
Management and Production Engineering Review

Volume 10 • Number 3 • September 2019 • pp. 111–123
DOI: 10.24425/mper.2019.130504

FUZZY MODELING AND PARAMETRIC ANALYSIS

OF NON-TRADITIONAL MACHINING PROCESSES

Shankar Chakraborty1, Partha Protim Das2

1 Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India
2 Department of Mechanical Engineering, Sikkim Manipal Institute of Technology, Sikkim Manipal University,
Majitar, Sikkim, India

Corresponding author:

Shankar Chakraborty

Department of Production Engineering

Jadavpur University

Kolkata-700032, West Bengal, India

phone: (+91) 9831568294

e-mail: s chakraborty00@yahoo.co.in

Received: 8 June 2019 Abstract

Accepted: 20 August 2019 The application of artificial intelligence (AI) in modeling of various machining processes has
been the topic of immense interest among the researchers since several years. In this direc-
tion, the principle of fuzzy logic, a paradigm of AI technique, is effectively being utilized
to predict various performance measures (responses) and control the parametric settings of
those machining processes. This paper presents the application of fuzzy logic to model two
non-traditional machining (NTM) processes, i.e. electrical discharge machining (EDM) and
electrochemical machining (ECM) processes, while identifying the relationships present be-
tween the process parameters and the measured responses. Moreover, the interaction plots
which are developed based on the past experimental observations depict the effects of chang-
ing values of different process parameters on the measured responses. The predicted response
values derived from the developed models are observed to be in close agreement with those
as investigated during the past experimental runs. The interaction plots also play signifi-
cant roles in identifying the optimal parametric combinations so as to achieve the desired
responses for the considered NTM processes.

Keywords

Non-traditional machining process, fuzzy model, process parameter, response, interaction
plot.

Introduction

A rapid advancement in the field of manufactur-
ing and technology development has simulated the
application and growth of various non-traditional
machining (NTM) processes for generating com-
plex and intricate shape geometries on different
difficult-to-machine advanced engineering materials.
These processes are now being widely deployed to
economically machine materials which are usually
hard to machine using the conventional machining
processes [1]. These NTM processes principally uti-
lize mechanical, thermal, electrical, chemical energy
or a combination of them where removal of mater-
ial usually takes place in the form of tiny chips or
atoms enabling attainment of high dimensional ac-

curacy and surface smoothness. Unlike the conven-
tional machining processes, in NTM processes, the
tool material needs not to be harder than the work
material or even there may be no contact between
the tool and the workpiece. For example, in case of
electrochemical machining (ECM) process, material
removal occurs in the form of atoms due to electro-
chemical dissolution; and for electro discharge ma-
chining (EDM) process, material is eroded from the
workpiece by a series of sparks due to rapidly re-
curring current discharges between two electrodes,
separated by a dielectric liquid and subjected to an
electrical voltage [2, 3]. These NTM processes require
a careful selection of their controllable (input) pa-
rameters so as to achieve the desired quality char-
acteristics (responses) and explore their fullest ma-
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chining capabilities. Wrong selection of any of the
NTM process parameters may often lead to serious
consequences, like short circuit, tool wear, damage
of the workpiece, and even accident to the opera-
tor. The presence of a wide array of various NTM
process parameters, conflicting responses and com-
plicated material removal mechanisms often make it
a challenging task to identify the most appropriate
combinations of different NTM process parameters
for which the operators’ technological knowledge and
experience are frequently sorted.

The traditional process to attain desired response
values from various NTM processes involves trial and
error method, is often time-consuming involving er-
rors. Therefore, a reliable methodology when exact
mathematical information are not available for en-
suring quality responses is supposed to be the adop-
tion of soft computing techniques. However, they al-
so have few drawbacks, like approximation, uncer-
tainty, meta-heuristics, inaccuracy and partial truth.
Recently, artificial intelligence (AI) is gaining inter-
est among the researchers, and has been successfully
applied in various domains of manufacturing science
and technology. It is based on the principles of de-
veloping intelligent machines, mainly intelligent com-
puter programs. It consists of a number of powerful
tools, like artificial neural network (ANN), simulated
annealing, expert system, fuzzy logic, ant colony op-
timization, genetic algorithm (GA), particle swarm
optimization etc., which are now being practical-
ly augmented in the field of machining technology
to solve complex problems requiring human intelli-
gence.

Abellan-Nebot and Subirón [4] presented a re-
view on the detailed applications of different AI tech-
niques for optimizing, predicting and controlling ma-
chining processes in various monitoring systems. Ra-
jesekaran et al. [5] showed that fuzzy logic technique
could be effectively employed to study the effects of
various machining parameters so as to attain the de-
sired quality of surface roughness (SR) while turning
carbon fibre reinforced plastics (CFRP) composites
and also to predict its values under different machin-
ing conditions. Azmi [6] developed a tool condition
monitoring system based on the measured machining
forces and adaptive network-based fuzzy inference
system to predict tool wear during end milling oper-
ation of glass fibre reinforced plastic (GFRP) com-
posites. Soori et al. [7] applied finite element analy-
sis method for modeling of a virtual manufacturing
system so as to analyze the accuracy of tool deflec-
tion error to increase the quality of milled surfaces in
part manufacturing. Santhanakrishnan et al. [8] de-
veloped a model utilizing response surface method-

ology and GA technique to investigate the effects of
different geometrical and machining process parame-
ters, such as cutting speed, depth of cut, rake angle,
feed rate and nose radius on temperature rise during
an end milling operation. Kumar et al. [9] presented
a mathematical model based on dimensional analysis
for predicting tool wear rate (TWR) while consider-
ing the derived results from the Taguchi method and
thermo-physical properties of different tool materi-
als. Kumaran et al. [10] proposed an ANFIS model
while combining the modeling function of fuzzy in-
ference along with the learning ability of ANN for
predicting SR during machining of CFRP composites
using abrasive waterjet machining (AWJM) process.
Marzban and Hemmati [11] developed a model us-
ing ANN technique to predict material removal rate
(MRR) and SR for an abrasive flow rotary machining
process, and finally, compared it with the experimen-
tal values while showing a close agreement between
both the observations. Chakraborty et al. [12] adopt-
ed a grey-fuzzy-based optimization approach in solv-
ing the parametric optimization problems for three
NTM processes and also proved its superiority over
the existing multi-objective optimization methods.

Fuzzy logic is widely used for the state-of-the-
art modeling, inferencing and decision making in
identifying systems, and also in machine monitor-
ing and diagnostics [13]. This approach of model-
ing is highly expedient when a particular machining
process is highly complex and uncertain in nature.
Peres et al. [14] presented a hierarchical structure
of fuzzy control and fuzzy model for optimization
of an end milling process. Dweiri et al. [15] applied
ANFIS to model a down milling process of Alumic-
79 to predict the effects of spindle speed, feed rate,
depth of cut and number of flutes on the quality of
surface finish. Kovac et al. [16] adopted fuzzy logic
along with regression analysis to develop an empir-
ical model so as to predict the value of SR, while
showing a substantial improvement in surface qual-
ity for a dry face milling process. In recent years,
fuzzy logic has also been emerged out as an effi-
cient tool for modeling of diverse machining process-
es. Ramesh et al. [17] performed fuzzy modeling for
prediction of tool flank wear, SR and specific cut-
ting pressure in turning operation of titanium alloy.
Ren et al. [18] considered fuzzy-based modelling in
prediction of cutting forces during micro milling of
cold-work tool steel X155CrVMo12-1. Barzani et al.
[19] applied fuzzy-based modeling for prediction of
surface roughness in CNC turning of Al-Si-Cu-Fe die
casting alloy. Chakraborty and Das [20] employed
fuzzy modeling for prediction and optimization of
various yarn characterisitcs in ring spinning of cot-
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ton fibres. From the extensive review of the past lit-
erature, it can be noticed that a large number of
researchers have already adopted various mathemat-
ical techniques to solve complex problems related to
modeling of diverse machining processes while corre-
lating different input parameters with the achievable
responses. In this paper, an endeavor is taken to de-
velop fuzzy models relating the process parameters
and responses for two NTM processes, i.e. EDM and
ECM processes. The achieved response values from
the developed fuzzy models are found to be in high
similitude with the experimental observations as at-
tained by the past researchers. Interaction plots are
also developed so as to analyze the effects of various
NTM process parameters on the responses, while de-
termining the optimal parametric mixes to achieve
the target response values.

Fuzzy-based modeling

It has been observed that the NTM processes usu-
ally involve complex material removal mechanisms
having a large number of controllable parameters and
related responses. Many a times, these responses are
also conflicting in nature, like maximization of MRR
along with minimization of SR, maximization of ma-
chining efficiency with minimum power requirement
etc. Modeling of these NTM processes becomes more
and more challenging with the increased number of
input parameters and responses. Fuzzy systems are
based on the principles of fuzzy set theory and associ-
ated techniques as proposed by Zadeh [21]. Fuzzy log-
ic is mainly attractive because of its ability to solve
complex problems in absence of accurate mathemat-
ical models. A schematic diagram of the fuzzy logic
unit consisting of a fuzzifier, a database, an infer-
ence engine, a rule base and a defuzzifier is shown in
Fig. 1. It is possible to model the reasoning process of

Fig. 1. Fuzzy decision making unit.

a human being using fuzzy logic mainly in linguistic
terms by the way of appropriate definition of inputs
to the systems along with the desired outputs. The
fuzzy system takes the decisions based in the form of
linguistic variables.

The fuzzy values are governed by the membership
functions that define the degree of membership of an
object in a fuzzy set [22]. However, till now, there
has been no standard procedure for identifying the
suitable shapes of the membership functions in order
to define the corresponding fuzzy sets. Principally,
it is based on trial and error methods. The fuzzifi-
er employs the membership functions that convert
the crisp inputs to the fuzzy system into fuzzy sets.
A rule base is developed based on a set of ‘If-Then’
control parameters, which reflects the inference rela-
tionship between the inputs and outputs. Based on
these fuzzy rules, the Mamdani implication method
is employed for fuzzy inference reasoning [23, 24].
The inference engine performs fuzzy inference rea-
soning based on fuzzy rules for generating fuzzy val-
ues. Finally, the defuzzifier converts those generat-
ed fuzzy values into crisp numeric values. Although,
a number of methods are available for the purpose
of defuzzification, the centroid of area defuzzification
method has been widely adopted due to its capability
to provide more accurate results. A typical example
of the fuzzy rule base developed based on a set of
‘If-Then’ control parameters is presented as below:

Rule 1: If x1 is a1 and x2 is b1 and x3 is c1, ...,
then output y1 is r1 and y2 is s1 and y3 is t1.

... (1)

Rule n: if x1 is an and x2 is bn and x3 is cn, ...,
then output y1 is rn and y2 is sn and y3 is tn,

where ai, bi, and ci are the fuzzy subsets for the in-
puts, defined by the corresponding membership func-
tions, i.e. µai, µbi and µci respectively, and ri, si, and
ti are the fuzzy subsets for the outputs. The infer-
ence engine performs fuzzy reasoning on fuzzy rules
while taking max-min inference for generating the
fuzzy outputs, µc1

(y1), µc2
(y2) and µc3

(y3)

µCi
(yi) = max{min

i
[µa1

(x1), µb1(x2), µc1
(x3), ...]}

(2)
where, i = 1, 2, ..., n.

Finally, defuzzification method is employed to
transform the fuzzy multi-response output, µci

(yi)
into a crisp numerical value.

yi =

∑
yiµci

(yi)∑
µci

(yi)
. (3)
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Illustrative examples

In this section, the past experimental data for two
NTM processes, i.e. EDM and ECM processes are
considered for analysis and subsequent development
of the corresponding fuzzy models, and studying the
influences of various NTM process parameters on the
responses.

Example 1: EDM process

Based on Taguchi’s L27 orthogonal array, Kand-
pal et al. [25] investigated the effects of three EDM
process parameters, i.e. peak current (I) (in A),
pulse-on time (Ton) (in µs) and duty factor (DF)
on four important responses, e.g. MRR (in mg/min),
TWR (in mg/min), SR (in µm) and overcut (in mm)
while machining AA6061/10%Al2O3 composite ma-
terials. In total, 27 experiments were conducted while
setting each of the EDM process parameters at three
different levels, as shown in Table 1. Those levels of
the considered EDM process parameters were so se-
lected that they would be within the industrially ac-
ceptable ranges. Amongst the four responses, MRR
is the only larger-the-better (beneficial) quality char-
acteristic, whereas, the other three responses are of
smaller-the-better (non-beneficial) type. The details
of the experimental design plan along with the mea-
sured responses for the considered EDM process are
provided in Table 2.
In order to model and analyze this EDM process

in fuzzy logic, peak current, pulse-on time and duty
factor are considered as the inputs to the system,
while MRR, TWR, SR and overcut are treated as
the outputs. A schematic diagram of this three-
input-four-output fuzzy model is exhibited in Fig. 2.
For fuzzy modeling, triangular membership functions
with three fuzzy subsets are considered to represent
the three levels for each of the EDM process para-
meters. These fuzzy subsets for the input variables
are considered as low (L), medium (M) and high
(H), as shown in Fig. 3. On the other hand, for the
responses too, triangular membership functions are
considered, but with nine fuzzy subsets as lowest
(LT), very low (VL), low (L), medium low (ML),
medium (M), medium high (MH), high (H), very
high (VH) and highest (HT), as depicted in Fig. 4.
Table 3 provides the minimum and maximum values
of the input parameters and responses to represent
the universe of discourse (range) in this fuzzy mod-
eling process.

Table 1

EDM process parameters and their levels [25].

Parameter
Level

1 2 3

Peak current (I) 6 10 14

Pulse on time (Ton) 75 100 200

Duty factor (DF) 0.5 0.6 0.7

Table 2

Design layout and experimental observations for the EDM
process [25].

Exp. No.
Process parameter Response

I Ton DF MRR TWR SR Overcut

1 6 75 0.5 19.008 0.225 6.44 0.204

2 6 75 0.6 18.025 0.106 7.88 0.234

3 6 75 0.7 18.367 0.041 7.45 0.243

4 6 100 0.5 13.931 0.212 7.65 0.249

5 6 100 0.6 14.569 0.110 7.5 0.257

6 6 100 0.7 14.781 0.025 7.45 0.262

7 6 200 0.5 15.507 0.187 7.56 0.277

8 6 200 0.6 13.673 0.063 7.45 0.283

9 6 200 0.7 15.593 0.401 6.44 0.323

10 10 75 0.5 28.888 0.425 6.7 0.326

11 10 75 0.6 25.333 0.302 6.85 0.327

12 10 75 0.7 23.72 0.098 6.72 0.329

13 10 100 0.5 29.575 0.361 6.7 0.330

14 10 100 0.6 25.978 0.245 7.83 0.336

15 10 100 0.7 23.2 0.118 7.76 0.339

16 10 200 0.5 18.492 0.242 8.9 0.341

17 10 200 0.6 17.631 0.200 7.83 0.344

18 10 200 0.7 17.5 0.092 10.39 0.336

19 14 75 0.5 33.629 0.387 8.8 0.341

20 14 75 0.6 32.471 0.322 10.55 0.348

21 14 75 0.7 33.357 0.144 10.58 0.352

22 14 100 0.5 30.138 0.308 12.83 0.357

23 14 100 0.6 28.75 0.265 9.77 0.362

24 14 100 0.7 27.163 0.162 9.77 0.365

25 14 200 0.5 24.25 0.344 12.83 0.370

26 14 200 0.6 22.78 0.212 13.12 0.373

27 14 200 0.7 21.49 0.167 13.19 0.377

Fig. 2. Architecture of the three-input-four-output fuzzy
model for the EDM process.
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Fig. 3. Fuzzification of input process parameters.

Fig. 4. Fuzzification of the responses.

Table 3

Ranges of inputs and outputs to fuzzy logic modeling for the
EDM process.

Parameter/
Response

Input/
Output

Minimum
value

Maximum
value

Peak current Input 6 14

Pulse-on time Input 75 200

Duty factor Input 0.5 0.7

MRR Output 13.673 33.629

TWR Output 0.025 0.425

SR Output 6.44 13.19

Overcut Output 0.204 0.377

Based on the observations of 27 experimental tri-
als, a total of 27 fuzzy rules are subsequently devel-
oped in the form of linguistic statements, defining
the relationships between the input process parame-
ters and responses. The developed fuzzy expressions
representing the relations between the three inputs
as peak current, pulse-on time and duty factor, and
four outputs as MRR, TWR, SR and overcut are
exhibited in Table 4. These fuzzy rules are subse-
quently transferred in the fuzzy toolbox of MATLAB
(R2014b) to develop the corresponding rule viewer,
as shown in Fig. 5. In this rule viewer, the 27 rows
represent the developed fuzzy rules exhibiting the
relationships between the input process parameters
and output responses. The first three columns de-
note the three EDM process parameters, while the
last four columns represent the responses. The loca-
tion of each triangle signifies the corresponding fuzzy
membership function and the height of the darkened
area corresponds to the fuzzy membership value for
that fuzzy set [26].

Table 4

Fuzzy expressions for input and output parameters for the
EDM process.

Exp.
No.

If Then

I Link Ton Link DF MRR TWR SR Overcut

1 L and L and L L M LT LT

2 L and L and M VL VL VL VL

3 L and L and H L LT VL L

4 L and M and L LT M VL L

5 L and M and M LT VL VL L

6 L and M and H LT LT VL ML

7 L and H and L LT ML VL ML

8 L and H and M LT LT VL M

9 L and H and H LT HT LT H

10 M and L and L H HT LT H

11 M and L and M MH H LT H

12 M and L and H M VL LT H

13 M and M and L VH VH LT H

14 M and M and M MH M VL H

15 M and M and H M L VL VH

16 M and H and L L M ML VH

17 M and H and M VL ML VL VH

18 M and H and H VL VL MH H

19 H and L and L HT HT ML VH

20 H and L and M HT H MH VH

21 H and L and H HT L MH VH

22 H and M and L VH H HT VH

23 H and M and M H MH M HT

24 H and M and H H ML M HT

25 H and H and L M VH MH HT

26 H and H and M M M HT HT

27 H and H and H ML ML HT HT

Fig. 5. Rule viewer for the EDM process.

It can be observed from Fig. 5 that when the
values of different EDM process parameters are set
as peak current = 6 A, pulse-on time = 75 µs
and duty factor = 0.5, the corresponding respons-
es are achieved as MRR = 18.7 mg/min, TWR
= 0.225 mg/min, SR = 6.7 µm and overcut =
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0.211 mm. On the other hand, it can be noticed from
Table 2 that for the same parametric combination of
the considered EDM process, the output responses
are MRR = 19.008 mg/min, TWR = 0.225 mg/min,
SR = 6.44 µm and overcut = 0.204 mm, which al-
most match with those obtained from the developed
fuzzy model for the said process. The response val-
ues as obtained from the experimental observations
and predicted from the fuzzy model are portrayed in
Figs 6–9. These figures also exhibit a very close re-
semblance between the experimental and the predict-
ed outputs which confirms that the developed fuzzy
model can efficiently be adopted in envisaging the
values of MRR, TWR, SR and overcut while ma-
chining of AA6061/10%Al2O3 composite materials
using EDM process.

Fig. 6. Comparison of the experimental and fuzzy MRR
values for the EDM process.

Fig. 7. Comparison of the experimental and fuzzy TWR
values for the EDM process.

Fig. 8. Comparison of the experimental and fuzzy SR
values for the EDM process.

Fig. 9. Comparison of the experimental and fuzzy overcut
values for the EDM process

Furthermore, to investigate the influences of the
three EDM process parameters, i.e. peak current,
pulse-on time and duty factor on the responses, i.e.
MRR, TWR, SR and overcut, the corresponding
interaction plots are analyzed through Figs 10–13.
These interaction plots are developed using Minitab
R17 software. Figure 10 represents the effects of peak
current, pulse-on time and duty factor on MRR.
It can be revealed from this figure that with the
increasing values of peak current, MRR gradually
increases, but it decreases with increase in the pulse-
on time and duty factor values. As the peak current
increases, there is an increase in the rate of discharge
energy, as high concentration of discharge ener-

a)

b)

c)

Fig. 10. Effects of different input parameters on MRR for
the EDM process: a) effect of peak current on MRR (duty
factor = 0.6), b) effect of pulse-on time on MRR
(peak current = 10 A), c) effect of duty factor on

MRR (pulse-on time = 100 µs).
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gy leads to rapid melting and vaporization of the
work material resulting in an increase in MRR, as
shown in Fig. 10a. Figure 10b reveals a rapid de-
crease in the value of MRR with increase in pulse-on
time. This is mainly because of the fact that longer
duration of pulse-on time causes melting of more
amount of workpiece material. Thus, proper flush-
ing of molten material from the inter-electrode gap
(IEG) between the tool and the workpiece resulting
in forming of a passive layer which accounts for de-
creasing values of MRR. It also gets clearly reflected
with a decreasing trend of MRR in Fig. 10c as duty
factor is the ratio of pulse-on time to the total cy-
cle time. Thus, an increase in duty factor indicates
increase in pulse-on time along with a reduction in
pulse-off time resulting in decreased values of MRR.

a)

b)

c)

Fig. 11. Effects of different input parameters on TWR for
the EDM process: a) effect of peak current on TWR (du-
ty factor = 0.6), b) effect of pulse-on time on TWR
(peak current = 10 A), c) effect of duty factor on

TWR (pulse-on time = 100 µs).

It can be seen from Fig. 11a that an increase in
peak current causes an increment in the value of
TWR as heavy discharge of current leads to high
concentration of heat resulting in melting (wear) of
tool material. At longer duration of pulse-on time,
the amount of carbon deposited on the tool is more.
Thus, an increase in pulse duration causes an in-

crease in the possibility of carbon deposition which
further reduces the melting of tool material because
of low discharge, as investigated in Fig. 11b. Fig-
ure 11c also confirms this finding where an increase
in duty factor causes a reduction in TWR. High-
er value of peak current results in an increase of
discharge energy per pulse, which further produces
deeper and wider overlapping craters and generation
of micro-cracks on the machined surface, causing SR
to increase, as exhibited in Fig. 12a. The value of
SR is also strongly influenced by pulse-on time. Fig-
ure 12b depicts that an increase in pulse duration
results in a relative increase of spark energy, causing
the melting boundary (spark gap) to become deeper
and wider, and hence, resulting in an increase of SR
value. On the other hand, a moderate increment in
SR value is observed over the changing values of duty
factor, as shown in Fig. 12c.

a)

b)

c)

Fig. 12. Effects of different input parameters on SR for
the EDM process: a) effect of peak current on SR (du-
ty factor = 0.6), b) effect of pulse-on time on SR (peak
current = 10 A), c) effect of duty factor on SR (pulse-on

time = 100 µs).

From Fig. 13a, it can be revealed that with in-
creasing values of peak current, overcut increases be-
cause of more energy transfer to the machined zone
for which there is an increase in spark gap. On the
other hand, pulse-on time also significantly influences

Volume 10 • Number 3 • September 2019 117



Management and Production Engineering Review

overcut. Figure 13b exhibits that overcut increas-
es with an increase in pulse-on time, due to high
concentration of discharge energy for longer dura-
tion resulting in more melting of the work mater-
ial. It can be further validated with an increasing
trend of overcut with an increase in duty factor, as
represented in Fig. 13c. This detailed study show-
ing the effects of different EDM process parameters
on the considered responses is in close agreement
with the observations of Kandpal et al. [25] while
machining AA6061/10%Al2O3 composite materials.
Thus, for higher MRR, higher values of peak current
and lower values of pulse-on time and duty factor; for
lower TWR, lower values of peak current and higher
values of pulse-on time and duty factor; and for both
SR and overcut, lower values of all the three EDM
process parameters are recommended.

a)

b)

c)

Fig. 13. Effects of different input parameters on overcut
for the EDM process: a) effect of peak current on overcut
(duty factor = 0.6), b) effect of pulse-on time on over-
cut (peak current = 10 A), c) effect of duty factor on

overcut (pulse-on time = 100 µs).

Example 2: ECM process

In this example, Rao and Padmanabhan [27]
studied the effects of varying values of four ECM
process parameters, e.g. applied voltage (AV) (in V),
electrode feed rate (FR) (in mm/min), electrolyte
concentration (EC) (in g/lit) and reinforcement con-

tent (RC) (in wt%) on three responses, i.e. MRR (in
g/min), SR (in µm) and radial overcut (ROC) (in
mm) while machining LM6 Al/B4C composite mate-
rials. Each of those ECM process parameters was set
at three different levels, as shown in Table 5. Based
on Taguchi’s L27 orthogonal array, 27 experiments
were conducted while taking a 25 mm diameter and
20 mm long LM6 Al/B4C composite work materi-
al sample. Among these responses, MRR is the only
beneficial attribute, whereas, SR and ROC are both
non-beneficial quality characteristics. Table 6 shows
the detailed experimental design plan and values of
the measured responses.

Table 5
ECM process parameters and their levels [27].

Process parameter Unit
Level

1 2 3

Applied voltage (AV) V 12 16 20

Feed rate (FR) mm/min 0.2 0.6 1.0

Electrolyte concentration (EC) g/l 10 20 30

Reinforcement content (RC) wt% 2.5 5.0 7.5

Table 6

Experimental design plan along with the response values for
the ECM process [27].

Exp. No.
Process parameter Response

AV FR EC RC MRR SR ROC

1 1 1 1 1 0.268 4.948 0.96

2 1 1 2 2 0.335 5.002 0.94

3 1 1 3 3 0.227 4.591 0.79

4 1 2 1 1 0.353 4.920 0.75

5 1 2 2 2 0.448 4.498 0.65

6 1 2 3 3 0.420 4.725 0.80

7 1 3 1 1 0.689 4.555 0.67

8 1 3 2 2 0.545 4.356 0.64

9 1 3 3 3 0.703 4.232 0.65

10 2 1 1 2 0.321 4.882 0.91

11 2 1 2 3 0.329 4.823 0.94

12 2 1 3 1 0.488 4.254 1.05

13 2 2 1 2 0.379 4.540 0.76

14 2 2 2 3 0.302 4.431 0.69

15 2 2 3 1 0.583 3.998 0.99

16 2 3 1 2 0.615 4.274 0.75

17 2 3 2 3 0.619 4.346 0.70

18 2 3 3 1 0.812 3.598 0.93

19 3 1 1 3 0.282 5.472 0.91

20 3 1 2 1 0.599 4.797 1.10

21 3 1 3 2 0.603 4.640 1.16

22 3 2 1 3 0.526 5.214 0.85

23 3 2 2 1 0.688 4.897 1.03

24 3 2 3 2 0.732 4.531 1.08

25 3 3 1 3 0.688 5.002 0.64

26 3 3 2 1 0.887 4.389 0.99

27 3 3 3 2 0.944 3.989 1
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Now, in order to develop the corresponding model
for the considered ECM process using the principle
of fuzzy logic, these four ECM process parameters
are treated as the inputs, while the three respons-
es are considered to be the outputs. The schema
of this four-input-three-output fuzzy model is ex-
hibited in Fig. 14. Table 7 presents the correspond-
ing minimum and maximum values of the consid-
ered input parameters and outputs. Like the previ-
ous example, triangular membership functions are
also adopted here with three fuzzy subsets to rep-
resent the three levels of all the input parameters,
and with nine fuzzy subsets to symbolize all the out-
puts in the fuzzy system. Now, based on 27 experi-
mental trial runs, the relationships between various
input and output parameters in the form of linguis-
tic statements are also developed, as shown in Ta-
ble 8. The corresponding rule viewer for this ECM
process is portrayed in Fig. 15. It can clearly be ob-
served from this figure that when the values of dif-
ferent ECM process parameters are set as applied
voltage = 12 V, feed rate = 0.2 mm/min, electrolyte
concentration = 10 g/l and reinforcement content
= 2.5 wt%, the corresponding responses are predicat-
ed as MRR = 0.255 g/min, SR = 5.01 µm and ROC
= 0.965mm. For these same settings of ECM process
parameters, the experimental data of Table 6 pro-
vide values of the corresponding responses as MRR
= 0.268 g/min, SR= 4.948 µm and ROC= 0.96mm.
Thus, it can be concluded that for this ECM process,

Fig. 14. Four-input-three-output fuzzy model for the
ECM process.

Table 7

Ranges of input and output parameters for the ECM process.

Parameter/
Response

Input/
Output

Minimum
value

Maximum
value

Applied voltage Input 12 20

Feed rate Input 0.2 1.0

Electrolyte concentration Input 10 30

Reinforcement content Output 2.5 7.5

MRR Output 0.227 0.944

SR Output 3.598 5.472

Radial overcut Output 0.64 1.16

Table 8

.Fuzzy expressions of input and output parameters for the
ECM process

Run
order

If Then

AV Link FR Link EC Link RC MRR SR ROC

1 L and L and L and L LT H MH

2 L and L and M and M VL H MH

3 L and L and H and H LT M L

4 L and M and L and L VL H VL

5 L and M and M and M LT M LT

6 L and M and H and H L MH L

7 L and H and L and L MH M LT

8 L and H and M and M ML ML LT

9 L and H and H and H MH ML LT

10 M and L and L and M VL H M

11 M and L and M and H VL MH MH

12 M and L and H and L ML ML VH

13 M and M and L and M VL M L

14 M and M and M and H LT M LT

15 M and M and H and L M VL H

16 M and H and L and M M ML VL

17 M and H and M and H M ML VL

18 M and H and H and L VH LT MH

19 H and L and L and H LT HT M

20 H and L and M and L M MH VH

21 H and L and H and M M MH HT

22 H and M and L and H ML VH ML

23 H and M and M and L MH H H

24 H and M and H and M H M VH

25 H and H and L and H MH H LT

26 H and H and M and L HT ML H

27 H and H and H and M HT VL H

Fig. 15. Developed fuzzy rule viewer for the ECM process.

the values of the three responses as predicted em-
ploying the fuzzy model also closely match with the
true experimental results. Figures 16–18 exhibit the
detailed comparisons of the actual experimental ob-
servations and the predicted responses for the con-
sidered ECM process.
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Fig. 16. Comparison of experimental and fuzzy MRR val-
ues for the ECM process.

Fig. 17. Comparison of experimental and fuzzy SR values
for the ECM process.

Fig. 18. Comparison of experimental results and fuzzy
ROC values for the ECM process.

Like the first example, the developed interaction
plots also help the concerned process engineers in
studying the effects of different ECM process para-
meters on the three responses, i.e. MRR, SR and
ROC. Figure 19 exhibits how the values of MRR
change with varying values of the four ECM process
parameters. It can be investigated from Fig. 19a that
an increase in applied voltage causes an increase in
MRR, as the current density in the IEG increases
resulting in enhanced value of MRR. On the other
hand, as the feed rate increases, the IEG decreas-
es causing an accumulation of induction current to
a smaller area resulting in a rapid anodic dissolution
and an increase in current density which ultimately
is responsible for having higher value of MRR, as ob-
served in Fig. 19b. A higher value of electrolyte con-
centration increases the electrical conductivity of the
electrolyte that releases a large number of ions in the

IEG, resulting in an increase in MRR, as depicted in
Fig. 19c. An increase in the percentage of reinforce-
ment content decreases the electrical conductivity of
the workpiece. It is because of the fact that the rein-
forced particles are basically poor conductors of elec-
tricity, resulting in lower MRR, as shown in Fig. 19d.

a)

b)

c)

d)

Fig. 19. Effects of various ECM process parameters on
MRR: a) effect of applied voltage on MRR (electrolyte
concentration = 20 g/l, reinforcement content = 5 wt%),
b) effect of feed rate on MRR (applied voltage = 16 V,
reinforcement content = 5 wt%), c) effect of electrolyte
concentration on MRR (applied voltage = 16 V, feed
rate = 0.6 mm/min), d) effect of reinforcement content
on MRR (feed rate = 0.6 mm/min, electrolyte concen-

tration = 20 g/l).

It can be observed from Fig. 20a that at lower
values of applied voltage, the SR is initially high,
which then decreases, and finally increases with the
higher values of applied voltage. The current density
at the IEG in the initial stage is low, resulting in gen-
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eration of etching pits causing rough surface. With
increase in applied voltage, heating of the workpiece
material is observed, due to which the value of SR
deteriorates. On further increase of applied volt-
age, SR increases drastically due to generation of
excessive heat leading to distortion of the machined
surface. On the other hand, increasing feed rate leads
to a decrease in SR value, resulting from a steady
and uniform metal dissolution in anodic dissolution
process, as noticed from Fig. 20b. Figure 20c shows a
moderate increase in SR value with the increment in
electrolyte concentration as it causes low depletions
of ions resulting in a better surface finish. Moreover,
Fig. 20d presents a decreasing trend in the value of
SR with an increase in reinforcement content. The

a)

b)

c)

d)

Fig. 20. Effects of various ECM process parameters on
SR: a) effect of applied voltage on SR (EC = 20 g/l, RC
= 5 wt%), b) effect of feed rate on SR (AV = 16 V, RC =

5 wt%), c) effect of electrolyte concentration on SR (ap-
plied voltage = 16 V, feed rate = 0.6 mm/min), d) effect
of reinforcement content on SR (feed rate = 0.6 mm/min,

electrolyte concentration = 20 g/l).

percentage increment in reinforcement content re-
duces the conductivity of the workpiece material
while distressing the electrolytic action further low-
ering the quality of surface finish.
The ROC value increases with an increase in

applied voltage, as observed from Fig. 21a, as high
electrolyzing current at the IEG results in a high-
er stray current intensity, thereby increasing ROC.
On the other hand, increase in feed rate reduces
the IEG, resulting in a low current and decreasing
ROC, as shown in Fig. 21b. A higher value of elec-
trolyte concentration results in formation of reaction

a)

b)

c)

d)

Fig. 21. Effects of various ECM process parameters on
ROC: a) effect of applied voltage on ROC (electrolyte
concentration = 20 g/l, reinforcement content = 5 wt%),
b) effect of feed rate on ROC (applied voltage = 16 V,
reinforcement content = 5 wt%), c) effect of electrolyte
concentration on ROC (applied voltage = 16 V, feed rate
= 0.6 mm/min), d) effect of reinforcement content on
ROC (feed rate = 0.6 mm/min, electrolyte concentration

= 20 g/l).
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by-products, e.g. sledges, precipitates etc. and also
gas bubbles which lead to the generation of stray
current at the machining periphery causing an incre-
ment in the value of ROC, as observed from Fig. 21c.
Figure 21d presents a decreasing trend in ROC value
with an increase in reinforcement content as the per-
centage increase in reinforced particles reduces the
electrical conductivity leading to reduction in MRR
in radial direction. Now, based on the detailed analy-
ses of the interaction plots and comparing them with
the actual experimental results, it can be conclud-
ed that the analyses presented in this paper are in
close agreement with the observations of Rao and
Padmanabhan [27]. For the considered ECM process,
higher values of MRR can be attained while setting
higher applier voltage, higher feed rate, higher elec-
trolyte concentration and lower reinforcement con-
tent. For lower SR values, moderate applier volt-
age, higher feed rate, higher electrolyte concentra-
tion and moderate reinforcement content can be set.
Also, lower applier voltage, higher feed rate, lower
electrolyte concentration and higher reinforcement
content lead to lower values of ROC.

Conclusions

In this paper, based on the experimental investi-
gations of the past researchers, two NTM processes
(EDM and ECM processes) are selected for modeling
using the fuzzy logic technique. The subsequent fuzzy
relations are developed representing the associations
between the considered NTM process parameters
and responses. It can be clearly observed that the
results derived from the proposed fuzzy model are
in close agreement with the experimental values as
observed by the past researchers. Thus, these fuzzy
models can effectively guide the process engineers
to easily predict the tentative values of different
responses for any given combination of the NTM
process parameters. Moreover, the developed inter-
action plots exhibit the influences of various NTM
process parameters on the responses which may fur-
ther help the concerned process engineers to identify
the optimal parametric settings so as to attain the
target response values. This fuzzy logic approach can
be effectively deployed to other machining processes
(conventional as well as non-conventional) to predict
their optimal output performance while achieving
better quality products with the maximum machin-
ing efficiency.
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