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Introduction

In this paper we focus on the permutation flow
shop scheduling problem (PFSP) in manufacturing
systems, where all jobs have to follow the same route
in the same order and machines are assumed to be set
up in series. We consider general permutation flow
shop scheduling with unlimited intermediate stor-
age where it is not allowed sequence changes be-
tween machines. Our attention is directed on per-
mutation schedules with constant setup times that
are included in processing times and to availabili-
ty of all jobs at zero time. The general flow shop
problem with a makespan (Cmax) objective can be
denoted as n/m/F/Cmax that involves n jobs where
each requires operations on m machines, in the same
job sequence. The solution of such problem is repre-
sented by the optimal job sequence that produces the
smallest makespan assuming no preemption of jobs.
Operations research literature recognizes two well-
known types of heuristics: constructive and improve-

ment heuristics, see, e.g., in [1, 2]. Johnson proposed
the earliest known heuristic for the PFSP, which pro-
vides an optimal solution for two machines [3]. The
computational complexity of Johnson’s algorithm is
O(n log n). Campbell, Dudek and Smith introduced
a heuristic technique, which presents an extension of
Johnson’s algorithm [4]. Koulamas offered another
modification of Johnson’s Algorithm [5]. The tech-
nique consists of two phases. In the first phase, it
makes extensive use of Johnson’s algorithm, whereas
the second one aims to improve the resulting schedule
from the first phase by allowing job passing between
machines. computational complexity of this heuristic
is O(m2n2).

The improvement heuristics start with an initial
solution and then provide a pattern for iteratively
obtaining an improved solution [6]. These iterative
approaches, referred to as meta-heuristic approach-
es, are inherently local search techniques such as,
for example, tabu search (TS), simulated anneal-
ing (SA), genetic algorithms (GA), etc. Computa-
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tional experiments presented in this paper compare
results of four constructive heuristics, namely, the
Campbell, Dudek and Smith (CDS) heuristic, Gup-
ta’s algorithm, Palmer’s slope index, and modified
Johnson’s algorithm (CH) with reference values of
NEH algorithm. We perform our study on datasets
including 120 benchmark problems by [7]. The rest
of the paper is organized as follows. Firstly, related
literature review of the flow shop scheduling heuris-
tics is briefly outlined. Next Section describes the
algorithms used in this study. Subsequently decisive
findings of computational experiments are summa-
rized. Conclusion section articulates possible future
research directions.

Related work

Flow shop scheduling problems that belong to
the class of multi-stage scheduling problems are fre-
quently encountered in the scheduling literature.
The permutation flow shop problem is formulated
as a mixed integer programming and it is classified
as NP-Hard problem [8, 9]. Their attractiveness is
due to their wide applications in practice, see, e.g.
[11–14]. Makespan minimization is considered as one
of the most meaningful objectives for flow shop pro-
duction [15, 16]. Yenisey and Yagmahan provided
a comprehensive review for all types of scheduling
problems, including classification and current trends
[17]. According to them, research in this domain has
been focused mainly on single objectives over time.
Nonetheless, in real conditions scheduling problems
involve multiple objectives. The Multi-Objective PF-
SP problems are divided into three classes from view-
point of the role of the decision maker in the process
of production scheduling [18, 19]:

A priori approach – the decision maker at the
decision making process provides all essential infor-
mation at its begin in two possible ways: by mini-
mization of a weighted combination of the objectives
[20, 21]. And by hierarchically optimization of the
objectives [22, 23].

A posteriori approach – the decision maker does
a selection from the set of efficient solutions, which
must be developed firstly [24–27]. An interactive ap-
proach – during the solution process, the preferences
are presented by the decision maker, who interactive-
ly reflects the most preferred solution at each step of
the procedure [28].

Yinga and Liao used the ACO approaches to get
an optimal makespan in n-job and m-machine per-
mutation flow shop [6]. Tran and Ng introduced a
novel meta-heuristic called water flow-like algorithm
[29]. Other related approaches are search methods

like large neighborhood search [30, 31]. The latest
works were focused e.g. on using a hybrid multi-
objective backtracking search algorithm by [32] in-
troducing a discrete differential evolution algorithm
on the basis of an initial population generated by the
upper bounds of the B&B algorithm by [33] propos-
ing new heuristic tie-breaking rules in the implemen-
tation of NEH heuristic for PFSP by [34] solving
the multi-objective distributed PFSP by competitive
memetic algorithm by [35] proposing discrete artifi-
cial bee colony algorithm for multi-objective PFSP
with sequence dependent setup times in [36], or in-
troducing copula-based hybrid estimation of distrib-
ution algorithm for reentrant PFSP by [37].

Wider related work is included in recent review
study on routing and scheduling [38].

Description of compared algorithms

In this section we formally explain the steps of
the constructive heuristic approaches used to obtain
a good initial solution. The following notations were
used:

J set of n jobs {1, 2, ..., n},

Mset of m machines {1, 2, ..., m},

Mp set of two pseudo machines {1, 2},

G set of 2 clusters {I, II},

K number of k machines,

L number of m − k machines,

I cluster of k machines,

I I cluster of m − k machines,

pij processing time of i-th job on j-th machine,
i ∈ J and j ∈ M ,

Pj sum of processing time of n jobs on j-th ma-
chine,∑

Pg total sum of processing time of n jobs on
machines in g-th group, g ∈ G,

it iteration number,

itmax max iteration number,

DIFit difference between groups I and II,

Cmax makespan,

Cj completion time,

s splitting ratio,

smax max splitting ratio.

NEH algorithm

NEH is considered to be the best algorithm for
the classic flow shop problem [39]. The NEH algo-
rithm computes the sum of the processing times for
each job and then lists them in non-increasing order
of this value. The job at the top of the list is removed
and inserted into the partial schedule. The position
where it is inserted is determined by considering all
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the 8 possible positions it can occupy, without alter-
ing the relative positions of the jobs already in the
partial schedule. The selected position is the one that
minimizes the makespan in the partial schedule. This
is repeated until the last of the unscheduled jobs is
assigned.

CDS algorithm

This heuristic is a generalization of Johnson’s two
machine algorithm and it generates a set of m − 1
artificial two-machine problems from an original m-
machine problem, then each of the generated prob-
lems are solved using Johnson’s algorithm [4].

The objective of the heuristic is the minimization
of make-span in a deterministic flow shop problem.
CDS heuristic forms in a simple manner a set of an
m− 1 artificial 2-machine sub-problems for the orig-
inal m-machine problem by summing the processing
times in a manner that combines M1, M2 , ..., Mm−1

to pseudo machine 1 and M2 ,M3 , ..., Mm to pseudo
machine 2.

Gupta’s algorithm

Gupta, Hennig and Werner argued that the se-
quencing problem is a problem of sorting n items
so as to minimize make-span [22]. He proposed
algorithm to schedule sequence of jobs for more
than two machines in a flow shop. Given a set
of n independent jobs, each having m (m >
2) tasks that must be executed in the same se-
quence on m machines (P1 ,P2 , ..., Pm). Output is
a schedule with a minimum completion time of the
last job.

Palmer’s slope index

The heuristic has been developed in an effort to
use Johnson’s rule for m ≥ 3, since for m = 2. This
algorithm is slightly different from Johnson’s algo-
rithm. The idea of Slope Index method is to give pri-
ority to jobs so that jobs with processing times that
tend to increase from machine to machine will re-
ceive higher priority, while jobs with processing times
that tend to decrease from machine to machine will
receive lower priority.

Modified Johnson’s algorithm

This concurrent heuristic (CH) is using a differ-
ence between sums of processing times for each ma-
chine as a pair-splitting strategy to make two groups
of the matrix of n-job and m-machine. Once the
problem is converted to n job and 2 machines the
sequence is determined using Johnson’s algorithm.
This approach can be described as follows [10]:

Step 1. Calculate the sums of processing times Pj

of jobs on each machine.

Step 2. Split n-job and m-machine matrix and
compute total sum of processing time. Split n × m
matrix according to relation:

k∑

j=1

PI ∼

m∑

j=k−1

PII . (1)

Calculate
∑

PI ,
∑

PII of cluster I and II as fol-
lows:

∑
PI =

k∑

j=1

Pj∀k ∈ I, j ∈ M, (2)

∑
PII =

m∑

j=k−1

Pj∀k ∈ I, j ∈ M. (3)

Step 3. Compute the splitting ratio for this iter-
ation that is given by:

sit =
min(

∑
PI ;

∑
PII )

max(
∑

PI ;
∑

PII )
. (4)

And apply the pair-splitting strategy: If the sit

is the maximum ratio so far, save the current it into
well-fitting iteration (k) and the ratio as the maxi-
mum ratio (smax); If it = itmax then go to Step 5; If
sit = 1, go to Step 5.

Step 4. Increment it by one and go back to Step 2.

Step 5. Calculate the completion time Cj of i-th
job for both clusters according to following formulas:

a. Cluster I:

Cj = k · p1j + (k − 1) · p2j + ... + pk, (5)

b. Cluster II:

Cj = l · p1j + (l − 1) · p2j + ... + pl. (6)

Tabulate these values into two rows to get two
pseudo machines (Mp1, Mp2).

Step 6. Apply Johnson’s rule on two pseudo ma-
chines:
Apply Johnson’s rule on two pseudo machines of

n jobs to get the job sequence.

Step 7. Display the solution:
The Cmax of particular job sequence from Step 6

is the solution.
We coded CH, NEH, CDS, Palmer’s slope index

and Gupta’s algorithms in PHP script. All PHP-
coded algorithms have user-friendly interface with
eventuality to select whether to run each heuristic
itself or all together.

Experiments description and results

Computational experiments were performed on
120 instances with 10 each of one particular size
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using Taillard’s benchmark problem datasets range
from 20 to 500 jobs and 5 to 20 machines. The previ-
ous specified algorithms will develop an optional se-
quence using makespan as the performance criterion.
Makespan is defined as the time required completing
the set of jobs through all machines. The outputs of
NEH algorithm were used as reference solutions for
comparison purposes.

Performance measures

The performance results were interpreted by us-
ing a relative percent deviation (RPD) and average
relative percent deviation (ARPD) for comparing the
solutions of each algorithm to reference solutions.
The average percentage relative deviation is given by:

ARPD =
1

I
·

i∑

i=1

RPDi, (7)

RPDi =
HSi − RSi

RSi

· 100%, (8)

where I – number of problem instances, HSi – heuris-
tic solution of problem instance i, RSi – reference
solution of problem instance i, RPDi – percentage
relative deviation of problem instance i.

Results analysis

The performance results of makespan for Tail-
lard’s 120 instances and different algorithms are at
first presented in Table 1. The results show the com-
putational values of ARPDs for each algorithm and
for each problem dataset. The final line in Table 1
gives the overall average RPD values over all problem
instances.

Table 1

Results of makespan expressed by APRDs.

Problem
size

Sample
size

CH
ARPD

CDS
ARPD

Gupta
ARPD

Palmer
ARPD

20× 5 10 5.94 9.21 9.31 7.13

20× 10 10 8.77 18.62 19.04 10.23

20× 20 10 9.46 15.98 18.17 12.3

50× 5 10 5.103 12.382 11.091 4.112

50× 10 10 7.038 17.074 15.35 7.951

50× 20 10 8.781 16.801 16.623 9.453

100× 5 10 3.572 5.522 5.302 1.876

100× 10 10 6.915 13.351 12.806 6.776

100× 20 10 8.282 16.592 16.357 8.46

200× 10 10 5.601 11.129 10.586 3.841

200× 20 10 7.603 13.799 14.454 8.35

500× 20 10 5.498 11.997 11.288 4.747

ΣARPD 120 6.88 13.54 13.36 7.1

The solutions of the four algorithms are compared
with NEH optimal solutions for problems with size
up to 20 machines and 500 jobs.

Secondly, in order to evaluate obtained result
in further details our focus was to analyze ranges
of relative percentage deviations from NEH optimal
solutions. For this purpose, are commonly consid-
ered three statistical properties for each problem size
such as minimal RPD value, maximum RPD value
and APRD value. Then we can draw up the follow-
ing 4 graphs (Figs 1–4) for each benchmarked algo-
rithm.

Fig. 1. Ranges of relative percentage deviations of CH
from NEH optimal solutions.

Fig. 2. Ranges of relative percentage deviations of CDS
from NEH optimal solutions.

Fig. 3. Ranges of relative percentage deviations of GUP-
TA from NEH optimal solutions.
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Fig. 4. Ranges of relative percentage deviations of
PALMER from NEH optimal solutions.

The results indicate the following:

1. CH heuristic performed better than any of test-
ed algorithms with the exception of NEH algorithm
that was used as reference heuristic for this study.
The second best makespan among the four tested
algorithms was achieved by Palmer’s slope index.
Based on this finding, one could recommend for sim-
pler scheduling problems in production management
to apply the CH heuristics.

2. As it is evident from the Figs 1 to 4, the ranges
of deviations from optimal makespan values tend to
decrease with increasing problem size. According-
ly, it theoretically appears that this tendency is in
line with general property of a statistical distribu-
tion that larger samples sizes have usually advan-
tage of providing more data for researchers to work
with, and are directly related to a statistic’s margin
of error. In a given case, the larger sizes of flow shop
problems are better limiting the influence of outliers
or extreme values as mean and can be considered to
be more representative than smaller ones.

As practical consequence for each of tested algo-
rithm, it can be observed that for bigger problem
sizes, the cumulative relative deviations are smaller
i.e. the performances become better and better. It
might mean that benchmarked algorithms can be ef-
fectively applied in the production engineering tasks,
especially, for scheduling and sequencing of manufac-
turing processes with bigger problem sizes.

Conclusions

In this paper, the heuristic approaches to solve
sequencing problem with sequence-dependent jobs
were presented and compared. Obtained results
showed that compared algorithms are all capable of
finding expected solutions of the given optimization
criterion and the problem sizes. For given problem
sizes, the CD algorithm generated better solutions
than the well-known solutions in the literature. Sev-

eral directions for future research deserve further ex-
ploration in relation to this frequent scheduling prob-
lem. For example, it would be useful to consider
other performance criteria and investigate of multi-
objective problems. Secondly, further study might be
focused on larger problems. Thirdly, future studies
can focus on the problems with realistic constraints
such as sequence-dependent setup times and release
times.

This paper has been supported by VEGA project
No. 1/0419/16 granted by the Ministry of Education
of the Slovak Republic.
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