. Sample dual parabolic (up) and reflected and fitted (down)
profiles

This type of definition of a transport coefficient (such as
DT ) through an integral of a correlation function is a Green-
Kubo relation [1]. DT may also be calculated through the
mean-square displacement of eachDPD particle. In practice,
the initial valueu|t=0 is reset during a simulation numerous
times in order to collect meaningful ensemble averages that
can be easily integrated. If the timestep is relatively small
(δt ≈ 0.01) the integral can be accurately calculated using
a standard trapezoidal or midpoint rule.

The fundamental differences between the velocity-Verlet
and Lowe’s scheme manifest themselves in the values of the
diffusion coefficientDT , the viscosityν and eventually the
Schmidt numberSc = ν

DT
characterizing the simulated fluid.

Groot & Warren [7] had shown that the velocity-Verlet method
for a number densityρ = 3 and a dissipation amplitude
γ = 6.75 produced Schmidt number values close to those
predicted by the theory, but extremely small compared to real
fluids (three orders of magnitude smaller). Our calculations
(not shown here) reveal that forσ ∈ [1, 5.5] the Schmidt num-
ber for the velocity-Verlet method does not exceed the value
of 3, see [27]. It is worth mentioning that the Schmidt num-
ber for the velocity-Verlet method is estimated [28,7] to follow
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Sc ∼ 1
2 + (2πγρr4

c )2/70875kBT . This expression makes it
clear that the corresponding achievable values are not in the
same order of magnitude as Lowe’s scheme for comparable
CPU requirements.

7.1. The Schmidt number for Lowe’s scheme(δt =
0.001,0.01). In order to investigate the effect of Lowe’s
thermalization parameterΓ on the fluid, we computeDT , ν
andSc for a wide range of values. Figure 6 shows the com-
puted diffusion coefficient, viscosity and Schmidt numbers
for a 4000-particle fluid, in a10 × 10 × 10 sized box with
a time-stepδt = 0.01 and a conservative force coefficient
aij = 75kBT/ρ. For the viscosity calculations we apply a
constant force of magnitudegx = 1, as previously described,
to obtain a periodic Poiseuille profile. Groot & Warren [7]
correctly argue that the velocity-Verlet scheme produces unre-
alistic values forSc. The calculated value ofSc = 1.00±0.03
for σ = 3.67, ρ = 3 provided in [7] is in reasonable agreement
with the one we compute (Sc ∼ 1.3 for σ = 3.5, ρ = 4) [27].

We investigate the described system for Lowe’s scheme,
and its dependence on the parameterΓ. To this end, we per-
form one series of simulations withδt = 0.001 and one with
δt = 0.01. However,Γ is varied so thatΓ × δt ∈ [1, 1000] ×
0.001 = [0.001, 1] andΓ × δt ∈ [1, 100] × 0.01 = [0.01, 1],
respectively.

Fig. 6. Diffusion coefficientDT (upper left), kinematic viscosityν
(upper right), and Schmidt numberSc (lower) plotted againstΓ for
Lowe’s scheme withδt = 0.01. The Schmidt number isO(103).

HerekBT = 1

For an ideal dissipative gas, Lowe’s thermostat is governed
by two distinct timescales, as shown in [9]; a typical timet1
it takes a particle to travel a distancerc with a given velocity,
and a typical timet2 it takes the velocity correlations to decay.
Assuming the latter to be dependent only onΓ, we have

t1 =

√
mr2

c

kBT
, t2 =

1
Γ

⇒ Λ =
t2
t1

=

√
kBT

mr2
cΓ2

.

Hence, under the assumption that the velocity correlations de-
cay in time isτD ∼ 1/Γ, Lowe’s scaling for the kinematic vis-

cosityν = πρΓr5
c/75m can be used to show that the Schmidt

number

Sc =
VISCOSITY

DIFFUSIVITY
=

ν

DT
=

πρΓr5
c/75m

kBTτD/m
∼ 1

Λ2
∼ Γ2

kBT
.

Fig. 7. Diffusion coefficientDT (upper left), kinematic viscosityν
(upper right), and Schmidt numberSc (lower) plotted againstΓ for
Lowe’s scheme withaij = 0 andδt = 0.01. The Schmidt number is

O(103). HerekBT = 1

Fig. 8. Diffusion coefficientDT (upper left), kinematic viscosityν
(upper right), and Schmidt numberSc (lower) plotted againstΓ for
Lowe’s scheme withδt = 0.001. The Schmidt number isO(105).

HerekBT = 1

Lowe, in his original paper [9] derives the above scaling,
and our results in both figures 6,8 verify this trend to be true
for Γ values satisfying0 ≤ Γ × δt ≤ 0.5. We anticipate the
disagreement for largeΓ values to improve if indeed an ideal
gas (aij = 0) is simulated; in our simulationsaij = 75kBT/ρ.
Indeed, an ideal gas calculation of the above quantities was car-
ried out and the quadratic dependence of the Schmidt number
onΓ whenaij = 0 is more pronounced – the results are shown
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in Fig. 7. Lowe’s method shows great potential in addressing
the issue of realisticSc values, since for the examined range
of parameters the maximumSc reaches values ofO(105), i.e.
five orders of magnitude larger than those of velocity-Verlet.
Figures 6 and 8 show the dependence of the computedDT , ν
andSc onΓ.

Here we note that the diffusion coefficient scales as1/Γ
and it is approximately independent of the size of the timestep
despite the fact that the productΓ × ∆t controls the thermal-
ization process in Lowe’s method. Figure 9 shows that the
relaxation time for a 5-bead WLC scales roughly as∼ Γ for
Lowe’s method. Intuition supports this, since viscosity scales
linearly withΓ as well.

Fig. 9. Longest relaxation timeτ for the wormlike chain (5 beads)
plotted againstΓ for kBT = 0.2

8. Wormlike chain and Lowe’s scheme:
Γ = 4.5, 22 and 45.0

The Schmidt number results presented in Fig. 6 motivate the
re-calculation of the mean fractional extension of a wormlike
chain molecule under shear. More specifically, since the pa-
rameterΓ controls the Schmidt number, and all the calculations
in section 6 were done withΓ = 4.5 (Sc ≈ 35), we repeat one
case (the 5-bead chain) forΓ = 22 and45. These values cor-
respond to the more realisticSc ≈ 690 and2574, respectively,
at kBT = 0.2. Figure 10 shows a much better agreement of
the averaged values with the experimental data, verifying the
consistency of the viscosity and diffusion calculations and the
powerful alternative Lowe’s scheme provides through the ad-
justment ofΓ. Moreover, of interest is the monotonic depen-
dence of the curves onSc.

9. Summary
We have presented an outline of Lowe’s DPD integrating
scheme, a powerful alternative to existing schemes, such as
the widely used velocity-Verlet method. Direct comparison
with experimental data ofλ-DNA molecules in uniform shear
flow was performed and reasonable agreement between DPD,

BD simulations and experiments was achieved. The advan-
tages of the method become apparent when one computes the
diffusion and viscosity of Lowe’s fluid, which give realistic
Schmidt number values, adjustable through one parameterΓ
in the scheme. By determining an appropriate Schmidt num-
ber and the corresponding value forΓ, we revisited the prob-
lem of chains subject to wormlike forcing under shear and we
recovered a much closer agreement with the experimental data.

The results presented in this work were generated using a
serial, custom-developed code, written in the C/C++ program-
ming language. Most simulations were performed on a single-
CPU Intel 3.40GHz workstation with 2GB available physical
memory, and the wall-clock execution time ranging from 30
minutes to 5 days. The pairwise force calculations were done
using a linked cell list [29] to reduce the computational cost
of neighbor searching. The overall computational method is
parallelizable under the same conditions standard Molecular
Dynamics codes are.

Fig. 10. Time-averaged mean fractional extension of a 5-beaded
wormlike chain under shear versusWe for Γ = 4.5 (Sc ≈ 35),
Γ = 22 (Sc ≈ 690) andΓ = 45 (Sc ≈ 2574). HerekBT = 0.2.
An empirical approximate formula would beSc ≈ 1.4×Γ2, in agree-

ment with Lowe’s arguments [9]
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