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Abstract: This paper presents the resolution of the optimal reactive power dispatch (ORPD)
problem and the control of voltages in an electrical energy system by using a hybrid
algorithm based on the particle swarm optimization (PSO) method and interior point method
(IPM). The IPM is based on the logarithmic barrier (LB-IPM) technique while respecting the
non-linear equality and inequality constraints. The particle swarm optimization-logarithmic
barrier-interior point method (PSO-LB-IPM) is used to adjust the control variables, namely
the reactive powers, the generator voltages and the load controllers of the transformers,
in order to ensure convergence towards a better solution with the probability of reaching
the global optimum. The proposed method was first tested and validated on a two-variable
mathematical function using MATLAB as a calculation and execution tool, and then it is
applied to the ORPD problem to minimize the total active losses in an electrical energy
network. To validate the method a test was carried out on the IEEE electrical energy network
of 57 buses.
Key words: electrical energy network, interior point method (IPM), optimal reactive power
dispatch (ORPD), particle swarm optimization (PSO)

1. Introduction

The ORPD is a non-linear optimization problem, proposed by Carpenter in the early sixties
and based on the economic power dispatch [1]. The ORPD is a special case of the optimal power
flow (OPF) in which the active power control means are set while those of the reactive power
are adjustable. The ORPD was usually considered as the minimization of an objective function
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representing the total active power losses in the electrical networks while respecting all nonlinear
equality and inequality constraints.

Different conventional approaches have been developed to solve the ORPD problem, many
of which are based on linear programming methods [2], others using nonlinear programming
methods [3], quadratic programming [4, 5], the penalty method [6], the Newton method [7],
the interior point method [8–10]. These conventional methods, good for deterministic quadratic
objective functions with only one minimum, are generally based on successive linearizations
using the first and the second derivative of the objective function and on its constraints as the
search direction.

Currently, there are a variety of optimization techniques to overcome the ORPD problem,
namely:

– Metaheuristics include the genetic algorithm (GA) [11], differential evolutionary algorithm
(DE) [12], evolutionary programming [12] (PE), evolutionary strategy (SE) [13],

– Teaching-learning-based optimization (TLBO) [14],
– Grey Wolf optimizer (GWO) [15],
– Harmony search (HS) [16] and modified harmony search (MHS) [17],
– Gravitational search algorithm (GSA) [18, 19],
– Seeker optimization algorithm (SOA) [20],
– Moth-flame optimization technique (MFOT) [21],
– Gaussian bare-bones water cycle algorithm (NGBWCA) [22].
These global optimization techniques that do not require the convexity of the objective function

have appeared with a high probability of converging towards the global optimum.
In this paper, we propose an improved optimization algorithm PSO-LB-IPM, which allows

one to control and program batch hybridization, between the LB-IPM and the PSO method, to
solve the problem of the ORPD and the control of voltages in an electrical energy network.

The proposed PSO-LB-IPM variant attempts to provide a better compromise between explo-
ration and exploitation capabilities, as well as robustness and speed of computation for accelerated
convergence towards the optimal solution.

The developed program has been validated on a two-variable test mathematical function, and
implemented on a real problem of electrical network IEEE 57 buses. Satisfactory results were
presented and discussed.

2. Formulation of the ORPD problem

The problem of the optimal reactive power dispatch and the control of the voltages is the
search for the minimum of a certain objective function known as the total active power losses,
subject to a limit number of the nonlinear constraints. In a general way the mathematical model
to study must include an objective function, equality and inequality constraints, defined by:

min f (x, u),

subject to:

g(x, u) = 0,
h(x, u) ≤ 0,

xmin ≤ x ≤ xmax ,

umin ≤ u ≤ umax .

(1)
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where f is the objective function that represents the total active power losses, x represents the
state variables that contain the voltages at the load buses and u stands for the control variables that
contain the generated voltages and the transformer tap ratios, g stands for the equality constraints
that represent the power flow solution, h represents the inequality constraints, uminis the lower
limit on the control variables and umax is the upper limit on the control variables, xmax is the lower
limit on the state variables and xmax is the upper limit on state variables.

3. Overview for particle swarm optimization method (PSO)

Particle swarm optimization is an optimization metaheuristics, invented by Russel Eberhart
and James Kennedy in 1995. This algorithm was originally inspired by the living world. It is
based on a model developed by biologist – Craig Reynolds – in the late 1980s, simulating the
movement of a group of birds.

The method itself involves groups of particles in the form of vectors moving in the research
area. Each particle is characterized by its position and a position change vector (called velocity or
velocity vector). At each iteration, the particle moves. Socio-psychology suggests that individuals
moving are influenced by their past behavior and that of their neighbors (neighbors in the social
network and not necessarily in space).

Therefore we take into account, in the update of the position of each particle, the direction of
its movement, its speed, its best position and the best position of its neighbors. The position of
each agent is represented by its coordinates along the two axes, xy, and also the speed expressed
by vx: speed along the x-axis and vy – speed along the y-axis. The modified position of each
agent is realized by the information of its position and speed. Each agent knows its best value so
far (pbest) and its position along the two axes xy. This information is obtained from the personal
experiences of each agent. Moreover, each agent knows the best overall value of the group (gbest)
among the pbests. Each agent tries to modify its position, using the current velocity and the
distance from pbest and gbest.

The velocity of each agent can be modified by the following equation:

vk+1
i = w.vki + c1rand1

(
pbest − ski

)
+ c2rand2

(
gbest − ski

)
, (2)

where vki is the velocity of agent i at iteration k, w is the weighting function, c1 and c2 are the
weighting factors, rand1 and rand2 represent the random number between 0 and 1, ski is the
current position of agent i at iteration k, pbest is the best position encountered by particle i, and
gbest is the best position of the group.

The weight of the function used in Equation (2) is given by:

w(iter) = wmax −
wmax − wmin

itermax
∗ iter, (3)

where wmax is the initial weight, wmin is the final weight, itermax is the maximum number of
iterations, as well as iter represents number of iterations.

By manipulating Equation (3) we can gradually calculate a velocity near pbest and gbest.
The current position can be modified by the following equation:

sk+1
i = ski + v

k+1
i , (4)
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where ski is the current position and sk+1
i is the modified position, vki is the current speed and

vk+1
i is the modified speed.

Several applications of this method to overcome the problem of the optimal reactive power
dispatch are reported in literature in the references [23, 24].

4. Overview for interior point method (IPM)

In this paper the primal-dual interior point method (PD-IPM) was used to solve the non-linear
problem defined by the minimization of total active power loss in an electric power network,
taking into account all the operational constraint control variables such as generator voltage and
transformer tap ratios.

The inequality constraints of Equation (1) become equality constraints by introducing positive
reduced (slack) variables (xl, xu). Nonlinear problem (1) is written as:

min f (x),

subject to:

g(x) = 0,
xu + x − xmax = 0,
xl − x + xmin = 0,

xl, xu ≥ 0.

(5)

The reduced variables are included in the function of the logarithmic barrier so we obtain a
new non-linear problem (NLP):

f (x) − µ
∑(

ln xui + ln xli
)
,

subject to:

g(x) = 0,
xu + x − xmax = 0,
xl − x + xmin = 0,

xl, xu ≥ 0.

(6)

The barrier parameter “µ” is strictly positive during the convergence process progression and
tends to be close to zero.

Lagrange’s equation of (6) becomes:

L = f (x) − µ
∑(

ln xui + ln xli
) − λtg(x) − αt (xu + x − xmax) − βt (xl − x + xmin), (7)

where: λ, α and β are the vectors of the Lagrange multipliers.
From Karush-Kuhn-Tucker (KKT) conditions of the first order, a set of nonlinear algebraic

equations is formed and solved by the Newton-Raphson algorithm [25]. The process of conver-
gence of the IPM is stopped when the conditions of KKT are sufficiently lower than tolerance ε
well specified:

∥Lx ∥ = ∇ f (x) − ∇gt (x)λ − α − β ≤ ε, (8)
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∥Lλ∥ = ∥g(x)∥ ≤ ε, (9)

∥Lα∥ = ∥xu + x − xmax∥ ≤ ε, (10)Lβ
 = ∥xl − x + xmin∥ ≤ ε, (11)

αt xu + βt xl ≤ ε, (12)

where xl and xu represent the lower and upper slack variables, and x represents primal variables,
while λ, α and β are Lagrange multipliers that represent the dual variables.

The optimal solution is fulfilling the stopping criteria from (8) to (12).
The details and the implementation of this method to the optimal reactive power dispatch in

the electrical energy network are presented in [25, 26].

5. The proposed hybridization for ORPD

In theory it is possible to hybridize all methods including exact method, so if it is possible to
hybrid any method a priori, in practice one must be careful about the choice of methods used to
obtain good cooperation between the constituents of the hybrid method. It is necessary to know
how to characterize the strong points and the weak points of each method of research.

In this paper we are interested in hybridization based on batch modeling. The principle is
a combination of an evolutionary method, such as metaheuristic population and a conventional
method.

The proposed hybrid algorithm illustrated in Fig. 1 begins with the application of particle
swarm optimization (PSO) that generates a solution population, the best solutions generated will
be used as an initial solution for the interior point method (LB-IPM). The result obtained from
the application of these two techniques represents the best solution.

Fig. 1. Flowchart of the hybrid algorithm (PSO-LB-IPM)
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6. Results and discussion

The resolution of the problem of the optimal reactive power dispatch (ORPD) and the control
of the voltages in an electrical energy network was realized by the mathematical modeling
presented previously. The hybrid algorithm PSO-LB-IPM was implemented in MATLAB R2013b
as a computer tool, and simulation runs on an Intel (R) Core (Tm) CPU i3-3110M CPU with
4 GO RAM, The proposed hybridization is tested first on a two-variable mathematical function
to justify robustness, performance and efficiency. Then it is applied to the ORPD problem using
the IEEE57-bus electrical energy network.

6.1. Application on two-variable test function

The developed program has been tested and validated on the following function:

min F (x) = min
(
(x1 − 5)2 + (x2 − 5)2

)
,

subject to: x1 + x2 = 10, (13)

with 0 ≤ x1 ≤ 10,

0 ≤ x2 ≤ 9,

where x1, x2 represent the variables of function “F”, and F (x) is the objective function.
After several tests, the parameters of the hybrid method, best suited for guaranteed the best

results, are shown as follows:

Table 1. Parameters of the hybrid method

Parameter name Symbol Value

Initial weight wmax 0.9

Final weight wmin 0.4

Maximum number of iteration for PSO itermax 20

Weighting factor C1 1.9

Weighting factor C2 1.5

Size of the population (search space) nind 150

Number of variables nvar 8

Initial value of the Lagrange multiplier λ 10

Initial barrier parameter µ 100

Maximum number of iterations for LB-IPM maxiter 100

Convergence tolerance on barrier parameter “µ” for LB-IPM tol 10−6

The application of the hybrid algorithm (PSO-LB-IPM) gives the following results:
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Table 2. Minimum objective function “F”

Iterations F(x) x1 x2

0 1.23·10−5 4.99 4.99

1 1.01·10−1 5.22 4.77

2 7.39·10−2 5.19 4.80

3 1.97·10−2 5.09 4.90

4 8.61·10−4 5.02 4.97

5 1.27·10−5 5.00 4.99

6 3.39·10−7 5.00 4.99

7 1.03·10−8 5.00 4.99

8 5.89·10−11 5.00 5.00

Time (s) 4.32

The minimum of the “F” function was obtained after eight iterations with a run time of 4.32
seconds, thus it is possible to conclude that this hybrid method is fast and more accurate in terms
of solution quality.

Fig. 2. Convergence of the function “F” according to number of iterations

Fig. 3 allows one to note that the choice of initial points (x1, x2) is very important in the
computation process to ensure the fast convergence to the best minimum of the “F” function.

The values of the barrier parameter, Lagrange multiplier and the logarithmic barrier are shown
in the following table (Table 3).

Fig. 4 shows, that the value of the barrier parameter “µ” tends to zero at the end of the
convergence process.
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Fig. 3. Progression of variables “x”
according to number of iterations

Table 3. Barrier parameter, Lagrange multiplier and the logarithmic barrier according to number of iterations

Iterations Barrier parameter µ Lagrange multiplier λ Logarithmic barrier Log10 (µ)

0 1.00·102 −2.47·100 2.00·100

1 2.00·101 −2.24·100 1.30·100

2 4.00·100 −4.84·10−1 6.02·10−1

3 8.00·10−1 −1.11·10−1 −9.69·10−2

4 1.60·10−1 −2.28·10−2 −7.95·10−1

5 3.20·10−2 −4.14·10−3 −1.49·100

6 5.72·10−3 −8.02·10−4 −2.24·100

7 4.33·10−4 −1.43·10−4 −3.36·100

8 9.01·10−6 −1.08·10−5 −5.04·100

Fig. 4. Convergence of the mu (µ)
barrier parameter
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6.2. Application to the IEEE57-bus network

We will present different possible results and make the comparison between the two following
cases:

– Case 1: initial case (power flow),
– Case 2: optimization by the hybrid PSO-LB-IPM.
The permitted operating limits of the voltages, and transformer taps, as well as reactive powers

generated, and the reactive powers of the capacitors are summarized in Table 4.

Table 4. Limits

Bus Min Max

Transformers taps (TLC) (pu) 0.9 1.1

V1, . . . , V57 (pu) 0.9 1.1

Qg
1 (Mvar) −140 200

Qg
2 (Mvar) −17 50

Qg
3 (Mvar) −10 60

Qg
6 (Mvar) −8 25

Qg
8 (Mvar) −140 200

Qg
9 (Mvar) −15 90

Qg
12 (Mvar) −50 155

Qc
18 (Mvar) 0.0 20

Qc
25 (Mvar) 0.0 25

Qc
53 (Mvar) 0.0 10

– Case 1: initial case (power flow).

The electrical quantities at all the nodes of the IEEE57-bus electrical system must be known.
The single-line diagram, illustrated in Fig. 5, is composed of 7 generation buses (1–3, 6, 8, 9 and
12), 50 buses of load, 3 shunt compensators (18, 25, 53), 15 transformers and 78 lines.

The power flow is then executed using the fast-decoupled load flow technique. We obtained
the following results:

PGT = 1279.82 MW, PCHT = 1250.8 MW, Ploss = 29.02 MW,

where PGT is the total generated active power, PCHT is the total active power load and Ploss is
the total active power loss.

These results show, that the voltages at the buses 30–36, 40, 42, 56, 57 exceeded their lower
limits (0.9 pu) allowed for operation, while the rest of the buses presenting 80.71% of the total
buses is found in their specified range (between 0.9 and 1.1 pu), which allows us to say that this
operating point is a good basis for applying the optimization algorithm hybrid.
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Fig. 5. Single-line diagram of IEEE57-bus power system [27]

Table 5. Generation voltages, active and reactive powers generated (case 1)

Bus |VG| (pu) θ (...°) PG (MW) QG (Mvar)

1 1.04 0.00 479.82 128.81

2 1.01 −1.18 0.00 1.47

3 0.98 −5.97 40.00 −1.64

6 0.98 −8.61 0.00 −1.32

8 1.00 −4.44 450.00 61.01

9 0.98 −9.57 0.00 −3.06

12 1.01 −10.49 310.00 124.60
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Fig. 6. Voltages profile before
optimization (case 1)

– Case 2: optimization by the hybrid PSO-LB-IPM.
In this case, we made an application of the hybrid algorithm using 21 control variables (six

generator voltages, fifteen transformer tap ratios) to solve the problem of the optimal reactive
power dispatch and the control of the voltages in the IEEE57-bus network.

Regarding the choice of adjustment parameters of the hybrid algorithm PSO-LB-IPM, which
is a very critical step for the convergence and the performance of the method, several executions
and analyzes were made to make a judicious choice of these parameters for the problem studied.
Then we chose:

Table 6. Parameters of the hybrid method

Parameter name Symbol Value

Initial weight wmax 0.4

Final weight wmin 0.2

Maximum number of iteration for PSO itermax 10

Weighting factor C1 2

Weighting factor C2 2

Size of the population (search space) nind 200

Number of variables nvar 8

Initial value of the Lagrange multiplier λ 10

Initial barrier parameter µ 10

Maximum number of iterations for LB-IPM maxiter 10

Convergence tolerance on barrier parameter “µ” for LB-IPM tol 10−6
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The new values of control variables after optimization by the PSO-LB-IPM are summarized
in the following table:

Table 7. Modules and phase shift of the generated voltages (case 2)

Bus Min (pu) Max (pu) |VG|optimal (pu) θoptimal (...°)

1 0.9 1.1 1.10 0.00

2 0.9 1.1 1.10 −1.46

3 0.9 1.1 1.09 −5.79

6 0.9 1.1 1.09 −7.91

8 0.9 1.1 1.10 −4.37

9 0.9 1.1 1.09 −8.79

12 0.9 1.1 1.08 −9.06

The voltage profile and transformer tap ratios shown in Figs. 7 and 8, respectively, are within
their allowable operating limits, which allows us to say that this hybrid optimization plays a large
role in network security.

Fig. 7. Voltages profile after
optimization by PSO-LB-IPM

(case 2)

The overall voltage profile illustrated in Fig. 7 is high, this may be justified by the voltage
control variables generated which are all close to their upper limits.

Fig. 9 clearly illustrates the rapid convergence of the hybrid method after 10 iterations that
are necessary to reach the global optimal solution (better minimum of the active power loss), it
can be said that the algorithm used is fast, very efficient and robust.

PGT = 1274.02 MW, PCHT = 1250.8 MW, Ploss = 23.22 MW.
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Fig. 8. Transformer tap
ratios (case 2)

Fig. 9. Progression of total active
power loss

The reading of the results obtained in Table 8 shows that the hybrid method used in case 2
always gives the best solution and the execution time is enormously large compared to the
execution times of the power flow in case 1.

The active powers are fixed except balance bus “1”. The reactive powers generated and the
voltages are within their allowable limit for case 2, contrary to case 1.

The reactive powers of the shunt capacitors installed at the buses 18, 25, 53 respected their
permitted operating limit as indicated in Table 9.
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Table 8. Generation voltages, active and reactive power generated (cases 1 and 2)

Cases Case 1 Case 2

Bus |VG|
(pu)

PG
(MW)

QG
(Mvar)

|VG|
(pu)

PG
(MW)

QG
(Mvar)

1 1.04 479.82 128.81 1.10 474.02 −34.29

2 1.01 0.00 1.47 1.10 0.00 50.00

3 0.98 40.00 −1.64 1.09 40.00 56.35

6 0.98 0.00 −1.32 1.09 0.00 09.52

8 1.00 450.00 61.01 1.10 450.00 −2.05

9 0.98 0.00 −3.06 1.09 0.00 90.00

12 1.01 310.00 124.60 1.08 310.00 59.01

Time (s) 8.81 24.51

Table 9. Reactive powers of shunt capacitors

Bus Case 1 (Mvar) Case 2 (Mvar)

18 10.00 10.00

25 5.90 5.90

53 6.30 6.30

The active powers generated and the total active power losses following the execution of
two cases (1 and 2) were compared to the original method of the PSO and LB-IPM, thus the
results found in the literature by other metaheuristic approaches and hybrid are summarized in
the following table:

Table 10. Total active power losses by different approaches

Cases

Active powers Case 1 PSO LB-IPM Case 2
PSO-LB-IPM

NGBWCA
[22]

MICA-IWO
[27]

Total active power
generated PGT (MW) 1279.82 1274.24 1274.18 1274.02 1273.25 1275.06

Total active power
load PCHT (MW) 1250.80 1250.80 1250.80 1250.80 1250.80 1250.80

Active Power Loss
Ploss (MW) 29.02 23.44 23.38 23.22 23.27 24.25

reduction in % 19.22 19.43 19.98 19.81 16.43

We found that the total active power loss 23.22 MW in case 2 (PSO-LB-IPM) is a decrease
by 19.98% compared to the initial case (case 1), and it is a much better result than that found by
the use of the original PSO method and LB-IPM.
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In Table 10, a comparison between the results obtained with the proposed PSO-LB-IPM
algorithm developed in the context of this work as well as with that found in the literature (for
example, we take the optimization metaheuristics by Gaussian bare-bone water cycle algorithm
reported in reference [22], and the hybrid approach (MICA-IWO) between the modified imperialist
competitive algorithm and invasive weed optimization reported in reference [27]), was made
concerning the minimization of the total active power losses.

The results found validate the proposed method and prove its performance from the point of
view of the quality of the solution.

On the basis of the results obtained for the network model, it turns out that the voltage profile
is respected. In fact, the smaller the active losses, the more voltages at the network nodes are
close to their limits and vice versa.

On the other hand, if we are interested only in the objective function, which is the minimization
of the total active power loss, our results show that the value of the loss obtained by the PSO-LB-
IPM is better than that obtained by the initial case. Then the results prove the performance of the
hybrid method in terms of the quality of the solution: minimum power losses, the limits imposed
on the voltages, transformer taps, reactive powers generated and reactive powers of the capacitors
have been respected.

7. Conclusions

In this paper, a robust, efficient and fast method called particle swarm optimization-logarithmic
barrier-interior point method (PSO-LB-IPM) was presented to solve the ORPD problem and the
control of voltages in an electrical energy system while respecting the nonlinear equalities and
inequalities constraints.

The PSO-LB-IPM has been tested and implemented on the electrical energy network of
IEEE 57 buses.

This technique proves the robustness and performance to maintain network security, and the
efficiency of processing large scale nonlinear programming.

The simulation results obtained by the PSO-LB-IPM, have been proved satisfactory, and are
better than that obtained in the initial case (case 1). The reactive powers generated, the reactive
powers of the capacitors, the voltages and the regulators of the transformers (TCUL) are within
their allowed limits of operation, and the total active losses have decreased by 19.98% compared
to the initial case (case 1).
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