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Abstract. One of the mathematical tools to measure the generation rate of new patterns along a sequence of symbols is the Lempel-Ziv com-
plexity (LZ). Under additional assumptions, LZ is an estimator of entropy in the Shannon sense. Since entropy is considered as a measure of 
randomness, this means that LZ can be treated also as a randomness indicator. In this paper, we used LZ concept to the analysis of different 
flow regimes in cold flow combustor models. Experimental data for two combustor’s configurations motivated by efficient mixing need were 
considered. Extensive computer analysis was applied to develop a complexity approach to the analysis of velocity fluctuations recorded with 
hot-wire anemometry and PIV technique. A natural encoding method to address these velocity fluctuations was proposed. It turned out, that 
with this encoding the complexity values of the sequences are well correlated with the values obtained by means of RMS method (larger/smaller 
complexity larger/smaller RMS). However, our calculations pointed out the interesting result that most complex, this means most random, 
behavior does not overlap with the “most turbulent” point determined by the RMS method, but it is located in the point with maximal average 
velocity. It seems that complexity method can be particularly useful to analyze turbulent and unsteady flow regimes. Moreover, the complexity 
can also be used to establish other flow characteristics like its ergodicity or mixing.
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The development of new methods being alternative to tradi-
tional approaches is of high importance. Recently, to describe 
turbulence authors try to apply concepts derived from Infor-
mation Theory [13] like entropy, transfer entropy, permutation 
entropy and complexity [14]. The oil–gas–water three-phase 
flow in a vertical upward pipe with the use of complexity mea-
sures was studied in [15]. It turned out that the combination of 
Lempel–Ziv complexity and approximate entropy can serve as 
a unique classification criterion of three-phase flow patterns. In 
[16] the Lempel–Ziv algorithm and a multi-scaling approach 
were used to assess precipitation complexity. The methods 
allow characterizing precipitation complexity in the mountain-
ous area and in the plain terrain.

To understand turbulence, production rate of entropy and 
complexity of fluid flows are extensively investigated numeri-
cally [17, 18, 20]. In [18] the directed co-flow effects on local 
entropy generation rate in turbulent and heated round jets were 
studied. It was shown that the directed co-flow with a posi-
tive angle enhances the mixing. In [19] transfer entropy was 
applied to study synthetic model of fluid turbulence, namely 
the Gledzer-Ohkitana-Yamada shell model. Using this tool the 
presence of a direct cascade along the scales in the shell model 
and the locality of the interactions in the space of wavenumbers 
were confirmed. Entropy generation with variable density in 
the turbulent plane jets was investigated in [20]. Computations 
were carried out with eddy viscosity model of turbulence. It 
turned out, that the high value of energy generation is correlated 
with higher inlet hot jet temperature. The results obtained indi-
cated that the merit number increases progressively to reach 
an asymptotic value along the flow direction as the inlet jet 
temperature grows.

1. Introduction

Last years extensive experimental, theoretical and numerical 
efforts have been done to understand important issues of fluid 
dynamics [1‒3]. There is no commonly accepted theory devel-
oped for recognition of fundamental qualitative properties of the 
flow (turbulent – laminar, steady – unsteady, mixing – non-mix-
ing), while in many practical applications there is a great need 
to find effective methods to assess these properties [4‒6]. Com-
putational fluid dynamics was also carried out to understand the 
combustion phenomena in the dual-fuel mode. In [7] emission 
of nitrous oxides and particle materials in a dual-fueled con-
stant-speed engine were analyzed experimentally and numeri-
cally. Numerical simulation was performed by KIVA3V, and its 
results showed good agreements with the experimental results 
under cylinder pressure.

Turbulence is often expressed in terms of either irregular 
or random fluid flows [8]. Therefore, interesting problem is to 
study relations between turbulence and randomness of the flow 
[5, 10]. Nowadays, important issues regarding turbulence are 
connected with its identification, analysis, and classification 
of flow patterns [11]. Turbulent flow leads to fluctuations in 
the scalar field through turbulent convection and consequently 
affects the velocity field. This means that the type of fluctua-
tions of velocity is one of the most important features to char-
acterize the flow [12].
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In this paper we apply Information Theory [13, 21‒23] based 
concept, namely Lempel–Ziv complexity [24] to analyze turbu-
lence in gas turbine combustor’s configurations motivated by 
efficient mixing need. The results obtained were compared with 
the results obtained with the application of the standard indica-
tor of turbulence, i.e. RMS indicator [25]. It turned out that the 
complexity values of the encoded sequences are well correlated 
with the values obtained by means of the RMS method (larger/
smaller complexity larger/smaller RMS). However, our calcu-
lations pointed out also an interesting observation that most 
complex (that is most random) behavior does not overlap with 
the “most turbulent” point determined by RMS method but it 
locates in the point with maximal average velocity.

2. Materials and Methods

2.1. Description of the experimental data. The experiment 
was performed to simulate the flow in the gas turbine combus-
tors [26] using transparent laboratory models. The first goal was 
to develop innovative combustor for small gas turbine, in which 
flameless oxidation of the fuel at high temperature ensures 
low emission of nitrogen oxides (NOx). Nitrogen oxides are 
a group of harmful gases, responsible for air pollution (e.g. pho-
tochemical type of smog) and numerous respiratory diseases in 
humans. Tested combustors were designed to address this goal. 
The main target of the experimental investigations was to get 
physical insight into turbulent fluctuations of the main vortex, 
responsible for the efficient mixing of fuel and air [26‒28]. 
Such type of measurements was performed for the laboratory 
models in order to deliver details about flow structures, import-
ant for optimization of combustor geometry and validation of 
numerical models (necessary information for predictions and 
optimization of real combustors). Two experimental configura-
tions were tested (Figs 1a, 1b). For both configurations 26 uni-
formly distributed points xk, k = 1, 2, …, 26 with the distance 
5 mm in between, along the central line were considered in 
the procedures described furthermore. First and last point were 
located 5 mm from chamber walls. Intuitively, mixing seems 
to be more intense in configuration B, due to its more complex 
shape of the channels.

In order to get complementary insight into the physical 
phenomena, we applied two methods of measurements. In the 
Particle Image Velocimetry method (PIV) average values of 
velocities in some small “neighborhood” of a point under con-
sideration were measured, while in the second method (“hot 
wire”) the values being precisely velocities at such points were 
recorded.

In PIV, which is an optical method, the investigated fluid was 
first seeded with the very small particles which we assume fol-
low precisely the flow. Next, a light scattered by these particles 
is recorded by the digital camera. To acquire images high-speed 
video system (FASTCAM Ultima 40K, Photron) and high-res-
olution PIV system with 12-bit CCD camera (SensiCam, PCO 
Imaging) were used. Illumination was received with using CW 5 
W argon laser (Argon-ion 120, ILA) and double-pulsed Nd:YAG 
35 mJ laser (Solo PIV, NewWave Research Inc.) with minimum 

time interval 200 ns between pulses. The typical investigated 
flow velocities were in the range 10‒25 m/s. Observation of 
correlations of the successive images that include information 
about particles displacement allows for evaluation of the veloc-
ity field. The digital images are divided into small subareas 
called “interrogation areas”. In our experiments, dimensions 
of the interrogation areas were 32£32 pixels what corresponds 
to 3.5£3.5 mm. The local displacement vectors for the images 
were determined for each interrogation area. For this reason, 
velocity field obtained from the PIV technique is the mean 
velocity, averaged over each interrogation area. The sampling 
rate of measurements in the PIV method was 4 Hz.

The second method, i.e. thermoanemometry (also called 
“hot-wire” method) is high-precision, indirect technique for 
point velocity measurement, especially useful to the highly 
unsteady flows. In the performed experiments we used hot-
wire method with one-wire sensor. This method ensures precise 
measurement of velocity magnitude only, i.e. the length of the 
velocity vector in the plane perpendicular to the wire of the 
sensor, without information about vector direction. The veloc-
ity of the flow was evaluated by the measurement of the heat 
losses of the very thin metallic wire (in our experiment about 
1 micrometer in diameter) that was heated up to about 200°C 
by the electric current and placed into the investigated flow. 
Thermal balance includes heat generation, heat conduction, and 
forced convection. Because the temperature is relatively low, 
heat radiation was neglected. To complete this description it is 

Fig. 1. Tested onfigurations of the combustors. They were designed to 
address efficient mixing of fluel and air, and simultaneously to ensure 

low emission of nitrogen oxides
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worth to stress that for extremely slow flows, natural convection 
has to be considered. After calibration, thermal balance allowed 
to calculate the instantaneous value of the fluid flow velocity 
at a point being considered. In this method, the sampling rate 
for each measurement was 10 kHz. From the conceptual point 
of view, the basic difference between these two methods is 
that the value of a measurement in a given point determined by 
PIV is, in fact, the average value of velocities in some small 
“neighborhood” of this point while hot-wire measurements 
correspond precisely to the velocity already at the given point. 
The velocities measurements obtained by these techniques were 
subsequently encoded using the procedure described in the next 
section and the complexity of these sequences was analyzed.

2.2. Lempel–Ziv complexity and encoding procedure. There 
are a lot of different kinds of complexity measures applied 
successfully in numerous fields [21, 23, 29, 30]. All of them 
share the common property of providing quantitative informa-
tion coming from the structure of symbol sequence containing 
information about its source (in our case about the flow). In this 
paper, we propose the analysis of fluid flow by means of the 
Lempel–Ziv complexity as defined in [24]. This is a natural idea 
since normalized Lempel–Ziv complexity measures the gener-
ation rate of new patterns along symbol sequence. It is closely 
related to such important information-theoretic properties like 
entropy, randomness, compression ratio, and redundancy [24]. 
It was shown that for ergodic stochastic processes normalized 
complexity estimates entropy rate [24]. However, in contrast 
to the entropy concept, complexity is a property of individual 
sequences easy in implementation and calculation.

All versions of the Lempel–Ziv complexities follow the 
same basic idea which is to parse the sequence of symbols 
bn

1 := b1b2 … bn of length n into distinct phrases. In the case of 
the version being applied in [24] the parsing algorithm is as fol-
lows. We start with the first symbol in the sequence and it states 
the first phrase (i.e. pattern). To obtain the second phrase we 
consider the consecutive sequences՚ symbols up to the moment 
k when the phrase b2, …, bk obtained does not occur in the 
earlier sequence b1, …, b(k ¡ 1). To get the third phrase we repeat 
such procedure starting from the symbol b(k + 1). To find next 
and next phrases we proceed similarly up to the moment we 
reach bn. In this way, the sequence b1b2 … bn is decomposed 
into distinct phrases and Lempel–Ziv complexity CLZ(b

n
1) is the 

number of these phrases. The generation rate of new patterns 
along b1b2 … bn is measured by normalized complexity

 c(bn
1) = 

CLZ(b
n
1)

n
log2n

. (1)

It was proven [24] that for ergodic sources

 lim
n→1

supc(bn
1) = h , (2)

with probability 1, where h is entropy rate of the source [13]. 
Sequences with a repetitive or poor pattern structure (e.g. peri-
odic, quasi-periodic or regular sequences) have a very small 

normalized complexity, close to 0. On the opposite end stand 
the random sequences, which unfold rich pattern diversity. For 
sequences coming from fully random sources normalized com-
plexity is 1 with very high probability.

To apply the complexity approach we propose the encoding 
method that takes into account velocity fluctuation. To do this 
at each point xk, k = 1, 2, …, 26, the velocity average value 
vavr(xk) was calculated and treated as the threshold in the encod-
ing process. For a given sequence of measurements at a point xk 
of velocity (vi(xk))

n
i = 1 we define the sequence of bits

 (bi(xk))
n
i = 1 =  

bi(xk) = 1  if vi(xk) ¸ vavr(xk)

bi(xk) = 0  if vi(xk) < vavr(xk)
 (3)

where vavr(xk) = 1
n

n

i=1
∑ vi(xk).

Such sequences of bits were next analyzed by means of 
the normalized complexity. The accuracy of the Lempel–Ziv 
estimator as a function of the length of time series was tested 
in our previous paper [29]. It was shown that for the sequences 
of 400 bits long the entropy estimation error is low, it is below 
4 percent. The length of sequences which are considered in this 
paper satisfied this condition.

3. Results

Typical velocity profiles measured by Particle Image Veloci-
metry (PIV) for combustor A were presented in Fig. 2. It also 
illustrates how complex the velocity fluctuations were in cen-
terline of the combustor.

Fig. 2. Illustration of time variability of the flow in combustor A. 500 
individual profiles of vertical component of the velocity, extracted 
along the centerline from two-dimensional instantaneous velocity 
fields measured by PIV with time interval 0.25 s are shown. Average 
velocity course is indicated by a red line. One can see that the flow, 

despite its stationarity, exhibits strong variation of velocity value

Turbulence and randomness

of the fluid flow velocity at a point being considered. In this
method, the sampling rate for each measurement was 10 kHz.
From the conceptual point of view, the basic difference be-
tween these two methods is that the value of a measurement
in a given point determined by PIV is, in fact, the average
value of velocities in some small "neighborhood" of this point
while hot-wire measurements correspond precisely to the ve-
locity already at the given point. The velocities measurements
obtained by these techniques were subsequently encoded using
the procedure described in the next section and the complexity
of these sequences was analyzed.

2.2. Lempel-Ziv complexity and encoding procedure
There are a lot of different kinds of complexity measures ap-
plied successfully in numerous fields [21, 23, 29, 30]. All of
them share the common property of providing quantitative in-
formation coming from the structure of symbol sequence con-
taining information about its source (in our case about the
flow). In this paper, we propose the analysis of fluid flow
by means of the Lempel-Ziv complexity as defined in [24].
This is a natural idea since normalized Lempel-Ziv complex-
ity measures the generation rate of new patterns along symbol
sequence. It is closely related to such important information-
theoretic properties like entropy, randomness, compression
ratio, and redundancy [24]. It was shown that for ergodic
stochastic processes normalized complexity estimates entropy
rate [24]. However, in contrast to the entropy concept, com-
plexity is a property of individual sequences easy in imple-
mentation and calculation.

All versions of the Lempel-Ziv complexities follow the same
basic idea which is to parse the sequence of symbols bn

1 :=
b1b2 . . .bn of length n into distinct phrases. In the case of
the version being applied in [24] the parsing algorithm is as
follows. We start with the first symbol in the sequence and
it states the first phrase (i.e. patterns). To obtain the sec-
ond phrase we consider the consecutive sequences’ symbols
up to the moment k when the phrase b2, . . . ,bk obtained does
not occur in the earlier sequence b1, . . . ,b(k−1). To get the
third phrase we repeat such procedure starting from the sym-
bol b(k+1). To find next and next phrases we proceed simi-
larly up to the moment we reach bn. In this way, the sequence
b1b2 . . .bn is decomposed into distinct phrases and Lempel-Ziv
complexity CLZ(bn

1) is the number of these phrases. The gen-
eration rate of new patterns along b1b2 . . .bn is measured by
normalized complexity

c(bn
1) =

CLZ(bn
1)

n
log2 n

. (1)

It was proven [24] that for ergodic sources

lim
n→∞

supc(bn
1) = h , (2)

with probability 1, where h is entropy rate of the source [13].
Sequences with a repetitive or poor pattern structure (e.g. pe-
riodic, quasi-periodic or regular sequences) have a very small
normalized complexity, close to 0. On the opposite end stand
the random sequences, which unfold rich pattern diversity. For

sequences coming from fully random sources normalized com-
plexity is 1 with very high probability.

To apply the complexity approach we propose the encod-
ing method that takes into account velocity fluctuation. To do
this at each point xk,k = 1,2, . . . ,26, the velocity average value
vavr(xk) was calculated and treated as the threshold in the en-
coding process. For a given sequence of measurements at a
point xk of velocity (vi(xk))

n
i=1 we define the sequence of bits

(bi(xk))
n
i=1 =

{
bi(xk) = 1 if vi(xk)≥ vavr(xk)

bi(xk) = 0 if vi(xk)< vavr(xk)
(3)

where vavr(xk) =
1
n

n
∑

i=1
vi(xk).

Such sequences of bits were next analyzed by means of the
normalized complexity. The accuracy of the Lempel-Ziv esti-
mator as a function of the length of time series was tested in
our previous paper [29]. It was shown that for the sequences of
400 bits long the entropy estimation error is low, it is below 4
percent. The length of sequences which are considered in this
paper satisfied this condition.

3. Results
Typical velocity profiles measured by Particle Image Ve-
locimetry (PIV) for combustor A were presented in Figure 2.
It also illustrates how complex the velocity fluctuations were
in centerline of the combustor.

Fig. 2. Illustration of time variability of the flow in combustor A.
500 individual profiles of vertical component of the velocity, ex-
tracted along the centerline from two-dimensional instantaneous ve-
locity fields measured by PIV with time interval 0.25 s are shown.
Average velocity course is indicated by a red line. One can see that
the flow, despite its stationarity, exhibits strong variation of velocity
value.

To present the results, first we briefly recall the concept of
RMS value, which is a standard tool to measure turbulence
[8, 25]. For a given sequence (vi(xk))

n
i=1 of velocity measure-

ments in some point xk,k = 1,2, . . . ,26, RMS is defined as
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To present the results, first we briefly recall the concept 
of RMS value, which is a standard tool to measure turbulence 
[8, 25]. For a given sequence (vi(xk))

n
i = 1 of velocity measure-

ments in some point xk, k = 1, 2, …, 26, RMS is defined as

 RMS(xk) := 
µ

1
n i =1

n

∑(vi(xk) ¡ vavr(xk))
2
¶1

2
. (4)

This indicator is being assumed a precursor of turbulence (it 
means that the increase of RMS indicates that the flow tends to 
a turbulent flow). To develop the complexity approach to char-
acterize the type of flow, first we make natural assumption that 
the turbulent flow should be close to random. Therefore, since 
the complexity is a very good randomness indicator, we start 
our analysis by determining a generic sampling frequency of 
velocity for which the normalized complexity reaches the max-
imal value. Extensive numerical calculations have been done 
to find among all complexity curves (determined for various 
sampling frequency) the one with maximal complexity. To do 
this, for each combustor and for each point xk, k = 1, 2, …, 26, 
the range of sampling frequencies from the interval 0.1 Hz to 
2 kHz has been considered with the step of 0.1 Hz.

The complexity analysis was applied to the velocity mea-
surements obtained by hot wire method. After fixing generic 
sampling frequency the encoding procedure was used (see Sec-
tion 2.2) to get sequences of bits and next to calculate the nor-
malized complexities. Thus, in spite of the fact that sampling 
frequency in the experiments was 10 kHz, for the “complexity” 

purposes the generic frequency which we determined for the 
first experiment was 11.1 Hz, whereas in the second experiment 
it was 21.7 Hz.

The results of normalized complexity calculations, with 
the use of these generic frequencies are presented in Figs 3a 
and 3b. They are shown for 26 points placed uniformly along 
the central line in combustor for two configurations chambers 
(Figs 1a, 1b). For comparison the RMS analysis of velocity 
fluctuations both for data recorded with the use of thermoan-
emometry (Figs 3a, 3b) and with PIV method (Fig. 3a) are 
also given. One can observe qualitative similarity between the 
curves obtained with the use of complexity approach and with 
the use of RMS method (4).

The results presented in Fig. 3 also show that the complexity 
curves are well correlated with average velocity curves (at each 
point the average is taken over time). Moreover, one can also 
observe that for both combustor configurations the maximal 
normalized complexity is reached in the point which is located 
very close to the point with maximal average velocity. However, 
when in configuration B these points almost perfectly coincide, 
it turned out that for configuration A the most random point 
determined by complexity is at some distance from the maximal 
velocity point. Our hypothesis is that the points with maximal 
velocity and maximal normalized complexity better coincide 
for combustors with more mixing asymmetric property and this 
seems to be the B configuration.

On the other hand, another interesting observation is that for 
configuration A the maximal value of normalized complexity is 
close to 1 (Fig. 3a). This indicates the fully random character 
of the encoded sequence and consequently random character 

Fig. 3. Normalized complexity and RMS courses along selected line for the both configurations (a) and (b). Observe that the maximum of 
complexity (most random velocity fluctuations point) is very close to maximal average velocity while the most turbulent point determined with 

RMS is at some distance from this point

a) combustor configuration A b) combustor configuration B
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of the velocity fluctuations in this point. For configuration B 
the maximal normalized complexity value reached is about 0.8 
what shows that for this configuration the flow is not able to 
get a random character, it is not fully developed.

4. Conclusions

A novel method based on the Information Theory was proposed 
and applied to the analysis of different flow regimes in gas 
turbine combustors. To do this we analyze velocity fluctua-
tions by applying encoding procedure which addresses these 
fluctuations. An important feature of this approach is its strong 
mathematical background coming from the Information The-
ory [13, 24]. This way we can also study relations between 
turbulence regimes of the flow and entropy rates (estimated by 
the Lempel–Ziv complexity). It is known that entropy rate is 
a quantitative measure of randomness, thus, we can compare 
the turbulence levels with the levels of randomness.

For both combustor configurations our results show that, 
in general, entropy rates of velocity fluctuations are well cor-
related with the RMS values for x ¸ 20 mm. On the other hand, 
in the case of configuration A we observed that close to the wall 
(x < 20 mm) this correlation weakens, which we conjecture is 
the result of some wall influence on the flow. Our results sup-
port the idea that the complexity methods can also be applied 
to determine and to classify flow zones.

On the other hand, we observed a subtle fact. It turned out 
that the most random velocity fluctuations are in the point with 
maximal velocity while the most “turbulent” point, as deter-
mined with the RMS method, is at a small distance from this 
point.

It seems that Information Theory method can be particularly 
useful to analyze turbulent and unsteady flow regimes and it 
can be treated as an alternative to other methods. Moreover, 
concepts like complexity can also be used to establish other 
flow characteristics like its non-regularity and mixing prop-
erty. However, the important point that should be addressed in 
the future, in the context of application of Information Theory 
based methods, is to determine more effectively a generic sam-
pling frequencies.
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