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Abstract

The aim of the study is to formally compare the explanatory power of Copula-
GARCH and MGARCH models. The models are estimated for logarithmic daily
rates of return of two exchange rates: EUR/PLN, USD/PLN and stock market
indices: SP500, BUX. The analysis is performed within the Bayesian framework.
The posterior model probabilities point to AR(1)-tSBEKK(1,1) for the exchange
rates and VAR(1)-tCopula-GARCH(1,1) for the stock market indices, as the
superior specifications. If the marginal sampling distributions are different in
terms of tail thickness, the Copula-GARCH models have higher explanatory
power than the MGARCH models.
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1 Introduction
Modelling volatility and dependence structure of financial time series is one of the
most interesting areas of research for both theorists and practitioners of financial
markets. The well-known and often used models in the field are different types
of Multivariate GARCH (MGARCH) models; for a comprehensive review see, e.g.,
Francq and Zakoïan (2010), Tsay (2010). The second important class of multivariate
volatility models are Multivariate Stochastic Volatility Models (MSV, see e.g. Tsay
(2010), Pajor (2010)). The different and useful properties of MGARCH and MSV
models inspired Osiewalski and Pajor (2007) to develop a hybrid MSF-DCC structure.
The model unifies Engle’s DCC covariance structure (Engle, 2002) and the simplest
MSV specification (i.e. the Multiplicative Stochastic Factor models). While the
conditional correlation matrix has the same form as the one in DCC, due to the
presence of latent process the model allows for fatter tails than in the DCC structure.
Osiewalski and Pajor (2009) extended this specification to a hybrid MSF-SBEKK. As
shown in the cited paper, latent AR(1) processes, typically featured by the MSV
models, are crucial in modelling tail behavior. Next, Osiewalski and Osiewalski
(2016) further generalized MSF-SBEKK to a hybrid GMSF-SBEKK specification,
introducing as many latent processes as there are relatively homogeneous groups of
assets being modelled.
Another approach to modeling volatility is based on copulas as functions which
capture the dependence structure. The n-dimensional copula C is a n-dimensional
distribution function on [0,1]n with standard uniform marginal distributions. Due
to Sklar’s theorem (1959) the multivariate distribution function can be represented
as a copula and the cumulative probability functions of marginal distributions. This
representation is unique when the random vector has a continuous distribution (Sklar,
1959). The class of bivariate copulas is large. It contains elliptical distributions, as
well as copulas in which the distributions allow for asymmetries governed by different
values of tail dependencies coefficients (Joe, 1993). In addition, for some copulas,
tail dependencies coefficients are simple functions of their parameters (Nelsen, 1999).
Therefore, by means of the copula it is possible to take into account the asymmetries in
the tails of the distribution and, moreover, to model them dynamically. Patton (2006)
and Jondeau and Rocklinger (2006) combined simple univariate GARCH structures
with conditional copulas, thereby formulating multivariate Copula-GARCH models,
which are currently used in the analysis of financial time series.
To the best of our knowledge, a formal, Bayesian comparison of all the four types
of multivariate volatility models (i.e. MGARCH, MSV, hybrid GMSF-SBEKK and
Copula-GARCH) has not been made so far, although some research in the area (yet,
of a lesser extent) was indeed presented in the literature. The Bayesian comparison
of bivariate MGARCH models was presented by Osiewalski and Pipień (2004). The
MGARCH, MSV and hybrid MSF-SBEKK structures were formally compared by
Osiewalski and Pajor (2009). Moreover, Osiewalski and Osiewalski (2016) have
attempted to compare the hybrid MSF-SBEKK and GMSF-SBEKK structures. The
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confrontation of the MSV and hybrid GMSF-SBEKK models using the Bayesian
inference is difficult because of latent processes, which usually generate numerical
problems with calculating the marginal data density (MDD) value. Hence, we limit
our present work to a Bayesian comparison of the MGARCH and Copula-GARCH
models, still, however, contributing to the research on assessing multivariate volatility
models in terms of their empirical adequateness.
It is worth noting that the formal Bayesian model comparison (used here) amounts
to computing MDD values, which are overall characteristics of Bayesian models
adequacy. So our approach does not indicate models which are the best in all aspects;
the models which are overall leaders of our ranking may not be very accurate in some
particular aspects – such as tail behavior and risk measurement.
Over the last decade quite numerous works about modelling financial time series
with Copula-GARCH and MGARCH was published (e.g. Patton, 2006, Jondeau and
Rocklinger, 2006, Dias and Embrechts, 2010). In some of them the authors attempted
to empirically compare various specifications of the models at hand, usually by means
of information criteria. For instance, Dias and Embrechts (2010) use Copula-GARCH
and BEKK structures to model dependencies between exchange rates and analyse this
model within the sampling-theory (i.e. non-Bayesian) approach (resorting to analysis
of realized correlations, R2). Weiss (2013) compares the performance of Copula-
GARCH and Dynamic Conditional Correlation GARCH (DCC-GARCH) models in
the context of Value at Risk (VaR) and Expected Shortfall (ES) predictions, whereas
Grziska (2013) applies Copula-GARCH and MGARCH structures to model emerging
markets. In these two studies a non-Bayesian framework was also utilised. To the
best of author’s knowledge, no formal Bayesian comparison of Copula-GARCH and
MGARCH specifications has been presented in the relevant literature so far. Our
paper aims to fill this gap by this very first attempt to use Bayesian statistical tools
of model comparison for the structures in question.
In this work we first compare nineteen bivariate models: thirteen Copula-AR(1)-
GARCH(1,1) models and two kinds of VAR(1)-tSBEKK(1,1), VAR(1)-tCCC(1,1)
and VAR(1)-tDCC(1,1) specifications. We apply these structures to model the
dynamics of the logarithmic daily growth rates of two exchange rates: EUR/PLN
and USD/PLN, over the period from August 1, 2005 through September 21, 2015. In
the second part of our empirical study we shift our focus on modelling two stock
market indices (SP500 and BUX) covering the same period as for the exchange
rates. Taking into account the results obtained in the first part, we omit the
Copula-GARCH models with the static copulas, following our conjecture that these
specifications would have almost zero posterior probability. We compare four bivariate
models: VAR(1)-tCopula-GARCH(1,1) with dynamic t-Student copula, VAR(1)-
tSBEKK(1,1), VAR(1)-tCCC(1,1) and VAR(1)-tDCC(1,1). We formulate formal
Bayesian statistical models for the structures at hand, and then design a relevant
Monte Carlo algorithm with Importance Sampling (MCIS) to calculate marginal data
density value, which is crucial to perform Bayesian model comparison by means of
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posterior model probabilities. The calculations are performed by the author’s own
procedures developed in MATLAB.
Previously, a common choice to compute MDD was the harmonic mean estimator
(HME, Newton and Raftery, 1994), corrected by Lenk (2009) and further developed
by Pajor and Osiewalski (2013-14). Nevertheless, this method, as shown by Pajor
(2017), is still biased, resulting in overestimated MDD values. To overcome the
problems inherent to HME, Pajor (2017) proposed the corrected arithmetic mean
estimator (CAME) which proves to have far better numerical properties than the
corrected HME (Lenk 2009), although requiring simulation from the prior density
and calculation of the probability over some set in the parameter space, which is not
needed when using MCIS. In many different applications, also the Chib and Jeliazkov
(2001) estimator is used. However, as shown by Osiewalski and Pipień (2004) in a
simple simulation experiment with very long MCMC chains, while the HME estimator
stabilised close to the true value, Chib and Jeliazkov’s estimator led to either over- or
underestimation. Relying on MCIS in this study makes our comparison very reliable
from the numerical perspective, which is due to a small number of parameters (18 at
most) and lack of latent processes.
We limit the scope of our research only to this two-dimensional (bivariate) case not
only because of numerical tractability, but also due to the fact that the class of
bivariate copulas features a greater variety of functions allowing for asymmetry in
tail dependencies. In more than two-dimensional cases of the Copula-GARCH model,
the possibility of flexible modelling of the various asymmetric dependency structures
between random variables is limited by the copula parameters: there are usually one
or two of them. In this situation the pair-copula construction is proposed (Czado,
2010).
The paper has the following structure. In Sections 2 and 3, the Bayesian Copula-
GARCH and MGARCH models and, respectively, the basics of Bayesian model
comparison are briefly discussed. In Section 4 we present the data and the empirical
results of model estimation. The article ends with conclusions.

2 Bivariate Bayesian Copula-GARCH and
MGARCH models

Let us consider a bivariate observation on return rates yt = (y1,t, y2,t)′, t = 1, . . . , T ,
which follows the VAR(1) process:[

y1,t
y2,t

]
=
[
ϕ1,0
ϕ2,0

]
+
[
ϕ11 ϕ12
ϕ21 ϕ22

] [
y1,t−1
y2,t−1

]
+
[
z1,t
z2,t

]
, t = 1, . . . , T. (1)

The parameters of (1) are collected in ϕ0 = [ϕ1,0, ϕ2,0]′ and ϕ =
[
ϕ11 ϕ12
ϕ21 ϕ22

]
. We

assume that all eigenvalues of ϕ lie inside the unit circle. The vector zt = [z1,t, z2,t]′
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represents a bivariate white noise defined as some conditionally heteroskedastic
process.
Let θ∈Θ⊂Rm be a vector of parameters consisting of the elements of ϕ0 and ϕ as
well as the parameters of the volatility process. The Bayesian statistical model is
uniquely determined by the joint probability (density) function of observations and
parameters:

p (y, θ) = p (y|θ) p (θ) ,

where y = [y1, . . . , yT ] is the matrix of observations, p (y|θ) is the sampling density
and p (θ) represents the prior density. The posterior density of θ is

p (θ|y) = p(y, θ)
p(y) = p(y|θ)p (θ)

p(y) ,

where p (y) is the marginal data density (MDD), defined as

p (y) =
∫

Θ
p (y|θ) p (θ) dθ.

In this work, whenever it is possible, the parameters are assumed a priori mutually
independent. The following subsections present selected and alternative bivariate
specifications of multivariate time-varying volatility processes and dependence
structures.

2.1 Copula-GARCH(1,1) models
Let ψt−1 be the set of information up to the moment t − 1. Stochastic processes
{zi,t} , i = 1, 2 follow the GARCH(1,1) structure:

zi,t = εi,t
√
hi,t, (2)

hi,t = αi,0 + αi,1z
2
i,t−1 + βi,1hi,t−1,

where αi,0 > 0, αi,1 ≥ 0, βi,1 ≥ 0, αi,1 + βi,1 < 1. For independent and identically
distributed random variables εi,t we assume either the symmetric or skewed t-Student
distribution with zero mean and unit precision. Note that we do not standardise the
noise, so that E

(
ε2
i,t

)
= νi/(νi − 2) if νi > 2.

The Copula-GARCH model, proposed by Patton (2006) and Jondeau and Rocklinger
(2006), uses a conditional copula and Sklar’s theorem (Sklar, 1959) to describe
dependence between the components of εt = (ε1,t, ε2,t)′. The conditional density
function of εt has the following representation:

pεt (ε1,t, ε2,t|ψt−1) = c (tν1 (ε1,t|ψt−1) , tν2 (ε2,t|ψt−1) |ψt−1)×
ftν1

(ε1,t|ψt−1) ftν2
(ε2,t|ψt−1) , (3)
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where c(·|ψt−1) is the density of (either static or dynamic) conditional copula, whereas
tν1 (·|ψt−1) and ftν1

(·|ψt−1) are the univariate (symmetric or skewed) t-Student
cumulative distribution and density function, respectively, with v1 degree of freedom.
This formula combines Sklar’s theorem and Patton’s work (2006), in which the
theorem was transferred also into the context of conditional distributions.
In this research we use eleven time-invariant copulas: Frank, Gumbel, Clayton,
Clayton-Gumbel, Rotated Gumbel, Rotated Clayton, Joe-Clayton, symmetrized Joe-
Clayton, Normal, t-Student and copula of independent random variables. For exact
formulae of the density functions of a variety of time-invariant copulas we refer
the reader to Nelsen (1999) or Doman and Doman (2014). The above selection
of copula functions includes cases allowing for both symmetric and asymmetric tail
dependencies.
The tail dependencies coefficients of the copulas follow rather simple formulae
dependent on the copula parameters. Let us consider some random variables having
continuous distributions, and some copula C. Then the tail dependencies coefficients
(λU , λL) and the Kendall τ coefficient are calculated as follows:

λU = lim
α→1−

2α− 1 + C (1− α, 1− α)
α

, λL = lim
α→0+

C (α, α)
α

,

τ (X1, X2) = 4
∫

[0,1]2
C (u1, u2) dC (u1, u2)− 1.

Exact formulae of the above coefficients for a selection of copulas can be found in
Doman and Doman (2014).
Apart from the static copulas (constituting a majority of the selection listed above),
in this research we also consider two kinds of time-varying copula: the normal and
t-Student copulas (in the latter case, a time-invariant number of degrees of freedom
is assumed). Let ρ be the parameter of either the normal or t-Student copula. To
introduce time-variation into ρ, we follow the approach proposed by Tse and Tsui
(2002):

ρt = (1− α− β) ρ+ αξt−1 + βρt−1 (4)

where α ≥ 0, β ≥ 0, α+ β < 1 and ξt−1 =
∫ 1
i=0 ε1,t−iε2,t−i/

√∫ 1
i=0 ε

2
1,t−iε

2
2,t−i.

Finally, a general formulation of the Copula-AR(1)-GARCH(1,1) models can be
obtained by combining (1) (with restriction ϕ12 = ϕ21 = 0) and (2), (3).
Let µ1,t = ϕ1,0 +ϕ11y1,t−1 and µ2,t = ϕ2,0 +ϕ22y2,t−1 be the conditional expectations
of y1,t and y2,t, respectively. Then the joint conditional density of yt can be
represented as

pyt (y1,t, y2,t|ψt−1) = pεt

(
y1,t − µ1,t√

h1,t
,
y2,t − µ2,t√

h2,t
|ψt−1

)
/
√
h1,th2,t, (5)
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In order to formulate the Bayesian Copula-AR(1)-GARCH(1,1) model, let
θ = (θG, θc)′ ∈ Θ ⊂ Rm, where

θG = (ϕ1,0, ϕ11, α1,0, α1,1, β1,1, γ1, ν1, ϕ2,0, ϕ22, α2,0, α2,1, β2,1, γ2, ν2)

is the vector of parameters of the AR-GARCH structure (with γi denoting the
asymmetry parameter in the skewed t-Student distribution), while θc – the vector of
the copula parameters. Then the joint sampling probability density function admits
the form

p (y|θG, θc) =
T∏
t=1

pyt (y1,t, y2,t|ψt−1). (6)

Apart from the likelihood function, given by (6), one also needs to specify the prior
distribution, p (θ). As regards the choice of the prior for θG, we follow the works by
Osiewalski and Pipień (1998):

p(θG) = p (ϕ1,0, ϕ2,0) p (ϕ11, ϕ22)
2∏
i=1

p (αi,0) p(αi,1, βi,1)p(γi)p(νi),

p (ϕ1,0, ϕ2,0) = fN (ϕ1,0, ϕ2,0|0, I2) , p (ϕ11, ϕ22) = 1
4I(−1,1)2 (ϕ11, ϕ22 ) ,

p (αi,0) = fExp (αi,0|1) , p(αi,1, βi,1) = 1
2IB (αi,1, βi,1) ,

B = [0, 1]2 ∩
{

(x, y)′ : x+ y < 1
}
,

p (γi) = fLN (γi|0, 1) , a lognormal density with parametersµ = 0, σ = 1;

p (νi) = 1
σν

exp
(
−x− µν

σν

)
I(µν ,∞) (νi) , µ = 2, σ = 8, E (νi) = 10, i = 1, 2.

In the cases of static copulas, our prior distribution for θc coincides with the one
specified by Mokrzycka and Pajor (2016). Otherwise, that is in models with dynamic
copulas, for θc we use the same prior as the one proposed for the tDCC model by
Osiewalski and Pipień (2005).
In our paper, the Copula-GARCH(1,1) models discussed above are formally compared
with MGARCH structures.

2.2 tSBEKK(1,1), tCCC(1,1) and tDCC(1,1) models
As regards modelling volatility by means of Multivariate GARCH models, one of
possible specifications of the conditional distribution of zt is zero-centered bivariate
t-Student distribution:

zt|ψt−1 ∼ St (0, Ht, ν) , Ht =
[
h11,t h12,t
h12,t h22,t

]
,
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Table 1: List of prior distributions for the copulas’ parameters

Copula Parameter Prior distribution

Frank θ ∈ R\0 θ ∼ N(0, 100)
Clayton θ > 0 θ ∼ Exp(1)
Gumbel θ ≥ 1 θ ∼ Exp(1, 1)I(1,+∞)

Clayton-Gumbel (BB1) θ > 0, δ ≥ 1 θ ∼ Exp(1), δ ∼ Exp(1, 1)I(1,+∞)

Joe-Clayton(BB7) κ ≥ 1,γ > 0 κ ∼ Exp(1, 1)I(1,+∞), γ ∼ Exp(1)
Symmetrized Joe-Clayton κ ≥ 1,γ > 0 κ ∼ Exp(1, 1)I(1,+∞),γ ∼ Exp(1)
Rotated Clayton θ > 0 θ ∼ Exp(1)
Rotated Gumbel θ ≥ 1 θ ∼ Exp(1, 1)I(1,+∞)

Normal ρ ∈ (−1, 1) ρ ∼ U(−1, 1)
t-Student ρ ∈ (−1, 1),v > 2 ρ ∼ U(−1, 1),v ∼ Exp(2, 8)I(2,+∞)

Normal ρ ∈ (−1, 1), α > 0, ρ ∼ U(−1, 1), α ∼ U(0, 1),
(time-varying) β > 0, α+ β ≤ 1 β ∼ U(0, 1)
t-Student ρ ∈ (−1, 1), α > 0, β > 0, ρ ∼ U(−1, 1), v ∼ Exp(2, 8)I(2,+∞),
(time-varying) α+ β ≤ 1, ν > 2 α ∼ U(0, 1),, β ∼ U(0, 1)

Note: N(0, 100) denotes normal distribution with zero mean and standard deviation of 10, Exp(1) –
exponential distribution with parameter 1, Exp(a, b)I(a,+∞)– truncated exponential distribution with
mean a+ b and variance b2; U(A) – uniform distribution over A.

with Ht denoting the inverse precision matrix, while ν > 2 is the degrees of freedom.
Osiewalski et al. (2006) proposed to use some simple formula for time-varying Ht as
a special case of the BEKK structure (Baba, Engle, Kraft and Kroner, 1989). This
specification is termed “the scalar BEKK”, and its formula in the two-dimensional
case is as follows:

Ht = A+ b2zt−1z
′
t−1 + c2Ht−1, (7)

where A is a positive semi-definite and symmetric matrix, while b > 0 and 0 < c < 1
are some independent scalar parameters. This model is further referred to as
tSBEKK(1,1). Following by Osiewalski et al. (2006), the priors for the elements
of A are specified as: a11 ∼ Exp (1), a22 ∼ Exp (1), a12 ∼ N (0, 1), whereas the
priors of b, c and ν: b∼N(0.5, 1), c ∼ N(0.5, 1), ν ∼ Exp (2, 8) I(2,+∞), are truncated
according to the aforementioned inequality restrictions. Exp(a, b)I(a,+∞) denotes the
truncated exponential distribution with mean (a+ b) and variance b2.
In our paper, we also consider the constant conditional correlation (CCC) model of
Bollerslev (1990), in which each of the conditional variances is described by a separate
GARCH(1,1) process, while the conditional correlation coefficient is constant in time.
The elements of Ht have the following formulae:

h11,t = a10 + a11z
2
1,t−1 + b11h11,t−1,
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h22,t = a20 + a22z
2
2,t−1 + b22h22,t−1,

h12,t = ρ12
√
h11,th22,t,

where ρ12 is the conditional correlation coefficient.
For the model-specific parameters we assume the same prior as in Osiewalski et al.
(2006), i.e.

a10 ∼ Exp (1) , a20 ∼ Exp (1) , (a11, a22, b11, b22) ∼ U
(

[0, 1]4
)
, ρ12 ∼ U ([−1, 1]) ,

with aii + bii < 1 (i = 1, 2).
Another possible specification of Ht is the one proposed by Engle (2002). Similarly
to the CCC structure, the conditional variances in Engle’s model follow separate
GARCH(1,1) processes, yet the conditional correlation coefficient is allowed to be
time-varying and specified as:

ρ12,t = q12,t√
q11,tq22,t

,

where qij,t are elements of a symmetric positive-definite matrix Qt:

Qt = (1− α− β)S + αξt−1ξ
′
t−1 + βQt−1; α ≥ 0, β ≥ 0, α+ β < 1,

with S = [sij ]i,j=1, 2 (s12 = s21 = ρ) denoting the unconditional correlation matrix
of standardized errors defined as

ξi,t = zi,t

√
ν − 2
νhii,t

, i = 1, 2

and collected in vector ξt = (ξ1,t, ξ2,t)′. The above structure is termed as the dynamic
conditional correlation (DCC) model.
For parameters of this model we specify the same prior as in Osiewalski and Pipień
(2005):

s11 = s22 ∼ U ([−1, 1]) , (α, β) ∼ U
(

[0, 1]2
)

with α+ β < 1.

The logic behind the above prior distribution is to limit the prior information about
those parameters.
As regards our specification of the models’ conditional means, each volatility model
(BEKK, CCC, DCC) is considered in two variants, being equipped with either a full
VAR(1) structure given by (1) or separate AR(1) processes resulting from (1) under
ϕ12 = ϕ21 = 0. For elements of ϕ0 and ϕ, multivariate standardized Normal priors
are assumed: N(0, I2) and N(0, I4), respectively.
More detailed discussions about the BEKK, CCC and DCC structures can be found in
Baba et al. (1989), Bollerslev (1990), Engle (2002), and Osiewalski and Pipień(2005)
or Osiewalski et al. (2006).
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3 Bayesian model comparison
Let us consider m competing Bayesian models (for the same data collected in y) with
parameters θ(i):

Mi : pi
(
y, θ(i)

)
= pi

(
y|θ(i)

)
pi
(
θ(i)
)
, i = 1, . . . ,m.

We assume that the models are complementary and non-nested.
Comparison of competing Bayesian models is based on their posterior probabilities,
calculated as follows:

p (Mi|y) = p(Mi)p(y|Mi)∑m
j=1 p(Mj)p(y|Mj)

, i = 1, . . . ,m, (8)

where p(Mi) is the prior probability of model Mi. In this research we assume equal
prior probabilities of each model, p (Mi) = 1

m , i = 1, . . . ,m. The model with the
highest posterior probability is considered the best model for explaining the data.
More about Bayesian model comparison can be found in Osiewalski and Steel (1993).
Equation (8) hinges upon the marginal data density in each model:

p (y|Mi) =
∫
θ(i)

pi
(
y|θ(i)

)
pi
(
θ(i)
)
dθ(i).

Due to a rather complicated form of the joint data and parameters’ distribution,
pi
(
y, θ(i)

)
, calculation of MDD usually requires numerical techniques of integration.

To that end, in our paper we resort to the Monte Carlo method with Importance
Sampling (MCIS). The details of this approach can be found in Geweke (1989).
Generally, let us consider calculation of the expected value of some function of the
parameters, g (θ). The MCIS method is based upon the following identity:

I = E (g (θ) |y) =
∫

Θ
g(θ)p(θ|y)dθ =

∫
Θ g(θ)f(θ)dθ∫

Θ f(θ)dθ
=
∫

Θ g(θ) f(θ)
s(θ) s(θ)dθ∫

Θ
f(θ)
s(θ) s(θ)dθ

where f (θ) = p (y|θ) p (θ) and s (θ) is the density of some auxiliary distribution from
which one can generate draws in a straightforward manner. Usually, s (θ) is named
the importance function. The MCIS estimator of I has the following form:

În = 1
n

n∑
i=1

g
(
θ(i)) f (θ(i))
s
(
θ(i)) /

1
n

n∑
i=1

f
(
θ(i))

s
(
θ(i)) =

∑n
i=1 g

(
θ(i))w (θ(i))∑n

i=1 w
(
θ(i)) ,

where w (θ) = f(θ)/s(θ) is the weight function, and θ(i) denotes the i-th draw from
s(θ) (i = 1, 2, . . . , n). Under some additional assumptions this Monte Carlo estimator
is consistent and asymptotically normal (Geweke, 1989).
The use of MCIS significantly simplifies the calculation of MDD, since its estimator
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assumes a simple form of the arithmetic mean of the weights: 1
n

∑n
i=1 w(θ(i)).

In this work, for the importance function we take the one of the multivariate t-Student
distribution with 3 degrees of freedom, which remains in accordance with Evans
and Swartz (1995) or Osiewalski and Pipień (1998). The other parameters of this
distribution (i.e. the mean vector and covariance matrix) were estimated iteratively,
based on at least 100,000 initial passes of the algorithm, with monitoring the numerical
standard error (NSE), the relative numerical efficiency (RNE) and the variation
coefficient of the weight function (γn):

N̂SE =

√√√√√∑n
i=1

(
g
(
θ(i)
)
− În

)2
w2
(
θ(i)
)

(∑n
i=1 w

(
θ(i)
))2 ,

R̂NE = 1

nN̂SE
2

[∑n
i=1
(
g
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(
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MCIS proves effective when N̂SE converges to zero with an increase of n, while
R̂NE is close to one (then the draws are very close to the sample from the posterior
distribution). The sequence of coefficients γn should stabilise with increasing n. Stable
γn’s smaller than one indicate very good quality of the importance function (Bauwens
et al., 1999).

4 Empirical study
In the first part of our empirical study we use the series of logarithmic daily
returns on two exchange rates: EUR/PLN and USD/PLN, over the period
August 1, 2005 till September 21, 2015. Nineteen different Bayesian models are
under consideration: thirteen specifications of the Copula-GARCH models and six
MGARCH structures. In the set of the Copula-GARCH structures we include the
AR(1)-GARCH(1,1)-Copula models with symmetric t-Student conditional marginal
distributions combined with the following copulas: Frank, Gumbel, Clayton, Joe-
Clayton, Clayton-Gumbel, Rotated Gumbel, Rotated Clayton, Symmetrized Joe-
Clayton, Normal (constant and time-varying), t-Student (constant and time-varying)
and copula of independent random variables. Note that for the marginal distributions
we choose the t-Student (symmetric and skewed) rather than normal
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Figure 1: Daily logarithmic growth rates from August 1, 2005 to September 21, 2015
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distribution, for the latter usually proves insufficient in terms of modelling the tails
of the empirical data distribution. In the second part of our empirical study we
analyse the series of logarithmic daily returns of two stock market indices: SP500 and
BUX, over the same period as for exchange rates. This data set was modelled using
only the VAR(1)-tCopula-GARCH(1,1) specifications with the dynamic t-Student
copula. We omit the separate AR(1) structures because in the VAR(1) case the
parameter ϕ12 is estimated as relatively far from zero. Moreover, as we mention in
the introduction, we now omit the Copula-GARCH models with static copula.
The analysed MGARCH structures include: AR(1)-tSBEKK(1,1), AR(1)-tCCC(1,1),
AR(1)-tDCC(1,1), VAR(1)-tSBEKK(1,1), VAR(1)-tCCC(1,1) and VAR(1)-
tDCC(1,1). Selected estimation results for the models and their formal comparison
(in terms of posterior probabilities) are presented in the following subsections.

Table 2: Posterior means and standard deviations of the tCopula-AR(1)-GARCH(1,1)
models for exchange rates, along with numerical standard error (NSE) and relative
numerical efficiency (RNE) of the means

θ

Conditional marginal symmetric Conditional marginal skewed
t-Student distributions t-Student distributions

E(θ|y) D(θ|y) NSE RNE E(θ|y) D(θ|y) NSE RNE

θG

ϕ1,0 -0.017 0.008 2.2E-05 0.141 -0.041 0.013 3.3E-05 0.164
ϕ11 -0.010 0.016 3.9E-05 0.167 -0.013 0.016 4.2E-05 0.144
α1,0 0.004 0.001 2.6E-06 0.134 0.004 0.001 2.9E-06 0.116
α1,1 0.044 0.007 1.7E-05 0.158 0.044 0.007 2.0E-05 0.114
β1,1 0.920 0.011 3.1E-05 0.136 0.919 0.012 3.4E-05 0.114
ν1 7.799 1.036 4.3E-03 0.059 7.839 1.048 3.8E-03 0.077
ϕ2,0 -0.024 0.014 3.7E-05 0.147 -0.074 0.023 5.8E-05 0.159
ϕ22 -0.002 0.016 3.7E-05 0.181 -0.005 0.016 4.3E-05 0.135
α2,0 0.007 0.002 4.5E-06 0.139 0.007 0.002 4.6E-06 0.132
α2,1 0.035 0.005 1.2E-05 0.153 0.034 0.005 1.2E-05 0.143
β2,1 0.942 0.007 2.0E-05 0.139 0.942 0.007 2.1E-05 0.128
ν2 8.147 1.153 4.0E-03 0.081 8.257 1.205 6.7E-03 0.032
γ1 – – – – 1.048 0.020 5.0E-05 0.162
γ2 – – – – 1.057 0.021 5.2E-05 0.158

θc
θc,1 0.746 0.010 2.5E-05 0.173 0.746 0.010 2.7E-05 0.147
θc,2 5.017 0.680 1.9E-03 0.133 5.056 0.685 2.1E-03 0.104

4.1 Data presentation and estimation results
In Figure 1 we present the modelled growth (or return) rate data on two exchange
rates: EUR/PLN and USD/PLN, and two stock market indices: SP500 and BUX,
along with basic descriptive statistics.
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Table 3: Posterior means and standard deviations of the parameters of the
VAR(1)-tCopula-GARCH(1,1) model with dynamic copula for the stock market
indices, along with numerical standard error (NSE) and relative numerical efficiency
(RNE) of the means

θ

Conditional marginal symmetric
t-Student distributions

E(θ|y) D(θ|y) NSE RNE

θV

ϕ1,0 0,083 0,014 9,6E-05 0,0217
ϕ2,0 0,031 0,022 1,7E-04 0,0181
ϕ11 -0,048 0,020 1,6E-04 0,0155
ϕ12 -0,006 0,012 7,6E-05 0,0237
ϕ21 0,246 0,028 2,5E-04 0,0125
ϕ22 -0,033 0,021 1,3E-04 0,0239

θG

α1,0 0,012 0,003 2,4E-05 0,0170
α1,1 0,070 0,010 1,0E-04 0,0097
β1,1 0,879 0,015 1,3E-04 0,0141
ν1 5,438 0,630 4,5E-03 0,0193
α2,0 0,038 0,011 8,1E-05 0,0178
α2,1 0,071 0,011 7,8E-05 0,0195
β2,1 0,885 0,017 1,2E-04 0,0193
ν2 8,155 1,212 9,6E-03 0,0160

θc

θc,1 16,062 5,048 5,1E-02 0,0097
θc,2 0,454 0,093 2,0E-03 0,0021
θc,3 0,018 0,007 6,7E-05 0,0102
θc,4 0,964 0,020 3,0E-04 0,0044

The time series in Figure 1 exhibit volatility clustering, which is typical to financial
time series. The values of kurtosis: 8.18, 6.57, 14.15 and 9.60 indicate the leptokurtosis
of empirical distributions (high concentration of the distribution around the modal
value, accompanied by fat tails). For the conditional sampling distribution the t-
Student density is assumed because as we can conclude with the basic descriptive
statistics and empirical research (see, e.g., Osiewalski and Pipień 2004), the normal
distribution would not be adequate.
The results presented below was obtained via the MCIS method discussed in the
previous section. The estimation routine was monitored in terms of numeric errors,
including the numerical standard error (NSE), the relative numerical efficiency (RNE)
and the variation coefficient of the weights. The overall quality of the importance
function is quite good. The variation coefficient of the weight function is stabilizing,
but it is not less than one.
Table 2 displays the estimation results of the tCopula-AR(1)-GARCH(1,1) models for
the logarithmic daily returns of exchange rates.
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Table 4: Posterior means (and standard deviations) of the Kendall τ and tail
dependencies coefficients in models for the exchange rates.

Copula
Conditional marginal symmetric Conditional marginal skewed

t-Student distributions t-Student distributions
Kendall τ λU λL Kendall τ λU λL

Frank 0.5577
(0.0086)

0
(0)

0
(0)

0.5573
(0.0086)

0
(0)

0
(0)

Clayton 0.4573
(0.0093)

0
(0)

0.6626
(0.0103)

0.4593
(0.0107)

0
(0)

0.6648
(0.0177)

Rotated Clayton 0.4404
(0.0094)

0.6437
(0.0108)

0
(0)

0.4735
(0.0105)

0.68
(0.011)

0
(0)

Gumbel 0.5189
(0.0098)

0.6042
(0.0094)

0
(0)

0.5357
(0.0097)

0.6203
(0.0093)

0
(0)

Rotated Gumbel 0.5295
(0.0095)

0
(0)

6144
(0.0091)

0.5327
(0.0098)

0
(0)

0.6176
(0.0094)

Clayton-Gumbel, (BB1) 0.5855
(0.0137)

0.5117
(0.0152)

0.4247
(0.0327)

0.5827
(0.0137)

0.5333
(0.0158)

0.3595
(0.0428)

Joe-Clayton, (BB7) 0.5165
(0.0097)

0.582
(0.0149)

0.5554
(0.019)

0.5163
(0.0098)

0.6042
(0.0155)

0.5211
(0.023)

Symmetrized – 0.5711
(0.0163)

0.569
(0.0171)

– 0.5946
(0.017)

0.5393
(0.0206)

Normal 0.5334
(0.0085)

0
(0)

0
(0)

0.5322
(0.0086)

0
(0)

0
(0)

t-Student 0.5365
(0.0099)

0.4761
(0.0199)

0.4761
(0.0199)

0.5359
(0.0099)

0.4744
(0.0202)

0.4744
(0.0202)

Note: λU -the upper tail dependence, λL-the lower tail dependence.

It is worth noting that the degrees of freedom for the univariate sampling distributions
(ν1, ν2) and for the conditional copula (θc,2) in this model are different, hence the
copula’s parameter θc,1 cannot be interpreted as a linear correlation coefficient. With
respect to the results for parameters γ1 and γ2, it may be conjectured that γ1 = 1 and
γ2 = 1 fall into the highest posterior density intervals, thereby indicating no empirical
need for allowing for skewness of the conditional distributions.
Table 3 presents the estimation results of the VAR(1)-tCopula-GARCH(1,1) model
with dynamic copula for the logarithmic daily returns of stock market indices. It is
worth noticing that the estimates of the degrees of freedom for the t-Student univariate
sampling distributions are different. We can also notice discernible differences between
their posterior distributions (see Figure 2). Therefore, we conclude that the tails of
the sampling distributions differ substantially.
In Table 4 we present the posterior means and standard deviations of the Kendall τ
and tail dependencies coefficients of twenty Copula-GARCH models for the exchange
rates. All the results indicate positive dependence between the modelled time series.
As regards the tail dependencies, the results appear somewhat less coherent, although
in most cases symmetric tail behaviour is implied (with some exceptions of the models
with the Clayton-Gumbel and Joe-Clayton copulas).
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Figure 2: Histograms of the marginal posterior distributions of the degrees of freedom
in the VAR(1)-tCopula-GARCH(1,1) model for the stock market indices
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Figures 3 and 4 display the posterior means (with bands of two posterior standard
deviations) of, respectively, the Kendall τ and tail dependencies coefficients in the
VAR(1)-tCopula-GARCH(1,1) models with a dynamic copula. The values of the
Kendall τ indicate that the static copula is not adequate (see Figure 3), thereby
leading us to a conclusion that time-variability of the coefficients should not be
dispensed with.
Also note that the upper and lower tail dependencies measures coincide in the case of
the t-Student copula (see Figure 4). In this empirical study, the copula has quite
high degree of freedom parameter, being indicative of a small value of the tails
dependencies.

Figure 3: Posterior means (with bands of two posterior standard deviations) of the
Kendall τ coefficient in the dynamic Bayesian VAR(1)-tCopula-GARCH(1,1) model
for the stock markets indices
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In Figure 5 we display the posterior means (with bands of two posterior standard
deviations) of the constant and dynamic conditional correlation coefficients in,
respectively, the AR(1)-tCCC(1,1) and AR(1)-tSBEKK(1,1) models. We choose to
present the results for these two models, since the latter of them features the highest
posterior model probability (as it is discussed in the following Subsection). For
analogous reasons as in the case of Figures 3 and 4, also here one may infer that
a time-variable pattern of conditional correlations should be accounted for.

4.2 Results of formal comparison of models
In this subsection we compare the analysed models in terms of their data fit
performance measured by MDD values. To that end, three tables (5-7) are presented
below, with each displaying the logarithms of MDD and the resulting posterior model
probabilities (under the assumption of their equal prior probabilities). The three
tables differ with respect to the set of models under comparison. Tables 5 and 6
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Figure 4: Posterior means (with bands of two posterior standard deviations) of the tail
dependencies coefficient in in the dynamic Bayesian VAR(1)-tCopula-GARCH(1,1)
model for the stock markets indices
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Figure 5: Posterior means (with bands of two posterior standard deviations) of the
constant and dynamic conditional correlation coefficients in, respectively, the AR(1)-
tCCC(1,1) and AR(1)-tSBEKK(1,1) models for the exchange rates
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are for the case of exchange rates, and Table 7 concerns the case of stock market
indices. In Table 5 we joined both sets of the models, i.e. the static-Copula-
GARCH structures with either the symmetric or skewed t-Student conditionals, and
we present the posterior model probabilities for the entire set. Next, Table 6 includes:
eleven static-Copula-GARCH models with the symmetric t-Student conditionals
(since conditional skewness appears empirically irrelevant for the data at hand, as it
will be discussed below), two dynamic-Copula-GARCH structures with the symmetric
t-Student conditionals, and six MGARCH specifications.
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The results indicate that the tCopula-AR(1)-GARCH(1,1) specification wins within
the class of eleven static-Copula-GARCH structures, with each of the remaining
specifications gaining virtually zero posterior model probabilities. Note that the
model with the independent copula is strongly rejected by the data, as evidenced
by the lowest value of MDD.
Results displayed in Table 5 imply that allowing for conditional skewness in the
static-Copula-GARCH models does not improve the model explanatory power. The
tCopula-AR(1)-GARCH(1,1) specification with the symmetric t-Student conditionals
gains almost entire posterior model probability, leaving all the remaining models far
behind.

Table 5: Posterior probabilities of the Copula-AR(1)-GARCH(1,1) models for the
exchange rates

No. Copula
Conditional

ln (p (y|Mi)) p (Mi|y)marginal
distributions

1 Frank t −4172, 911 0
2 t-sk −4170, 854 0
3 Clayton t −4333, 228 0
4 t-sk −4340, 842 0
5 Gumbel t −4136, 109 0
6 t-sk −4116, 994 0
7 Clayton-Gumbel t −4079, 713 0, 0002
8 (BB1) t-sk −4081, 203 0, 0001
9 Joe-Clayton t −4097, 268 0
10 (BB7) t-sk −4099, 434 0
11 Symmetrized t −4095, 495 0
12 Joe-Clayton t-sk −4098, 123 0
13 Rotated t −4287, 122 0
14 Clayton t-sk −4270, 215 0
15 Rotated t −4148, 386 0
16 Gumbel t-sk −4155, 486 0
17 Normal t −4123, 058 0
18 t-sk −4126, 36 0
19 t-Student t −4071, 356 0, 9686
20 t-sk −4074, 795 0, 0311
21 Independent t −5128, 058 0
22 t-sk −5125, 314 0

Note: ‘t’ – symmetric t-Student conditional marginal distributions, ‘t-sk’– skewed t-Student conditional
marginal distribution, ln(p(y|Mi)) – the logarithm of the marginal data density, p(Mi|y) – the posterior
probability of model Mi.
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Table 6: Posterior probabilities of the Copula-AR(1)-GARCH(1,1) models with
symmetric t-Student conditional distributions (no. 1–13), and the MGARCH models
for the exchange rates

No. Model ln (p (y|Mi)) p (Mi|y)

Copula-AR(1)-GARCH(1,1)
1 Frank −4172, 91 0
2 Clayton −4333, 23 0
3 Gumbel −4136, 11 0
4 Clayton-Gumbel, (BB1) −4079, 71 0
5 Joe-Clayton, (BB7) −4097, 27 0
6 Symmetrized Joe-Clayton −4095, 50 0
7 Rotated Clayton −4287, 12 0
8 Rotated Gumbel −4148, 39 0
9 Normal −4123, 06 0
10 Normal (time-varying) −4023, 45 0
11 t-Student −4071, 36 0
12 t-Student (time-varying) −3988, 39 0
13 Independent -5128,07 0
14 AR(1)-tSBEKK(1,1) −3968, 18 0,9979
15 AR(1)-tCCC(1,1) −4071, 12 0
16 AR(1)-tDCC(1,1) −3974, 60 0,0016
17 VAR(1)-tSBEKK(1,1) −3975, 79 0,0005
18 VAR(1)-tCCC(1,1) −4078, 81 0
19 VAR(1)-tDCC(1,1) −3982, 05 0

Note: ln(p(y|Mi)) – the logarithm of the marginal data density, p(Mi|y) – the posterior probability of
model Mi.

Table 7: Posterior probabilities of the VAR(1)-tCopula-GARCH(1,1) model with
symmetric t-Student conditional distributions, and the MGARCH models for the
stock market indices

No. Model ln (p (y|Mi)) p (Mi|y)

1 VAR(1)-tCopula-GRACH(1,1) with time-varying copula −7920, 938 0,997
2 VAR(1)-tSBEKK(1,1) −7949, 168 0
3 VAR(1)-tCCC(1,1) −7931, 957 0
4 VAR(1)-tDCC(1,1) −7926, 803 0,003

Note: ln(p(y|Mi)) – the logarithm of the marginal data density, p(Mi|y) – the posterior probability of
model Mi.
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The ultimate comparison of the models considered in this paper is presented in Table
6 and 7, which also include several MGARCH structures. For the exchange rates,
the highest and almost unit posterior model probability is scored by the AR(1)-
tSBEKK(1,1) specification, with each of the remaining models having practically
zero posterior probability (perhaps except for the the AR-tDCC and VAR-tSBEKK
cases). Therefore, it appears that the data does not require the entire VAR
structure to capture adequately the dynamics of the sampling conditional means. As
regards volatility and conditional correlations, the constant conditional correlation
specification is strongly rejected by the data. Although time-variant conditional
correlations need to be allowed for, the specification of their dynamics should be
kept relatively simple, for SBEKK is a posteriori preferred to DCC.
For the stock market indices, the highest and almost unit posterior model probability
is scored by the VAR(1)-tCopula-GARCH(1,1) specification. This data is better
described by a model allowing for different tail thickness of the univariate conditional
sampling distributions. Note that a standard MGARCH structure does not allow for
such a property, which in current situation makes the tCopula-GARCH model by far
superior in terms of its explanatory power.

5 Conclusions
In this paper bivariate Bayesian Copula-AR(1)-GARCH(1,1) and VAR(1)-
tSBEKK(1,1), VAR(1)-tDCC, VAR(1)-tCCC(1,1) models are employed to model
logarithmic daily returns of two exchange rates: EUR/PLN and USD/PLN.
Also, the bivariate Bayesian VAR(1)-tCopula-GARCH(1,1) model with dynamic
t-Student copula and bivariate Bayesian VAR(1)-tSBEKK(1,1), VAR(1)-tDCC,
VAR(1)-tCCC(1,1) specifications are used to model logarithmic daily returns of
two stock market indices: SP500 and BUX. The main aim of the research was
to formally compare the empirical performance of these models. To that end, we
calculated the values of marginal data density using the Monte Carlo method with
Importance Sampling, which also enabled us to approximate posterior means and
standard deviations of relevant quantities in each model, with particular interest
in the Kendall τ and tail dependencies coefficients. The results point to AR(1)-
tSBEKK(1,1) as a posteriori the most likely model for the exchange data. The
more complicated dependence structures, such as the Copula-AR(1)-GARCH(1, 1) or
AR(1)/VAR(1)-tDCC models gain virtually zero posterior probability. Moreover, the
results obtained in both sets of models, i.e. Copula-GARCH and MGARCH, strongly
corroborate dynamic rather than constant dependency structures. Notice that the
results for MGARCH are quite compatible with the ones presented by Osiewalski
and Pipień (2004), where the t-BEKK(1,1) model ranks first. The authors estimated
and compered ten Bayesian MGARCH models, with BEKK(1,1), VECH(1,1) and
CCC(1,1) among others.
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On the other hand, the second empirical study delivers qualitatively different results.
For the stock markets data, the best explanatory power is achieved by the VAR(1)-
tCopula-GARCH(1,1) model with dynamic t-Student copula. This indicates that the
Copula-GARCH may prove superior to standard MGARCH specifications if the data
requires different tail thickness for each univariate series.
It appears worthwhile to examine the models considered in this paper not only with
respect to the in-sample fit, but also in terms of their forecasting power, for example
in the context of Value at Risk and Expected Shortfall predictions, as in Pajor and
Osiewalski (2012). We leave this exercise for further research. Also, any formal
Bayesian comparison between dynamic copula specifications and the models from the
GMSF-SBEKK class, proposed in Osiewalski and Osiewalski (2016), would be very
interesting.
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