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Assignability of numerical characteristics of time-varying systems
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Abstract. The main aim of this article is to survey and discuss the existing state of art concerning the assignability by a feedback of numerical
characteristics of linear continuous and discrete time-varying systems. Most of the results present necessary or sufficient conditions for different
formulation of the Lyapunov spectrum assignability problem. These conditions are expressed in terms of various controllability types and
optimalizability of the controlled systems and certain properties of the free system such as: regularity, diagonalizability, boundness away, integral
separation and reducibility.
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1. Introduction

From the point of view of the classical control theory the primary
stabilization problem is a problem of stabilization of the plant
described by linear time-invariant system given by

ẋ(t) = Ax(t)+Bu(t), x ∈ Rn, u ∈ Rm, t ∈ R, (1)

where A and B are real matrices of appropriate sizes. By stabi-
lization of this model we understand a problem of finding linear
time-invariant feedback

u(t) =Ux(t)

such that the closed-loop system

ẋ(t) = (A+BU)x(t), x ∈ Rn, t ∈ R (2)

is assymptoticly stable. On the base on the well-known stability
criterion (see [1]) the stabilization problem leads to the location
in the open left half complex plane all eigenvalues λi(A+BU),
i = 1, . . . ,n of the matrix A + BU by an appropriate chosen
feedback matrix U . It is clear that the solution of this problem, if
it exists, may be not unique because the eigenvalues λi(A+BU)
may be located in the open left half complex plane in many ways.
Whereas the minimal distance of the eigenvalues λi(A+BU)
from the imaginary axis, i.e. the number

α =−maxReλi(A+BU)

describes asymptotic decaying rate of the solution as e−αt , then
depending on the particular placement of the eigenvalues we
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may change qualitative behaviour convegency to zero character-
ized, among others, by degree and amplitudes of oscillation [1].
The natural requirement of designing the stabilizing feedback
in such a way that closed-loop system is fast and smooth led to
problems of regulator synthesis with additional qualitative crite-
ria [1]. One of the primary methods of designing such a control
strategy for linear systems with time-invariant coefficients is the
pole placement method, also known as the pole-shifting or the
spectrum assignment method [1], which based on construction
of the feedback in such a way that the eigenvalues of the matrix
A+BU have a priori given location.

It is worth to mention that this method is not limited only
to stabilization problems, where the decaying to zero is the
most importing feature. In the case of tracking systems the very
important issue is to keep the transient states in given limits
when the set point is changing. If system (1) is controllable
(see [2–5] for definition), then introducing control in the form

u(t) =Ux(t)+ v(t),

where U is a given matrix of size m×n we do not change this
property i.e. system

ẋ(t) = (A+BU)x(t)+Bv(t), x ∈ Rn, u ∈ Rm, t ∈ R (3)

is controllable [1]. Changing by the feedback U location of
eigenvalues of the matrix A+BU , we may ensure the required
transient states constrains. A whole range of issues related to
solving such problems, very closed to engineering practice [6],
are usually referred to as the modal control theory, details of
which can be found for example in the book [7].

A typical example of modal control task is a problem of
assigning the spectrum of system (3) by the selection of the
matrix U to ensure that

λi(A+BU) = µi, i = 1, . . . ,n
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for a priori given sequence of complex numbers µ1, µ2, . . . , µn.
In the case of a single input systems (m = 1) the problem of
assignability of the spectrum of the matrix A+BU is solvable
if and only the square matrix

S =
[
B AB A2B . . . An−1B

]

is invertible. A very important observation connected to this
criterion is the fact that invertibility of the matrix S is also, in
the considered case, the necessary and sufficient condition for
controllability of system (1) (see eg., [2]). Basing on this obser-
vation Romanian mathematician W. M. Popov at the beginning
of 1960’s proved in [8] that in case of arbitrary m the necessary
and sufficient condition for assignability of the spectrum of the
matrix A+BU is

rank
[
B AB A2B . . . An−1B

]
= n.

Slightly earlier R. Kalman in [9] showed that this condition is
also a necessary and sufficient for controllability of system (1).
Finally, W. M. Wonham in the paper [10] clarified that if the set
µ1, µ2, . . . , µn is symmetric with respect to the real axis, then
the matrix U can be selected as a real matrix.

In order to cope with growing requirements formulated for
control systems in the process of the model building we use
linear time-varying systems. The most frequently used class of
linear time-varying system is the one of periodic systems. They
appear in the natural way in signal processing and communi-
cation as, for example, filters which incorporate modulators in
the signal path (see [11]), as well as in control. We also obtain
linear time-varying systems when we simplify certain compli-
cated models as it is the case of the linearization of the nonlinear
dynamics around of the given trajectory [12,13]. Another appli-
cation of linear time-varying models is presented in [14] where
the authors analysis electrical circuits while in [15] it is shown
how to design a simplified observer on the base of the linear
time-varying model. Further industrial applications of linear
time-varying models are presented in [16] to model current-
mode control of a converter, highway vehicles with time-varying
velocity (see also [17]) and servo system with moving operat-
ing point. It should be also noticed that switched and jump
(see [18,19]) linear systems belong to the class of time-varying
systems. Finally, we may obtain a linear time-varying model
when we apply a time-varying feedback to a time-invariant sys-
tem in order to improved the control quality.

In the one of the first paper [20] about the modal control for
time-varying systems, P. Brunovsky showed that for system

ẋ(t) = A(t)x(t)+B(t)u(t), x ∈ Rn, u ∈ Rm, t ∈ R (4)

with ω-periodic and continuously differentiable coefficients
solvability of the assignability problem for their characteris-
tic multipliers is equivalent to complete controllability of the
system. Moreover, the feedback function U(·) may be selected
as ω-periodic and continuously differentiable. If we would like
to extend that result to general time-varying system then we have
to give the answer to the following three questions.

1. How to define the spectrum of the closed-loop system

ẋ(t) = (A(t)+B(t)U(t))x(t), x ∈ Rn, t ∈ R? (5)

2. How to define the controllability?
3. What class of feedback functions U should be considered?

It seems to be natural to consider in time-varying case the
Lyapunov spectrum (see [21] for the definition and basic prop-
erties) as a counterpart of spectrum of matrix A. However, we
should remember that for time-invariant system the Lyapunov
spectrum consists of real parts of the eigenvalues of matrix A.

For the time-varying systems we have many nonequivalent
concepts of controllability [2]. In this paper we will consider
three of them which are called: controllability, complete con-
trollability and uniform complete controllability.

Regarding to the class of feedback function U(·) we will
mainly consider a class of bounded piecewise continuous func-
tions but we also present some results for the class of essentially
bounded functions.

In the paper we will consider several formulations of the
assignability of the Lyapunov exponents of both continuous and
discrete linear time-varying systems and we will describe solv-
ability of this problem in the context of controllability. Addition-
ally, we will present some results for assignability for another
numerical characteristics.

The paper consists of two parts. The first one is about
continuous-time systems, whereas the second one contains re-
sults for discrete-time systems. Each part has the same struc-
ture and starts with basic notation, definitions of Lyapunov
spectrum and concepts from theory of autonomous systems.
Next we discuss relations between stabilizability, controllabil-
ity and optimizability. The main section of each part is entitled
Assignability and contains results about different formulations
of assignability of the Lyapunov spectrum as well as regularity
coefficients and central exponents.

2. Continuous-time systems

2.1. Basic notation. Let Rn be the n-dimensional Euclidean
space with a fixed orthonormal basis and the standard norm
‖ · ‖. By Rn×m we denote the space of all real n×m-matrices
with the spectral norm, i.e. with the operator norm generated in
Rn×m by Euclidean norms in Rn and Rm.

For symmetric matrixW ∈Rn×n we will writeW > 0 (W ≥ 0)
if the matrix W is positive (nonnegative) definite, i.e. xTWx > 0,
(xTWx ≥ 0) for each nonzero vector x ∈ Rn where superscript
“T” denotes transposition operation. For two symmetric matri-
ces W, V ∈Rn×n we will write W >V , (W ≥V ) when (W −V )
is positive (nonnegative) definite matrix.

By In we will denote the identity matrix of order n when
the dimension of the matrix follows from the context we will
omit the sub-index n. By R+ we denote the interval [0,∞) and
by Rn

≤ we denote the set of all nondecreasing sequences of
n real numbers and for µ = (µ1,µ2, . . . ,µn) ∈ Rn

≤ denote by
Oδ (µ) the set of all sequences ν = (ν1,ν2, . . . ,νs) ∈ Rn

≤ such
that max j=1,2,...,n |ν j −µ j|< δ .

For an interval I ⊂ R the set of all essentially bounded and
measurable functions f : I →Rn×m is denoted L∞(I , Rn×m),
L∞

loc(R+, Rn×m) is the set of all functions f : R+ → Rn×m such
that for any compact interval I ⊂ R+ the restriction of f to I
belongs to L∞(I , Rn×m), and L2(I , Rn×m) is the set of inte-
grable functions f : I →Rn×m such that

∫
I ‖ f (s)‖2 ds<∞. By

PC(I ,Rn×m) we will denote the set of all bounded piecewise
continuous functions f : I →Rn×m. A function B : I →Rn×m

is called piecewise uniformly continuous on I if the following
conditions are satisfied: B ∈ PC(I ,Rn×m), there exists ∆0 > 0
such that the length of each continuity interval I j( j ∈ J ⊂ N)
of the function B satisfies the inequality |I j| ≥ ∆0, and for each
ε > 0, there exists δ = δ (ε) > 0 such that ‖B(t)−B(s)‖ ≤ ε
for each j ∈ J and for all t,s ∈ I j satisfying the inequality
|t − s| ≤ δ . By PUC(I ,Rn×m) we will denote the set of all
piecewise uniformly continuous functions f : I → Rn×m. If
m = 1 then we will simple write L∞(I , Rn), L∞

loc(R+, Rn),
L2(I ,Rn), PC(I ,Rn) and PUC(I ,Rn).

We consider the continuous time-varying linear system

ẋ(t) = A(t)x(t)+B(t)u(t) (6)

where A ∈ L∞(R+,Rn×n) and B ∈ PC(R+,Rn×m) (occasionally
we also consider system (6) with unbounded coefficients but then
it will be clearly stated), x is the n-dimensional state vector and
u ∈ PC(R+,Rm) is called a control. A solution corresponding
to the initial condition x(t0) = x0 ∈ Rn at time t0 ∈ R+ and the
input function u is denoted by x(·,x0, t0,u).

For the homogeneous system

ẋ(t) = A(t)x(t) (7)

the unique solution corresponding to the initial condition x(t0) =
x0 ∈ Rn is denoted x(·,x0, t0) and its state transition matrix is
denote by ΦA(·, ·). For a bounded function U ∈ L∞(R+,Rm×n)
we will denote by ‖U‖∞ the supremum norm defined by

‖U‖∞ = sup
t∈[0,∞)

‖U(t)‖.

For x0 ∈ Rn, x0 �= 0 the Lyapunov exponent λ (x0) of (7) is
defined as follows

λ (x0) = limsup
t→∞

1
t

ln‖x(t,x0, t0)‖.

It easy to show that the value of λ (x0) does not depend on
t0. It is well known (see for example [22, 23]) that the set of
Lyapunov exponents of all nontrivial solutions of system (7)
contains at most n elements. Moreover, all Lyapunov exponents
λ ′

i (A), i ∈ N, i ≤ r ≤ n are finite and fulfil the inequalities

−∞ < λ ′
1(A)< λ ′

2(A)< .. . < λ ′
r(A)< ∞ .

For each λ ′
i (A) we consider the linear subspaces of Rn

Ei =
{

v ∈ Rn : λ (v)≤ λ ′
i (A)

}

and we set E0 = {0}. The multiplicity ni of the Lyapunov expo-
nent λ ′

i (A) is defined as

ni = dimEi −dimEi−1 , i = 1,2, . . . ,r.

Observe that
r

∑
i=1

ni = n.

The sequence

λ (A) = (λ1(A), λ2(A), . . . , λn(A)) ,

where each Lyapunov exponent λ ′
i (A) appears ni times, will be

called the Lyapunov spectrum of (7). It is also well known [22]
that

λn(A) = limsup
t→∞

1
t

ln‖ΦA(t, t0)‖. (8)

For x0 ∈ Rn, x0 �= 0 the Bohl exponent β (x0) of solution
x(·,x0, t0) of (7) is defined as follows

β (x0) = limsup
t−τ→∞

1
t − τ

ln
‖x(t,x0, t0)‖
‖x(τ,x0, t0)‖

and the Bohl exponent of system (7) is defined by

β (A) = limsup
t−τ→∞

1
t − τ

ln‖ΦA(t,τ)‖.

It is easy to show that the value of β (x0) does not depend on
t0. In contrast to the Lyapunov exponents the structure of the
set {β (x0) : x0 ∈ Rn \{0}} and the relation between β (x0) and
β (A) are much more complicated. The full description of the
set of all Bohl exponents of a given system is presented in [24].
It has been also shown in [24] that for each number p ≤ P there
exists a system (7) such that

sup{β (x0) : x0 ∈ Rn \{0}}= p

and
β (A) = P.

Let the control u in system (6) be defined as a linear state
feedback u(t) = U(t)x(t), where U : R+ → Rm×n. We assume
that U ∈ PC(R+,Rm×n), unless otherwise is stated. Then the
original system (6) becomes

ẋ(t) = (A(t)+B(t)U(t))x(t). (9)

The spectrum of the closed-loop system (9) will be denoted by

λ (A+BU) = (λ1(A+BU), λ2(A+BU), . . . , λn(A+BU)) .

Now we will present certain definitions and concepts from the
theory of linear time-varying differential equations which we
will use in the further part of this paper (see [25]).



1009

Assignability of numerical characteristics of time-varying systems

Bull.  Pol.  Ac.:  Tech.  67(6)  2019

For an interval I ⊂ R the set of all essentially bounded and
measurable functions f : I →Rn×m is denoted L∞(I , Rn×m),
L∞

loc(R+, Rn×m) is the set of all functions f : R+ → Rn×m such
that for any compact interval I ⊂ R+ the restriction of f to I
belongs to L∞(I , Rn×m), and L2(I , Rn×m) is the set of inte-
grable functions f : I →Rn×m such that

∫
I ‖ f (s)‖2 ds<∞. By

PC(I ,Rn×m) we will denote the set of all bounded piecewise
continuous functions f : I →Rn×m. A function B : I →Rn×m

is called piecewise uniformly continuous on I if the following
conditions are satisfied: B ∈ PC(I ,Rn×m), there exists ∆0 > 0
such that the length of each continuity interval I j( j ∈ J ⊂ N)
of the function B satisfies the inequality |I j| ≥ ∆0, and for each
ε > 0, there exists δ = δ (ε) > 0 such that ‖B(t)−B(s)‖ ≤ ε
for each j ∈ J and for all t,s ∈ I j satisfying the inequality
|t − s| ≤ δ . By PUC(I ,Rn×m) we will denote the set of all
piecewise uniformly continuous functions f : I → Rn×m. If
m = 1 then we will simple write L∞(I , Rn), L∞

loc(R+, Rn),
L2(I ,Rn), PC(I ,Rn) and PUC(I ,Rn).

We consider the continuous time-varying linear system

ẋ(t) = A(t)x(t)+B(t)u(t) (6)

where A ∈ L∞(R+,Rn×n) and B ∈ PC(R+,Rn×m) (occasionally
we also consider system (6) with unbounded coefficients but then
it will be clearly stated), x is the n-dimensional state vector and
u ∈ PC(R+,Rm) is called a control. A solution corresponding
to the initial condition x(t0) = x0 ∈ Rn at time t0 ∈ R+ and the
input function u is denoted by x(·,x0, t0,u).

For the homogeneous system

ẋ(t) = A(t)x(t) (7)

the unique solution corresponding to the initial condition x(t0) =
x0 ∈ Rn is denoted x(·,x0, t0) and its state transition matrix is
denote by ΦA(·, ·). For a bounded function U ∈ L∞(R+,Rm×n)
we will denote by ‖U‖∞ the supremum norm defined by

‖U‖∞ = sup
t∈[0,∞)

‖U(t)‖.

For x0 ∈ Rn, x0 �= 0 the Lyapunov exponent λ (x0) of (7) is
defined as follows

λ (x0) = limsup
t→∞

1
t

ln‖x(t,x0, t0)‖.

It easy to show that the value of λ (x0) does not depend on
t0. It is well known (see for example [22, 23]) that the set of
Lyapunov exponents of all nontrivial solutions of system (7)
contains at most n elements. Moreover, all Lyapunov exponents
λ ′

i (A), i ∈ N, i ≤ r ≤ n are finite and fulfil the inequalities

−∞ < λ ′
1(A)< λ ′

2(A)< .. . < λ ′
r(A)< ∞ .

For each λ ′
i (A) we consider the linear subspaces of Rn

Ei =
{

v ∈ Rn : λ (v)≤ λ ′
i (A)

}

and we set E0 = {0}. The multiplicity ni of the Lyapunov expo-
nent λ ′

i (A) is defined as

ni = dimEi −dimEi−1 , i = 1,2, . . . ,r.

Observe that
r

∑
i=1

ni = n.

The sequence

λ (A) = (λ1(A), λ2(A), . . . , λn(A)) ,

where each Lyapunov exponent λ ′
i (A) appears ni times, will be

called the Lyapunov spectrum of (7). It is also well known [22]
that

λn(A) = limsup
t→∞

1
t

ln‖ΦA(t, t0)‖. (8)

For x0 ∈ Rn, x0 �= 0 the Bohl exponent β (x0) of solution
x(·,x0, t0) of (7) is defined as follows

β (x0) = limsup
t−τ→∞

1
t − τ

ln
‖x(t,x0, t0)‖
‖x(τ,x0, t0)‖

and the Bohl exponent of system (7) is defined by

β (A) = limsup
t−τ→∞

1
t − τ

ln‖ΦA(t,τ)‖.

It is easy to show that the value of β (x0) does not depend on
t0. In contrast to the Lyapunov exponents the structure of the
set {β (x0) : x0 ∈ Rn \{0}} and the relation between β (x0) and
β (A) are much more complicated. The full description of the
set of all Bohl exponents of a given system is presented in [24].
It has been also shown in [24] that for each number p ≤ P there
exists a system (7) such that

sup{β (x0) : x0 ∈ Rn \{0}}= p

and
β (A) = P.

Let the control u in system (6) be defined as a linear state
feedback u(t) = U(t)x(t), where U : R+ → Rm×n. We assume
that U ∈ PC(R+,Rm×n), unless otherwise is stated. Then the
original system (6) becomes

ẋ(t) = (A(t)+B(t)U(t))x(t). (9)

The spectrum of the closed-loop system (9) will be denoted by

λ (A+BU) = (λ1(A+BU), λ2(A+BU), . . . , λn(A+BU)) .

Now we will present certain definitions and concepts from the
theory of linear time-varying differential equations which we
will use in the further part of this paper (see [25]).
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Definition 1. The number

σL(A) =
n

∑
i=1

λi(A)− liminf
t→∞

1
t

t∫

0

trA(s)ds

is called the Lyapunov regularity coefficient of system (7). Sys-
tem (7) is called regular (in the Lyapunov sense) if σL(A) = 0.

Definition 2. Suppose that L : R+ →Rn×n is piecewise contin-
uously differentiable, L(t) is invertible for all t ∈ R+ and

sup
t≥0

(
‖L(t)‖+‖L−1(t)‖+‖L̇(t)‖

)
< ∞,

then the transformation

y = L(t)x

is called the Lyapunov transformation.

Definition 3. System (7) is called dynamically equivalent to
system

ẏ(t) = G(t)y(t) (10)

if there exists a Lyapunov transformation L such that

G(t) = L(t)A(t)L−1(t)+ L̇(t)L−1(t)

for all t ∈ R+. If there exists a Lyapunov transformation such
that all the matrices G(t), t ∈ R+ are diagonal then system (7)
is called diagonalizable.

Definition 4. The Lyapunov spectrum of (7) is called sta-
ble if for any ε > 0 there exists δ > 0 such that for any
Q : PC(R+,Rn×n) the inequality

‖Q‖∞ < δ

implies
λ (A+Q) ∈ Oε (λ (A)) ,

where λ (A+Q) is the Lyapunov spectrum of so-called disturbed
system

ẋ(t) = (A(t)+Q(t))x(t).

Let us briefly describe the relationships between the intro-
duced concepts. It is not difficult to give examples of system
with the following properties: system is regular and not inte-
grally separated; system is regular and integrally separated; sys-
tem is irregular and not integrally separated; system is irregular
and integrally separated.

2.2. Stability, stabilizability, controllability and optimaliz-
ability. In this subsection we will define the concepts of stabil-
ity, stabilizability, controllability and optimizability of continu-
ous time-varying linear systems.

Definition 5. [26] System (7) is called (uniformly expo-
nentially) exponentially stable if there exist positive constants
M, ω ∈ R+ such that

(
‖ΦA(t, t0)‖ ≤ Me−ω(t−t0)

)

‖ΦA(t,0)‖ ≤ Me−ωt

for all (t > t0 ≥ 0) t ≥ 0.

The defined above concepts of stability are characterized by
Lyapunov and Bohl exponents in the following ways.

Theorem 1. [27, 28] System (7) is (uniformly exponentially)
exponentially stable if and only if

(β (A)< 0)

λn(A)< 0.

Among many different kinds of controllability we will con-
sider the following ones [9].

Definition 6. System (6) is called controllable at t0 ∈ R+ if
and only if for each x0 ∈ Rn there exists t1 ≥ t0 and u ∈
PC([t0, t1],Rm) such that

x(t1,x0, t0,u) = 0. (11)

Definition 7. System (6) is called completely controllable if
and only if for each (t0,x0) ∈ R+×Rn there exists t1 > t0 and
u ∈ PC([t0, t1],Rm) such that

x(t1,x0, t0,u) = 0. (12)

Definition 8. System (6) is called uniformly completely con-
trollable if there exist �, T ∈ (0,∞) such that for each (t0,x0) ∈
R+×Rn there exists u ∈ PC([t0, t0 +T ],Rm) such that

x(t1,x0, t0,u) = 0 (13)

and
‖u‖∞ ≤ �‖x0‖.

It can be shown that if we replace the zero vector by an ar-
bitrary one on right hand sides of equations (11)–(13) then we
obtain concepts which are equivalent to the original ones. More-
over, the definition of controllability at t0 can be also formulated
in the following seemingly stronger way [29].

Remark 1. System (6) is controllable at t0 ∈ R+ if and only
if there exists t1 ≥ t0 such that for each x0 ∈ Rn there exists
u ∈ PC([t0, t1],Rm) such that

x(t1,x0, t0,u) = 0. (14)

It is well known [9] that these concepts of controllability
can be described in terms of the Kalman controllability matrix
defined as follows

W1(t0, t1) =

t1∫

t0

ΦA(t0, t)B(t)BT (t)ΦT
A(t0, t)dt (15)

W2(t0, t1) =

t1∫

t0

ΦA(t1, t)B(t)BT (t)ΦT
A(t1, t)dt (16)

for t1 ≥ t0 ≥ 0. From the definitions it directly follows that
W1(t0, t1) and W2(t0, t1) are n× n-dimensional symmetric non-
negative definite matrices. The most frequently used conditions
for controllability verification are those formulated and proved
in [9].

Theorem 2. System (6):
1) is controllable at t0 if and only if there exists t1 > t0 such

that
W1(t0, t1)> 0,

2) is completely controllable if and only if for each t0 ∈ R+

there exists t1 > t0 such that

W1(t0, t1)> 0,

3) is uniformly completely controllable if and only if there exist
α,T ∈ (0,∞) such that

W1(t0, t0 +T )≥ αIn

for each t0 ∈ R+.
It can be easily shown [9] that the assumption A ∈

L∞(R+,Rn×n) implies that the matrix W1 may be replaced by
W2 in the above theorem.

We now introduce the concepts of stabilizability under inves-
tigation.

Definition 9. System (6) is called (uniformly exponentially)
exponentially stabilizable if there exists a feedback control
u(t) =U(t)x(t), U ∈ L∞

loc(R+,Rm×n) such that the closed-loop
system (9) is (uniformly exponentially) exponentially stable.

Definition 10. [30] System (6) is completely stabilizable if
and only if for any t0 ∈ R+ and any continuous and monoton-
ically nondecreasing function δ (·, t0) : [t0,∞] → R+ such that
δ (t0, t0) = 0 there exist a feedback control u(t) = U(t)x(t),
U ∈ L∞

loc(R+,Rm×n) and a constatnt α(t0)> 0 such that

‖ΦA+BU (t, t0)‖ ≤ α(t0)exp(−δ (t, t0))

for all t ≥ t0.

In case that in any of the above two definitions we may choose
U ∈ L∞(R+,Rm×n), we say that system is uniformly exponen-
tially, exponentially, completely stabilizable by a bounded feed-
back. The next theorem, taken from [30], describes the relations
between complete satbilizability and complete controllability
for system with possibly unbounded coefficients.

Theorem 3. If A ∈ L∞
loc(R+,Rn×n) and B ∈ L∞

loc(R+,Rn×m)
then system (6) is completely stabilizable if and only if it is
completely controllable. Moreover, uniform complete control-
lability of system (6) implies uniform exponential stabilizablity.

If we consider system (6) with bounded coefficients then we
have the following relation.

Theorem 4. [30] System (6) is uniformly completely stabi-
lizable by a bounded feedback if and only if it is uniformly
completely controllable.

Together with system (6) let us consider an infinite time cost
functional of the following form:

J(x0, t0,u) =
∞∫

t0

(
‖x(s,x0, t0,u)‖2 +‖u(s)‖2) ds.

Definition 11. System (6) is called optimizable if for all t0 ≥ 0
there exists C(t0)≥ 0 such that for all x0 ∈Rn there exists a con-
trol u ∈ L2 ([t0, ∞), Rm) such that J(x0, t0,u)≤C(t0)‖x0‖2 and
system (6) is called uniformly optimizable if the constant C(t0)
may be chosen independently on t0, i.e. there exists C > 0 such
that for all (t0,x0) ∈ R+×Rn there exists u ∈ L2 ([t0, ∞), Rm)
such that J(x0, t0,u)≤C‖x0‖2.

The next theorem contains two conditions which are equiva-
lent to optimizability of system (6) (see [31]).

Theorem 5. The following conditions are each equivalent to
optimizability:
1) for each (t0,x0) ∈ R+ × Rn there exists a control u ∈

L2 ([t0, ∞), Rm) such that J(x0, t0,u) is finite,
2) for each (t0,x0) ∈ R+ × Rn there exists a control u ∈

L2 ([t0, ∞), Rm) such that

x(·,x0, t0,u) ∈ L2 ([t0, ∞), Rn)

and
lim
t→∞

x(t,x0, t0,u) = 0.

In the next subsection we will present relations between opti-
mizability and possibility of shifting the Lyapunov and the Bohl
exponents by a linear feedback.

2.3. Assignability. We will start this subsection with a discus-
sion about relation between stabilizability, controllability, opti-
mizability and possibility of placement of Lyapunov and Bohl
exponents of system (9) by an appropriate feedback.

The relations can be roughly stated as follows:
• complete controllability is equivalent to the possibility to

make by a feedback (not necessarily bounded) the Lyapunov
exponent of the closed-loop system arbitrary small,

• uniform complete controllability is equivalent to the possi-
bility to make by a bounded feedback the Bohl exponent of
the closed-loop system arbitrary small,

• exponential stabilizability is equivalent to the existence of
a feedback such that the corresponding closed-loop system
has the greatest Lyapunov exponent negative,
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It is well known [9] that these concepts of controllability
can be described in terms of the Kalman controllability matrix
defined as follows

W1(t0, t1) =

t1∫

t0

ΦA(t0, t)B(t)BT (t)ΦT
A(t0, t)dt (15)

W2(t0, t1) =

t1∫

t0

ΦA(t1, t)B(t)BT (t)ΦT
A(t1, t)dt (16)

for t1 ≥ t0 ≥ 0. From the definitions it directly follows that
W1(t0, t1) and W2(t0, t1) are n× n-dimensional symmetric non-
negative definite matrices. The most frequently used conditions
for controllability verification are those formulated and proved
in [9].

Theorem 2. System (6):
1) is controllable at t0 if and only if there exists t1 > t0 such

that
W1(t0, t1)> 0,

2) is completely controllable if and only if for each t0 ∈ R+

there exists t1 > t0 such that

W1(t0, t1)> 0,

3) is uniformly completely controllable if and only if there exist
α,T ∈ (0,∞) such that

W1(t0, t0 +T )≥ αIn

for each t0 ∈ R+.
It can be easily shown [9] that the assumption A ∈

L∞(R+,Rn×n) implies that the matrix W1 may be replaced by
W2 in the above theorem.

We now introduce the concepts of stabilizability under inves-
tigation.

Definition 9. System (6) is called (uniformly exponentially)
exponentially stabilizable if there exists a feedback control
u(t) =U(t)x(t), U ∈ L∞

loc(R+,Rm×n) such that the closed-loop
system (9) is (uniformly exponentially) exponentially stable.

Definition 10. [30] System (6) is completely stabilizable if
and only if for any t0 ∈ R+ and any continuous and monoton-
ically nondecreasing function δ (·, t0) : [t0,∞] → R+ such that
δ (t0, t0) = 0 there exist a feedback control u(t) = U(t)x(t),
U ∈ L∞

loc(R+,Rm×n) and a constatnt α(t0)> 0 such that

‖ΦA+BU (t, t0)‖ ≤ α(t0)exp(−δ (t, t0))

for all t ≥ t0.

In case that in any of the above two definitions we may choose
U ∈ L∞(R+,Rm×n), we say that system is uniformly exponen-
tially, exponentially, completely stabilizable by a bounded feed-
back. The next theorem, taken from [30], describes the relations
between complete satbilizability and complete controllability
for system with possibly unbounded coefficients.

Theorem 3. If A ∈ L∞
loc(R+,Rn×n) and B ∈ L∞

loc(R+,Rn×m)
then system (6) is completely stabilizable if and only if it is
completely controllable. Moreover, uniform complete control-
lability of system (6) implies uniform exponential stabilizablity.

If we consider system (6) with bounded coefficients then we
have the following relation.

Theorem 4. [30] System (6) is uniformly completely stabi-
lizable by a bounded feedback if and only if it is uniformly
completely controllable.

Together with system (6) let us consider an infinite time cost
functional of the following form:

J(x0, t0,u) =
∞∫

t0

(
‖x(s,x0, t0,u)‖2 +‖u(s)‖2) ds.

Definition 11. System (6) is called optimizable if for all t0 ≥ 0
there exists C(t0)≥ 0 such that for all x0 ∈Rn there exists a con-
trol u ∈ L2 ([t0, ∞), Rm) such that J(x0, t0,u)≤C(t0)‖x0‖2 and
system (6) is called uniformly optimizable if the constant C(t0)
may be chosen independently on t0, i.e. there exists C > 0 such
that for all (t0,x0) ∈ R+×Rn there exists u ∈ L2 ([t0, ∞), Rm)
such that J(x0, t0,u)≤C‖x0‖2.

The next theorem contains two conditions which are equiva-
lent to optimizability of system (6) (see [31]).

Theorem 5. The following conditions are each equivalent to
optimizability:
1) for each (t0,x0) ∈ R+ × Rn there exists a control u ∈

L2 ([t0, ∞), Rm) such that J(x0, t0,u) is finite,
2) for each (t0,x0) ∈ R+ × Rn there exists a control u ∈

L2 ([t0, ∞), Rm) such that

x(·,x0, t0,u) ∈ L2 ([t0, ∞), Rn)

and
lim
t→∞

x(t,x0, t0,u) = 0.

In the next subsection we will present relations between opti-
mizability and possibility of shifting the Lyapunov and the Bohl
exponents by a linear feedback.

2.3. Assignability. We will start this subsection with a discus-
sion about relation between stabilizability, controllability, opti-
mizability and possibility of placement of Lyapunov and Bohl
exponents of system (9) by an appropriate feedback.

The relations can be roughly stated as follows:
• complete controllability is equivalent to the possibility to

make by a feedback (not necessarily bounded) the Lyapunov
exponent of the closed-loop system arbitrary small,

• uniform complete controllability is equivalent to the possi-
bility to make by a bounded feedback the Bohl exponent of
the closed-loop system arbitrary small,

• exponential stabilizability is equivalent to the existence of
a feedback such that the corresponding closed-loop system
has the greatest Lyapunov exponent negative,
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• uniform exponential stabilizability is equivalent to the exis-
tence of a feedback such that the corresponding closed-loop
system has the Bohl exponent negative and all of these con-
ditions are equivalent to uniform optimizability.

We have the following theorem.

Theorem 6. [31] System (6) is completely controllable if
and only if for all λ > 0 there exists a feedback control
U ∈ L∞

loc (R+, Rm×n) such that

λn(A+BU)≤−λ .

Notice that the feedback control U from the above theorem
does not have to be bounded. From this theorem it is clear
that complete controllability implies optimizability. It has been
shown in [31], by an example, that opposite implication is not
true. It also follows from point 2 of Theorem 5 that optimizability
implies possibility of finding locally integrable feedback control
such that the closed-loop system (9) is asymptotically stable (but
not necessarily exponentially stable).

The next theorem proved in [30] (see also [31]) provides
relations between uniform compltete controllability and Bohl
exponents.

Theorem 7. System (6) is uniformly completely controllable
if and only if for each P > 0 there exists a feedback control
U ∈ L∞(R+,Rm×n) such that

β (A+BU)≤−P.

The relation between uniform optimizability and uniform ex-
ponential stability is given by the following theorem.

Theorem 8. [31] System (6) is uniformly optimizable if and
only if there exists a feedback control U ∈ L∞(R+,Rm×n) such
that

β (A+BU)< 0.

In the next part of this subsection we will present neces-
sary and/or sufficient conditions for the Lyapunov spectrum
assignability, defined below in the Definitions 12–18. The prob-
lem of construction of a feedback providing the placement of
certain characteristics of the closed-loop system in a priori
given points is refered to as the problem of the assignability
of the characteristics. It is generalization of the well known
pole-placement problem (see [32]) to the case of time-varying
system. The assignability problem for Lyapunov exponents of
continuous time-varying linear system was stated in the first time
in [33], where it is also shown that this problem can be naturally
considered under the assumption of uniform complete control-
lability. In the framework of that approach a number of authors
obtained various conditions for assignability of different numer-
ical characteristics of continuous time-varying systems. These
results are summarized in recent monograph of Makarov and
Popova [29] where presented below concepts of assignability of
the Lyapunov spectrum have been introduced and investigated.

The next definition expresses one of the possible way of for-
mulation of the Lyapunov spectrum assignability problem.

Definition 12. The Lyapunov spectrum of system (9) is called
globally assignable if for each µ ∈ Rn

≤ there exists a feedback
control U ∈ PC(R+,Rm×n) such that

λ (A+BU) = µ. (17)

In this definition there is in general no bound on the norm of
the feedback control. In some practical applications it is desir-
able to have a bound on the control which tends to zero in case
the placed Lyapunov spectrum tends to the Lyapunov spectrum
of the free system. This requirement is the base for the following
definition.

Definition 13. The Lyapunov spectrum of system (9) is called
proportionally globally assignable if there exists � > 0 such
that for any sequence µ ∈ Rn

≤ there exists a feedback control
U ∈ PC(R+,Rm×n), satisfying the estimate

‖U‖∞ ≤ � max
j=1,2,...,n

|λ j(A)−µ j| (18)

and such that equality (17) is satisfied.

One may also consider the local and local proportional version
of assignability of the Lyapunov spectrum.

Definition 14. The Lyapunov spectrum of system (9) is called
locally assignable if for each ε > 0 there exists δ > 0 such
that for all µ ∈ Oδ (λ (A)) there exists a feedback control U ∈
PC(R+, Rm×n) such that ‖U‖∞ < ε and equality (17) is satisfied.

Definition 15. The Lyapunov spectrum of system (9) is called
proportionally locally assignable if there exist � > 0 and δ > 0
such that for all µ ∈ Oδ (λ (A)) there exists a feedback control
U ∈ PC(R+, Rm×n), such that estimate (18) and equality (17)
are satisfied.

Finally, we present a definition of nonmultiply proportional
local assignability

Definition 16. The Lyapunov spectrum of system (9) is called
nonmultiply proportionally locally assignable if for some β > 0
and δ > 0 and for each µ = (µ1,µ2, . . . ,µn) ∈ Rn

≤ such that
|µi −λi(A)| ≤ δ , i = 1,2, . . . ,n there exists a feedback control
U ∈PC(R+,Rm×n) satisfying the estimate ‖U‖∞ ≤ β maxi |µi−
λi(A)| such that equality (17) is satisfied.

The notion of regularity of linear differential equations was
introduced in famous paper of Lyapunov [34]. Some facts of
regularity of discrete equations may be found in [35, 36]. The
regularity is defined by certain numerical characteristics which
are called regularity coefficients. In the literature we can find
at least three regularity coefficients namely, Lyapunov σL(A),
Perron σP(A) and Grobman σG(A) coefficients of system (7).
We have already defined Lyapunov regularity coefficients (see
Definition 1). For the definitions of the rest of regularity coef-
ficients see [25]. The next definition formulates a problem of
assignability of regularity coefficients.

Definition 17. The Lyapunov (Perron, Grobman) regularity co-
efficient of system (9) is called globally assignable if for each
σ ≥ 0 there exists a feedback control U ∈ PC(R+,Rm×n) such

that the Lyapunov (Perron, Grobman) regularity coefficient of
system (9) is equal to σ .

In the literature also the following very general concept of
global assignability of the Lyapunov invariants of system (9) is
considered (see [29]).

Definition 18. We say that the Lyapunov invariants of system
(9) are globally assignable if for each system

ż(t) =C(t)z(t), (19)

with C ∈ PC(R+,Rn×n) there exists a feedback control U ∈
PC(R+,Rm×n) such that system (9) with this control is dynam-
ically equivalent to system (19).

It immediately follows from the above definitions that propor-
tional global assignability implies global assignability. It is also
clear that proportional global assignability implies proportional
local assignability. It should be pointed out, that the questions
about truth of the inverse implications and other relations be-
tween them are still open. It is also clear that the global con-
trollability of the set of the Lyapunov invariants implies global
assignability of the Lyapunov spectrum.

In order to describe influence of the parametrical inaqurences
on values of the greatest and the smallest Lyapunov exponent
of system (7) we use upper central exponents Ω(A) and lower
central exponents ω(A) (see [25, 37, 38]) defined in the follow-
ing way:

Ω(A) = lim
T→∞

limsup
k→∞

1
kT

k

∑
i=1

ln‖ΦA(iT,(i−1)T‖ (20)

and

ω(A) = lim
T→∞

limsup
k→∞

1
kT

k

∑
i=1

ln‖Φ−1
A (iT,(i−1)T‖−1. (21)

Let us notice, that many results about assignability can be proved
employing the concept of scalarizability [29].

Definition 19. System (9) is called scalarizable if for each
bounded function p : R+ → R there exists a feedback control
U ∈ PC(R+,Rm×n) such that system (9) is dynamically equiv-
alent to system (10) with G(t) = p(t)In.

A key result that connects the concept of the scalarizability
with the problem of assignability and controllability is given by
the following result from [39].

Theorem 9. If system (6) is uniformly completely controllable
and B ∈ PUC(R+,Rn×m) then system (9) is scalarizable.

Another important property of uniformly completely control-
lable systems is given by the next theorem proved in [40].

Theorem 10. If system (6) is uniformly completely controllable
and B∈PUC(R+,Rn×m) then for arbitrary pi ∈PC(R+,R), i=
1,2, . . . ,n there exists a feedback control U ∈ PC(R+,Rm×n)
such that closed system (9) is dynamically equivalent to a system
with an upper triangular piecewise continuous and bounded
matrix function whose diagonal coincides with (p1, p2, . . . , pn).

Using this theorem the following sufficient condition for
global assignability of the Lyapunov spectrum was obtained
in [40].

Theorem 11. If system (6) is uniformly completely controllable
and B∈PUC(R+,Rn×m) then the Lyapunov spectrum of system
(9) is globally assignable. Moreover, the feedback control U ∈
PC(R+,Rm×n) that assigns the Lyapunov exponents may be
chosen such that system (9) is regular.

It is natural to ask whether the condition about uniform com-
plete controllability of (6) is necessary for the global assignabil-
ity of the Lyapunov spectrum of system (9). In [40] an example
(Example 1) was constructed, which shows that the answer to
this question is negative. In this example an one-dimensional
system (6) is constructed with the properties that the correspond-
ing system (9) has globally assignable Lyapunov spectrum but
system (6) is not uniformly completely controllable.

Even the uniform complete controllability is not a necessary
condition for global assignability then there is an interesting
relation between uniform complete controllability of certain sets
of systems connected to system (6) and complete controllability
of system (9). In order to present it let us introduce certain
notation.

Consider system

ẋ(t) = A0(t)x(t)+B0(t)u(t) (22)

with uniformly continuous and bounded coefficients A0 : R+ →
Rn×n and B0 : R+ → Rn×m. We identify the system with the
function σ0 : R+ → Rn×(n+m) given by

σ0(t) = (A0(t),B0(t)) .

For given τ ∈ R+ by στ we denote the shift of σ0 by τ , i.e.
στ(t) = σ0(t + τ).

Consider the set ℜ(σ0) that is the closure of the set
{στ : τ ∈ R+} in the topology of uniform convergence on closed
intervals. The set ℜ(σ0) is called Bebutov hull of σ0 (see [41]
for details).

Theorem 12. [40] Suppose that A, B are uniformly continuous
and bounded. System σ0 is uniformly completely controllable
if and only if for each system σ = (A,B) ∈ ℜ(σ0), the corre-
sponding system (9) has the property of global assignability of
the Lyapunov spectrum.

Now we will present some results about global assignability
for a special forms of system (9). The next theorem deals with
two-dimensional systems.

Theorem 13. [29, p. 325] Suppose that n = 2, system (6) is
uniformly completely controllable and B ∈ PUC(R+,R2×m),
where m = 1 or m = 2, then the set of the Lyapunov invariants
of system (9) is globally assignable.

It is possible to extend partially the above results to a larger
class of two-dimensional systems, namely the class of systems
with locally Lebesgue integrable and integrally bounded coeffi-
cients matrices A and B. The precise statement is as follows.
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that the Lyapunov (Perron, Grobman) regularity coefficient of
system (9) is equal to σ .

In the literature also the following very general concept of
global assignability of the Lyapunov invariants of system (9) is
considered (see [29]).

Definition 18. We say that the Lyapunov invariants of system
(9) are globally assignable if for each system

ż(t) =C(t)z(t), (19)

with C ∈ PC(R+,Rn×n) there exists a feedback control U ∈
PC(R+,Rm×n) such that system (9) with this control is dynam-
ically equivalent to system (19).

It immediately follows from the above definitions that propor-
tional global assignability implies global assignability. It is also
clear that proportional global assignability implies proportional
local assignability. It should be pointed out, that the questions
about truth of the inverse implications and other relations be-
tween them are still open. It is also clear that the global con-
trollability of the set of the Lyapunov invariants implies global
assignability of the Lyapunov spectrum.

In order to describe influence of the parametrical inaqurences
on values of the greatest and the smallest Lyapunov exponent
of system (7) we use upper central exponents Ω(A) and lower
central exponents ω(A) (see [25, 37, 38]) defined in the follow-
ing way:

Ω(A) = lim
T→∞

limsup
k→∞

1
kT

k

∑
i=1

ln‖ΦA(iT,(i−1)T‖ (20)

and

ω(A) = lim
T→∞

limsup
k→∞

1
kT

k

∑
i=1

ln‖Φ−1
A (iT,(i−1)T‖−1. (21)

Let us notice, that many results about assignability can be proved
employing the concept of scalarizability [29].

Definition 19. System (9) is called scalarizable if for each
bounded function p : R+ → R there exists a feedback control
U ∈ PC(R+,Rm×n) such that system (9) is dynamically equiv-
alent to system (10) with G(t) = p(t)In.

A key result that connects the concept of the scalarizability
with the problem of assignability and controllability is given by
the following result from [39].

Theorem 9. If system (6) is uniformly completely controllable
and B ∈ PUC(R+,Rn×m) then system (9) is scalarizable.

Another important property of uniformly completely control-
lable systems is given by the next theorem proved in [40].

Theorem 10. If system (6) is uniformly completely controllable
and B∈PUC(R+,Rn×m) then for arbitrary pi ∈PC(R+,R), i=
1,2, . . . ,n there exists a feedback control U ∈ PC(R+,Rm×n)
such that closed system (9) is dynamically equivalent to a system
with an upper triangular piecewise continuous and bounded
matrix function whose diagonal coincides with (p1, p2, . . . , pn).

Using this theorem the following sufficient condition for
global assignability of the Lyapunov spectrum was obtained
in [40].

Theorem 11. If system (6) is uniformly completely controllable
and B∈PUC(R+,Rn×m) then the Lyapunov spectrum of system
(9) is globally assignable. Moreover, the feedback control U ∈
PC(R+,Rm×n) that assigns the Lyapunov exponents may be
chosen such that system (9) is regular.

It is natural to ask whether the condition about uniform com-
plete controllability of (6) is necessary for the global assignabil-
ity of the Lyapunov spectrum of system (9). In [40] an example
(Example 1) was constructed, which shows that the answer to
this question is negative. In this example an one-dimensional
system (6) is constructed with the properties that the correspond-
ing system (9) has globally assignable Lyapunov spectrum but
system (6) is not uniformly completely controllable.

Even the uniform complete controllability is not a necessary
condition for global assignability then there is an interesting
relation between uniform complete controllability of certain sets
of systems connected to system (6) and complete controllability
of system (9). In order to present it let us introduce certain
notation.

Consider system

ẋ(t) = A0(t)x(t)+B0(t)u(t) (22)

with uniformly continuous and bounded coefficients A0 : R+ →
Rn×n and B0 : R+ → Rn×m. We identify the system with the
function σ0 : R+ → Rn×(n+m) given by

σ0(t) = (A0(t),B0(t)) .

For given τ ∈ R+ by στ we denote the shift of σ0 by τ , i.e.
στ(t) = σ0(t + τ).

Consider the set ℜ(σ0) that is the closure of the set
{στ : τ ∈ R+} in the topology of uniform convergence on closed
intervals. The set ℜ(σ0) is called Bebutov hull of σ0 (see [41]
for details).

Theorem 12. [40] Suppose that A, B are uniformly continuous
and bounded. System σ0 is uniformly completely controllable
if and only if for each system σ = (A,B) ∈ ℜ(σ0), the corre-
sponding system (9) has the property of global assignability of
the Lyapunov spectrum.

Now we will present some results about global assignability
for a special forms of system (9). The next theorem deals with
two-dimensional systems.

Theorem 13. [29, p. 325] Suppose that n = 2, system (6) is
uniformly completely controllable and B ∈ PUC(R+,R2×m),
where m = 1 or m = 2, then the set of the Lyapunov invariants
of system (9) is globally assignable.

It is possible to extend partially the above results to a larger
class of two-dimensional systems, namely the class of systems
with locally Lebesgue integrable and integrally bounded coeffi-
cients matrices A and B. The precise statement is as follows.
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Theorem 14. [42] Consider system (6) for n= 2 with A :R+ →
R2×2, B ∈ R+ → R2×m, where m = 1 or m = 2 satisfying the
following inequalities:

sup
t≥0

t+1∫

t

‖A(τ)‖dτ <+∞, sup
t≥0

t+1∫

t

‖B(τ)‖dτ <+∞

and assume that system (6) is uniformly complete control-
lable. Then for each µ ∈ R2

≤ there exists a feedback control
U ∈ L∞(R+,Rm×2) such that

λ (A+BU) = µ.

It is worth to emphases that the assignability of the Lyapunov
spectrum in the above theorem is understood in the different way
than in Definition 13. The difference is in the class of feedback
control. In Definition 13 it is required that the feedback control is
piecewise continuous and bounded whereas in the Theorem 14
the feedback control is from a larger class of bounded functions.

Consider now system (6) with ω-periodic functions A and
B. It was proved in [20], under the assumption on smoothness
of the coefficients, that the ω-periodic system (6) is completely
controllable if and only if for any arbitrary given real n×n matrix
Λ with positive determinant, there exists an ω-periodic controlU
such that the multipliers of system (9) with this control are equal
to eigenvalues of Λ. In [43] the assumption about smoothness of
coefficients has been weaken and the following result has been
proved.

Theorem 15. Suppose that system (6) has piecewise continuous
ω-periodic coefficients and it is completely controllable, then
the set of the Lyapunov invariants is globally assignable.

The next theorem will present sufficient conditions for pro-
portional local assignability of the Lyapunov spectrum of the
system (9). These conditions require uniform complete control-
lability of (6) and one of the following properties of the homo-
geneous system (7): regularity, diagonalizability or stability of
the Lyapunov spectrum.

Theorem 16. [29] If the system (6) is uniformly completely
controllable and at least one of the conditions hold:
1) system (7) is regular,
2) system (7) is diagonalizable,
3) the Lyapunov spectrum of system (7) is stable,
then the Lyapunov spectrum of system (9) is proportionally
locally assignable.

This theorem has been partially extended in [44] in the fol-
lowing way.

Theorem 17. If system (6) is uniformly completely controllable
and system (7) is regular, then there exist δ > 0 and � > 0 such
that, for all µ ∈ Oδ (λ (A)) and for each number σ ∈ [0,δ ] there
exists a feedback control U ∈ PC(R+,Rm×n) such that

‖U‖∞ ≤ �max{σ , |µi −λi(A)| : i = 1,2, . . . ,n} ,

λ (A+BU) = µ

and
σL(A+BU) = σ .

Using Theorem 9 in [29] the following results about
assignability of the improperness coefficients and central ex-
ponents were obtained.

Theorem 18. Suppose that system (6) is uniformly completely
controllable and B ∈ PUC(R+,Rn×m) then the Lyapunov, Per-
ron and Grobman improperness coefficients are assignable.
Moreover, for each numbers ω ≤ Ω there exists a feedback
control U ∈ PC(R+,Rm×n) such that

ω(A+BU) = ω, Ω(A+BU) = Ω. (23)

In order to present conditions for nonmultiply proportional
local assignability of the Lyapunov spectrum, let us introduce
some properties of the homogeneous system (7) (see [29]).
Suppose that x1,x2, . . . ,xn is a fundamental system of solu-
tions (FSS) of (6). For any i = 1,2, . . . ,n and t ∈ R+ de-
note by Vi(t) ⊂ Rn linear subspace spanned on vectors x j(t),
j = 1,2, . . . ,n, j �= i and by ϕi(t) = �(xi(t),Vi(t)) the angle
between the vector xi(t) and the linear subspace Vi(t).

Let us take any ϑ > 0. For any γ ∈
(
0, π

2

)
, k ∈ N, and i =

1,2, . . . ,n we set

Γγ
i (ϑ) = { j ∈ N : ϕi( jϑ)≥ γ} ,

Γγ
i (k;ϑ) = Γγ

i (ϑ)∩{1,2, . . . ,k} .

Let Nγ
i (k,ϑ) be the number of elements of the set Γγ

i (k;ϑ).
Let us also introduce the following notation

gγ
i (k;ϑ) =

Nγ
i (k,ϑ)

k
,

fi(k;ϑ) =
ln‖xi(k,ϑ)‖

kϑ
.

If the numbers γ and ϑ are given in advance, then the corre-
sponding symbols in the above-introduced notation are omitted.

A sequence (tk)k∈N of real numbers strictly increasing to ∞
is referred to as a realizing sequence of a solution x(·,x0, t0) of
the linear homogeneous system (7) if

λ (x0) = lim
k→∞

ln‖x(tk)‖
tk

.

Definition 20. We say that a solution xi occurring in the FSS
x1,x2, . . . ,xn is ϑ -bounded away (from the remaining solutions
of the FSS) if for a given ϑ > 0, there exists γ ∈

(
0, π

2

]
and a

realizing sequence (k jϑ) j∈N for the solution xi, where k j ∈ N,
such that

lim
j→∞

gγ
i (k j;ϑ)> 0.

A FSS x1,x2, . . . ,xn is said to be ϑ -separated if each of the
solutions in the FSS is ϑ -bounded away.

Let us consider basic properties of the above-introduced no-
tions taken from [45].

Theorem 19. If a solution x j occurring in the FSS x1,x2, . . . ,xn
is ϑ0-bounded away for some ϑ0 > 0 then it is ϑ -bounded away
for any ϑ > 0.

Having in mind Theorem 19 we say that a solution xi occurring
in a FSS x1,x2, . . . ,xn is bounded away if it is ϑ -bounded away
for some ϑ > 0. Accordingly, a FSS is called separated if it is
ϑ -separated for some ϑ > 0.

Definition 21. System (7) that has a bounded away normal FSS
is called to be bounded away.

Using the concept of bounded away system we may formu-
late the following results about nonmultiply proportional local
assignability and proportional local assignability (see [45] for
the proofs).

Theorem 20. If system (6) is uniformly completely controllable
and system (7) is bounded away then the Lyapunov spectrum of
(9) is nonmultiply proportionally locally assignable. If in addi-
tion all the Lyapunov exponents of (7) are distinct then the Lya-
punov spectrum of (9) is proportionally locally assignable and
then the nonmultiply proportional local assignability is equiva-
lent to proportional local assignability.

It should be mentioned, that taking into account the condition
of boundedness away we may obtain certain results for unsta-
bility of the Lyapunov spectrum given in the next theorem [29].

Theorem 21. If system (7) has a bounded away FSS which is
not normal, then its Lyapunov spectrum is unstable.

3. Discrete-time systems

3.1. Basic notation. For t0 ∈ N denote by Nt0 =
{

t0, t0 + 1,
t0 +2, . . .

}
and consider the discrete linear time-varying system

x(t +1) = A(t)x(t)+B(t)u(t), (24)

where A = (A(t))t∈Nt0
, B = (B(t))t∈Nt0

are sequences of n× n
and n × m real matrices, respectively. Moreover, the control
sequence u = (u(t))t∈Nt0

is m-dimensional.
The solution of (24), corresponding to the control u and the

initial condition x(t0) = x0 ∈ Rn with t0 ∈ N, is denoted by

x = (x(t,x0, t0,u))t∈Nt0

and is given by the following formula

x(t, t0,x0,u) = ΦA (t, t0)x0+

+
t−1

∑
j=t0

ΦA (t, j+1)B( j)u( j), t ∈ Nt0
(25)

where ΦA (t, t0) is the transition matrix of homogeneous system

x(t +1) = A(t)x(t) (26)

given by

ΦA(t, t) = In ,

ΦA(t, j) = A(t −1) . . .A( j) for t > j, t, j ∈ Nt0 .

Additionally, when A = (A(t))t∈Nt0
consists of invertible matri-

ces we define

ΦA( j, t) = Φ−1
A (t, j) for t > j, t, j ∈ Nt0 .

Definition 22. A bounded sequence (D(t))t∈Nt0
of invertible

n×n matrices such that (D−1(t))t∈Nt0
is bounded is called the

Lyapunov sequence.

In our further considerations we will assume that A is a Lya-
punov sequence and B is bounded. However, occasionally we
will consider system (24) with unbounded A, B coefficients or
with A consisting of noninvertible matrices but it will be clearly
stated.

For a given initial condition x(t0) = x0 ∈ Rn with t0 ∈ N the
solution of (26) is denoted by x((t, t0,x0))t∈Nt0

and is given by

x(t, t0,x0) = ΦA(t, t0)x0, t ∈ N . (27)

In the special case when t0 = 0 then we simple write
(x(t,x0))t∈N0

instead of (x(t,0,x0))t∈N0
. For x0 ∈ Rn, x0 �= 0

the Lyapunov exponent λ (x0) of (27) is defined as

λ (x0) = limsup
t→∞

1
t

ln‖x(t, t0,x0)‖ .

It is easy to show that if A is a Lyapunov sequence then the value
λ (x0) does not depend on t0.

Similarly as for the continuous-time system it is well known
[22] that the set of Lyapunov exponents of all nontrivial solu-
tions of system (26) contains at most n elements. Moreover, if
A = (A(t))t∈N is the Lyapunov sequence, then all the Lyapunov
exponents λ ′

i (A), i = 1,2, . . . ,r are finite. They are numbered
such that the following inequalities are satisfied

−∞ < λ ′
1 (A)< λ ′

2(A)< .. . < λ ′
r(A)< ∞ .

For each λ ′
i (A) we consider the linear subspaces of Rn

Ei =
{

v ∈ Rn : λ (v)≤ λ ′
i (A)

}

and additionally we set E0 = {0}. The multiplicity ni i =
1,2, . . . ,r of the Lyapunov exponent λ ′

i (A) is defined as

ni = dimEi −dimEi−1 .

Similarly as in continuous-time case the sequence

(λ1(A), λ2(A), . . . , λn(A)) ,

where each Lyapunov exponent λ ′
i (A) appears ni times will be

called the Lyapunov spectrum of system (26).
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Let us consider basic properties of the above-introduced no-
tions taken from [45].

Theorem 19. If a solution x j occurring in the FSS x1,x2, . . . ,xn
is ϑ0-bounded away for some ϑ0 > 0 then it is ϑ -bounded away
for any ϑ > 0.

Having in mind Theorem 19 we say that a solution xi occurring
in a FSS x1,x2, . . . ,xn is bounded away if it is ϑ -bounded away
for some ϑ > 0. Accordingly, a FSS is called separated if it is
ϑ -separated for some ϑ > 0.

Definition 21. System (7) that has a bounded away normal FSS
is called to be bounded away.

Using the concept of bounded away system we may formu-
late the following results about nonmultiply proportional local
assignability and proportional local assignability (see [45] for
the proofs).

Theorem 20. If system (6) is uniformly completely controllable
and system (7) is bounded away then the Lyapunov spectrum of
(9) is nonmultiply proportionally locally assignable. If in addi-
tion all the Lyapunov exponents of (7) are distinct then the Lya-
punov spectrum of (9) is proportionally locally assignable and
then the nonmultiply proportional local assignability is equiva-
lent to proportional local assignability.

It should be mentioned, that taking into account the condition
of boundedness away we may obtain certain results for unsta-
bility of the Lyapunov spectrum given in the next theorem [29].

Theorem 21. If system (7) has a bounded away FSS which is
not normal, then its Lyapunov spectrum is unstable.

3. Discrete-time systems

3.1. Basic notation. For t0 ∈ N denote by Nt0 =
{

t0, t0 + 1,
t0 +2, . . .

}
and consider the discrete linear time-varying system

x(t +1) = A(t)x(t)+B(t)u(t), (24)

where A = (A(t))t∈Nt0
, B = (B(t))t∈Nt0

are sequences of n× n
and n × m real matrices, respectively. Moreover, the control
sequence u = (u(t))t∈Nt0

is m-dimensional.
The solution of (24), corresponding to the control u and the

initial condition x(t0) = x0 ∈ Rn with t0 ∈ N, is denoted by

x = (x(t,x0, t0,u))t∈Nt0

and is given by the following formula

x(t, t0,x0,u) = ΦA (t, t0)x0+

+
t−1

∑
j=t0

ΦA (t, j+1)B( j)u( j), t ∈ Nt0
(25)

where ΦA (t, t0) is the transition matrix of homogeneous system

x(t +1) = A(t)x(t) (26)

given by

ΦA(t, t) = In ,

ΦA(t, j) = A(t −1) . . .A( j) for t > j, t, j ∈ Nt0 .

Additionally, when A = (A(t))t∈Nt0
consists of invertible matri-

ces we define

ΦA( j, t) = Φ−1
A (t, j) for t > j, t, j ∈ Nt0 .

Definition 22. A bounded sequence (D(t))t∈Nt0
of invertible

n×n matrices such that (D−1(t))t∈Nt0
is bounded is called the

Lyapunov sequence.

In our further considerations we will assume that A is a Lya-
punov sequence and B is bounded. However, occasionally we
will consider system (24) with unbounded A, B coefficients or
with A consisting of noninvertible matrices but it will be clearly
stated.

For a given initial condition x(t0) = x0 ∈ Rn with t0 ∈ N the
solution of (26) is denoted by x((t, t0,x0))t∈Nt0

and is given by

x(t, t0,x0) = ΦA(t, t0)x0, t ∈ N . (27)

In the special case when t0 = 0 then we simple write
(x(t,x0))t∈N0

instead of (x(t,0,x0))t∈N0
. For x0 ∈ Rn, x0 �= 0

the Lyapunov exponent λ (x0) of (27) is defined as

λ (x0) = limsup
t→∞

1
t

ln‖x(t, t0,x0)‖ .

It is easy to show that if A is a Lyapunov sequence then the value
λ (x0) does not depend on t0.

Similarly as for the continuous-time system it is well known
[22] that the set of Lyapunov exponents of all nontrivial solu-
tions of system (26) contains at most n elements. Moreover, if
A = (A(t))t∈N is the Lyapunov sequence, then all the Lyapunov
exponents λ ′

i (A), i = 1,2, . . . ,r are finite. They are numbered
such that the following inequalities are satisfied

−∞ < λ ′
1 (A)< λ ′

2(A)< .. . < λ ′
r(A)< ∞ .

For each λ ′
i (A) we consider the linear subspaces of Rn

Ei =
{

v ∈ Rn : λ (v)≤ λ ′
i (A)

}

and additionally we set E0 = {0}. The multiplicity ni i =
1,2, . . . ,r of the Lyapunov exponent λ ′

i (A) is defined as

ni = dimEi −dimEi−1 .

Similarly as in continuous-time case the sequence

(λ1(A), λ2(A), . . . , λn(A)) ,

where each Lyapunov exponent λ ′
i (A) appears ni times will be

called the Lyapunov spectrum of system (26).
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It is also well known ( [22]) that

λn(A) = limsup
t→∞

1
t

ln‖ΦA(t, t0)‖. (28)

For x0 ∈ Rn, x0 �= 0 the Bohl exponent β (x0) of solution
(x(t, t0,x0))t∈Nt0

of (26) is defined as follows

β (x0) = limsup
t−τ→∞

1
t − τ

ln
‖x(t,x0, t0)‖
‖x(τ,x0, t0)‖

and the Bohl exponent of system (26) is defined by

β (A) = limsup
t−τ→∞

1
t − τ

ln‖ΦA(t,τ)‖.

It is easy to show that the value of β (x0) does not depend
on t0. Similarly to the continuous-time case the structure of
the set {β (x0) : x0 ∈ Rn \{0}} and the relation between β (x0)
and β (A) are much more complicated than in Lyapunov ex-
ponents frameworks. The full description of the set of all
Bohl exponents of a given system is an open problem. It has
been shown in [46] that there exists a system (26) such that
sup{β (x0) : x0 ∈ Rn \{0}}< β (A).

Definition 23. A bounded sequence U = (U(t))t∈N of m× n
matrices is said to be an admissible feedback control if
(A(t)+B(t)U(t))t∈N is a Lyapunov sequence.

For an admissible feedback control the Lyapunov spectrum
of the closed-loop system

x(t +1) = (A(t)+B(t)U(t))x(t) (29)

will be denoted by

(λ1(A+BU),λ2(A+BU), . . . ,λn(A+BU)) .

Following continuous-time case we will use certain concepts
taken from the theory of linear time-varying difference equations
(see [23, 47, 48]).

Definition 24. The number

σL =
n

∑
i=1

λi(A)− liminf
t→∞

1
t

ln |det(ΦA(t, t0))|

is called the Lyapunov regularity coefficient of system (26).
System (26) is called regular (in the Lyapunov sense) if σL = 0.

Definition 25. Suppose that L = (L(t))t∈Nt0
is a sequence of

invertible n×n matrices such that

sup
t∈Nt0

(
‖L(t)‖+‖L−1(t)‖

)
< ∞,

then the linear transformation

y = L(t)x

is called the discrete Lyapunov transformation.

Definition 26. System (26) is called dynamically equivalent to
system

y(t +1) = G(t)y(t) (30)

if there exists a discrete Lyapunov transformation L such that

G(t) = L(t +1)A(t)L−1(t)

for all t ∈Nt0 . If there exists a discrete Lyapunov transformation
L such that all the matrices G(t), t ∈Nt0 are diagonal then system
(26) is called diagonalizable.

Definition 27. System (26) is called a system with the integral
separation if it has a basis of solutions

(
x
(

t,x(i)0

))
t∈N

such that
for some a > 1,b > 0 and all natural numbers t > τ , i ≤ n− 1
the inequalities

∥∥∥x
(

t,x(i+1)
0

)∥∥∥∥∥∥x
(

τ,x(i+1)
0

)∥∥∥
≥ bat−τ

∥∥∥x
(

t,x(i)0

)∥∥∥∥∥∥x
(

τ,x(i)0

)∥∥∥

are satisfied.

Let us consider together with system (26) the following dis-
turbed system

x(t +1) = (A(t)+Q(t))x(t), (31)

where Q = (Q(t))t∈Nt0
is such that A+Q is a Lyapunov se-

quence.

Definition 28. The Lyapunov spectrum of (26) is called stable
if for any ε > 0 there exists δ > 0 such that for any Q such that
(A+Q) is a Lyapunov sequence, the inequality

‖Q‖∞ < δ

implies
λ (A+Q) ∈ Oε (λ (A)) ,

where λ (A+Q) is the Lyapunov spectrum of (31).

Let us briefly describe the relationships between the intro-
duced concepts. It was established in [48] that the integral sep-
aration of the system (26) is equivalent to the stability and non-
multiplicity of its Lyapunov spectrum, and also the fact that the
integral separation implies the diagonalizability of the system
(26). There is no connection between the integral separation and
the regularity.

3.2. Stability, stabilizability and controllability. In this sub-
section we will define the concepts of stability, stabilizability,
controllability of discrete time-varying linear systems.

Definition 29. [26] System (26) is called (uniformly exponen-
tially) exponentially stable if there exist positive constants M,
ω ∈ R+ such that

(
‖ΦA(t1, t2)‖ ≤ Me−ω(t1−t2)

)

‖ΦA(t,0)‖ ≤ Me−ωt

for all (t1 > t2, t1, t2 ∈ Nt0) t ∈ Nt0 .

The defined above concepts of stability are characterized by
Lyapunov and Bohl exponents in the following ways.

Theorem 22. [46,47] System (26) is (uniformly exponentially)
exponentially stable if and only if

(β (A)< 0)

λn(A)< 0.

Among many different kinds of controllability we will con-
sider the following ones, which are based on Kalman proposition
for continuous-time systems [9] (see [49, 50] for discrete-time
version).

Definition 30. System (24) is called controllable at t0 ∈ N if
and only if for each x0, x1 ∈Rn there exists t1 ≥ t0, t1 ∈N and a
control u = (u(t))t∈Nt0

such that

x(t1,x0, t0,u) = x1 . (32)

Definition 31. System (24) is called completely controllable if
and only if for each (t0,x0,x1)∈N×Rn×Rn there exists t1 > t0
and a control u = (u(t))t∈Nt0

x(t1,x0, t0,u) = x1 . (33)

Definition 32. System (24) is called uniformly completely con-
trollable if there exist � ∈ (0,∞) and T ∈ N such that for all
(t0,x0,x1) ∈ N×Rn ×Rn there exists a control u = (u(t))t∈Nt0
such that

x(t1,x0, t0,u) = x1 . (34)

and
‖u(n)‖ ≤ �max{‖x0‖,‖x1‖}

for all n = t0, t0 +1, . . . , t0 +T −1.

It should be noted that in contrast to continuous-time case
we can not, in general, replace x1 by zero on the right-hand
sides of (32)–(34) without losing generality but if we know that
the sequence A is a Lyapunov sequence, then such a modifica-
tion leads to equivalent concepts of controllability (see [51]).
However, simirarly as in the continous-time case we have the
following remark [49].

Remark 2. System (24) is controllable at t0 ∈ N if and only if
there exists t1 ≥ t0, t1 ∈ N such that for each x0, x1 ∈ Rn there
exists a control u = (u(t))t∈Nt0

such that

x(t1,x0, t0,u) = x1 . (35)

In controllability investigation of discrete-time systems also
a crucial role is played by the Kalman controllability matrices

defined for system (24) as follows

W1(t,τ) =
t−1

∑
j=τ

ΦA(t, j+1)B( j)BT ( j)ΦT
A(t, j+1),

W2(t,τ) =
t−1

∑
j=τ

ΦA(τ, j+1)B( j)BT ( j)ΦT
A(τ, j+1),

where t > τ , t, τ ∈ N.
The next theorem (see [49, 51], [52, Proposition 3, p. 34])

gives, in the terms of the Kalman controllability matrix, the
necessary and sufficient conditions for the above defined con-
cepts of controllability.

Theorem 23. System (24):
1) is controllable at t0 ∈ N if and only if there exists t1 > t0,

t1 ∈ N such that
W1(t0, t1)> 0,

2) is completely controllable if and only if for each t0 ∈N there
exists t1 > t0, t1 ∈ N such that

W1(t0, t1)> 0,

3) is uniformly completely controllable if and only if there exist
� ∈ (0,∞) and T ∈ N such that

W1(t0, t0 +T )≥ αIn

for each t0 ∈ N.

It can be easily shown that the assumption that A is a Lyapunov
sequence implies that the theorem remains true if we replace W1
by W2.

We now introduce the concepts of stabilizability of discrete-
time systems.

Definition 33. System (24) is called (uniformly exponentially)
exponentially stabilizable if there exists a feedback control
u(t) =U(t)x(t), U ∈ L∞

loc(R+,Rm×n) such that the closed-loop
system (26) is (uniformly exponentially) exponentially stable.

Definition 34. [53] System (24) is called completely stabi-
lizable if for each t0 ∈ N and each nondecreasing sequence
(δ (t, t0))t∈N satisfying δ (t0, t0) = 0 there exist a feedback ma-
trix (U(t))t∈N and a constant α (t0)> 0 such that

‖ΦA+BU (t, t0)‖ ≤ α (t0)exp(−δ (t, t0)) .

In case that in any of the above two definitions we may choose
the sequence (U(t))t∈N being bounded, we say that system is
uniformly exponentially, exponentially, completely stabilizable
by a bounded feedback.

The next two theorems proved in [53] are a discrete coun-
terpart of Theorem 3. Notice that we neither require A is a
Lyapunov sequence nor that B is bounded.

Theorem 24. If system (24) with arbitrary A, B is completely
controllable then it is completely stabilzable.
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‖ΦA(t,0)‖ ≤ Me−ωt

for all (t1 > t2, t1, t2 ∈ Nt0) t ∈ Nt0 .

The defined above concepts of stability are characterized by
Lyapunov and Bohl exponents in the following ways.

Theorem 22. [46,47] System (26) is (uniformly exponentially)
exponentially stable if and only if

(β (A)< 0)

λn(A)< 0.

Among many different kinds of controllability we will con-
sider the following ones, which are based on Kalman proposition
for continuous-time systems [9] (see [49, 50] for discrete-time
version).

Definition 30. System (24) is called controllable at t0 ∈ N if
and only if for each x0, x1 ∈Rn there exists t1 ≥ t0, t1 ∈N and a
control u = (u(t))t∈Nt0

such that

x(t1,x0, t0,u) = x1 . (32)

Definition 31. System (24) is called completely controllable if
and only if for each (t0,x0,x1)∈N×Rn×Rn there exists t1 > t0
and a control u = (u(t))t∈Nt0

x(t1,x0, t0,u) = x1 . (33)

Definition 32. System (24) is called uniformly completely con-
trollable if there exist � ∈ (0,∞) and T ∈ N such that for all
(t0,x0,x1) ∈ N×Rn ×Rn there exists a control u = (u(t))t∈Nt0
such that

x(t1,x0, t0,u) = x1 . (34)

and
‖u(n)‖ ≤ �max{‖x0‖,‖x1‖}

for all n = t0, t0 +1, . . . , t0 +T −1.

It should be noted that in contrast to continuous-time case
we can not, in general, replace x1 by zero on the right-hand
sides of (32)–(34) without losing generality but if we know that
the sequence A is a Lyapunov sequence, then such a modifica-
tion leads to equivalent concepts of controllability (see [51]).
However, simirarly as in the continous-time case we have the
following remark [49].

Remark 2. System (24) is controllable at t0 ∈ N if and only if
there exists t1 ≥ t0, t1 ∈ N such that for each x0, x1 ∈ Rn there
exists a control u = (u(t))t∈Nt0

such that

x(t1,x0, t0,u) = x1 . (35)

In controllability investigation of discrete-time systems also
a crucial role is played by the Kalman controllability matrices

defined for system (24) as follows

W1(t,τ) =
t−1

∑
j=τ

ΦA(t, j+1)B( j)BT ( j)ΦT
A(t, j+1),

W2(t,τ) =
t−1

∑
j=τ

ΦA(τ, j+1)B( j)BT ( j)ΦT
A(τ, j+1),

where t > τ , t, τ ∈ N.
The next theorem (see [49, 51], [52, Proposition 3, p. 34])

gives, in the terms of the Kalman controllability matrix, the
necessary and sufficient conditions for the above defined con-
cepts of controllability.

Theorem 23. System (24):
1) is controllable at t0 ∈ N if and only if there exists t1 > t0,

t1 ∈ N such that
W1(t0, t1)> 0,

2) is completely controllable if and only if for each t0 ∈N there
exists t1 > t0, t1 ∈ N such that

W1(t0, t1)> 0,

3) is uniformly completely controllable if and only if there exist
� ∈ (0,∞) and T ∈ N such that

W1(t0, t0 +T )≥ αIn

for each t0 ∈ N.

It can be easily shown that the assumption that A is a Lyapunov
sequence implies that the theorem remains true if we replace W1
by W2.

We now introduce the concepts of stabilizability of discrete-
time systems.

Definition 33. System (24) is called (uniformly exponentially)
exponentially stabilizable if there exists a feedback control
u(t) =U(t)x(t), U ∈ L∞

loc(R+,Rm×n) such that the closed-loop
system (26) is (uniformly exponentially) exponentially stable.

Definition 34. [53] System (24) is called completely stabi-
lizable if for each t0 ∈ N and each nondecreasing sequence
(δ (t, t0))t∈N satisfying δ (t0, t0) = 0 there exist a feedback ma-
trix (U(t))t∈N and a constant α (t0)> 0 such that

‖ΦA+BU (t, t0)‖ ≤ α (t0)exp(−δ (t, t0)) .

In case that in any of the above two definitions we may choose
the sequence (U(t))t∈N being bounded, we say that system is
uniformly exponentially, exponentially, completely stabilizable
by a bounded feedback.

The next two theorems proved in [53] are a discrete coun-
terpart of Theorem 3. Notice that we neither require A is a
Lyapunov sequence nor that B is bounded.

Theorem 24. If system (24) with arbitrary A, B is completely
controllable then it is completely stabilzable.
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Theorem 25. If system (24) with A consisting of invertible
matrices and arbitrary B is completely stabilzable then it is
completely controllable.

3.3. Assignability. For continuous-time systems in the Sub-
sections 2.2 and 2.3 (Definition 11, Theorems 6, 7 and 8), we
presented relations between possibility of shifting the great-
est Lyapunov exponent and Bohl exponent, complete control-
lability, uniform complete controllability and optimalizability.
According to our best knowledge, analogical results for discrete-
time systems are unknown. However, it is worth to mention that
in [54] the concept of optimalizability for discrete jump linear
systems was introduced and connected to properties of solution
of appropriate Riccati equation.

The next four definitions of assignability are the discrete-time
versions of Definitions 12–15 for continuous-time case. They are
originally formulated in series of papers [55–58] and [59].

Definition 35. The Lyapunov spectrum of system (29) is called
globally assignable if for each µ ∈Rn

≤ there exists an admissible
feedback control U such that

λ (A+BU) = µ. (36)

Definition 36. The Lyapunov spectrum of system (29) is called
proportionally globally assignable if for all ∆ > 0 there exists
� = �(∆) > 0 such that for any sequence µ =

(
µ1, . . . ,µn

)
∈

O∆
(
λ (A)

)
there exists an admissible feedback control U , satis-

fying the estimate

‖U‖∞ ≤ � max
j=1,...,n

|λ j(A)−µ j| (37)

and such that equality (36) is satisfied.

Definition 37. The Lyapunov spectrum of system (29) is called
locally assignable if for each ε > 0 there exists δ > 0 such that
for all µ ∈Oδ

(
λ (A)

)
there exists an admissible feedback control

U such that

λ (A+BU) = µ and ‖U‖∞ < ε.

Definition 38. The Lyapunov spectrum of system (29) is called
proportionally locally assignable if there exist � > 0 and δ >
0 such that for all µ ∈ Oδ

(
λ (A)

)
there exists an admissible

feedback control U , such that estimate (37) and equality (36)
are satisfied.

Definitions 35, 37 and 38 are direct translations of their
continuous counterparts. However, the direct transformation
of definition of proportional global assignability is as follows:
the Lyapunov spectrum of system (29) is called proportion-
ally globally assignable if there exists � > 0 such that for all
µ = (µ1, . . . ,µn) ∈ Rn

≤ there exists a feedback control U , satis-
fying (36) and (37). The Example 2 below justifies our modifi-
cation.

The next theorem presents a sufficient condition for global
assignability of the Lyapunov spectrum.

Theorem 26. [55] If system (24) is uniformly completely con-
trollable, then the Lyapunov spectrum of system (29) is globally
assignable.

The following example shows that uniform complete control-
lability is not a necessary condition for global assignability of
the Lyapunov spectrum.

Example 1. Let us define a sequence (nk)k∈N by the recurrent
formulae

n1 = 1, n2m = mn2m−1, n2m+1 = m+n2m

for all m ∈ N. The sequence (nk)k∈N is strictly increasing for
k ≥ 2, tends to +∞, and satisfies the relations

lim
m→∞

n2m−1

n2m
= lim

m→∞

1
m

= 0,

lim
m→∞

m
n2m

= lim
m→∞

1
n2m−1

= 0

and

lim
m→∞

n2m

n2m+1
= lim

m→∞

1
1+m/n2m

= 1.

Put

b(n) =




1 for n = 1,
1 for n ∈ [n2m−1,n2m −1],

0 for n ∈ [n2m,n2m+1 −1],

for m = 2,3, . . . , and consider a scalar linear control equation

x(n+1) = x(n)+b(n)u(n). (38)

System (38) is not uniformly completely controllable. Indeed,
for each K ∈ N, there exists a number m = K such that the
Kalman controllability matrix of (38) is equal to zero on the
interval [n2m,n2m +K], that is,

W (n2m,n2m +K) =
n−1

∑
j=k

ΦA(k, j+1)b2( j)ΦT
A(k, j+1) =

=
n2m+K−1

∑
j=n2m

b2( j) = 0.

The closed-loop equation corresponding to (38) has the form

x(n+1) = (1+b(n)U(n))x(n) . (39)

Now, let us show that the above equation has the assignability
property of the Lyapunov spectrum.

Fix any α ∈ R, denote β = eα − 1 and define U(n) ≡ β ,
n ∈ N. The Lyapunov exponent of each nontrivial solution to

(39) with the defined U(·) coincides with the upper mean value
of the function ln(1+βb(·)), that is, with the value

µ = limsup
n→∞

n−1
n−1

∑
j=1

ln
(
1+βb( j)

)
.

Our aim is to prove that µ = α . Put ϕ(1) = 0 and

ϕ(n) =
1
n

n−1

∑
j=1

ln
(
1+βb( j)

)

for natural number n > 1. It is clear that

ln
(
1+βb(n)

)
=




α for n = 1,
α for n ∈ [n2m−1,n2m −1],

0 for n ∈ [n2m,n2m+1 −1],

for m = 2,3, . . . . Let α ≥ 0. Then,

0 ≤ ln(1+βb(n))≤ α

and therefore, ϕ(n)≤ α for all n ∈ N. Hence, µ ≤ α . However,

µ ≥ limsup
m→∞

ϕ(n2m)

= limsup
m→∞

1
n2m

n2m−1

∑
j=1

ln
(
1+βb( j)

)

≥ limsup
m→∞

1
n2m

n2m−1

∑
j=n2m−1

α

= α lim
m→∞

n2m −n2m−1

n2m
= α.

Thus, µ = α . Now let α ≤ 0. Then,

0 ≥ ln(1+βb(n))≥ α

and therefore 0 ≥ ϕ(n) ≥ α for all n ∈ N. Hence, µ ≥ α . For
each k ∈ [n2m−1,n2m] with any natural number m > 1, we have

ϕ(k) =
1
k

(
n2m−1−1

∑
j=1

ln(1+βb( j))+(k−n2m−1)α

)

= k−1(ϕ(n2m−1)n2m−1 +(k−n2m−1)α
)

=
n2m−1

k
ϕ(n2m−1)+α

k−n2m−1

k
≤ ϕ(n2m−1).

In addition, for k = n2m, we obtain

ϕ(n2m)≤ α
n2m −n2m−1

n2m
= α

(
1− 1

m

)
. (40)

For each k ∈ [n2m,n2m+1] with any m ∈ N, we also have

ϕ(k) = k−1ϕ(n2m)n2m ≤ n−1
2m+1ϕ(n2m)n2m = ϕ(n2m+1). (41)

Thus, ϕ(k) ≤ ϕ(n2m+1) for all k ∈ [n2m,n2m+2]. Moreover,
from (40) and (41) we get

ϕ(n2m+1) =
n2m

n2m+1
ϕ(n2m)≤ α

n2m

n2m+1

(
1− 1

m

)
,

so

ϕ(k)≤ α
n2m

n2m+1

(
1− 1

m

)

for all k ∈ [n2m,n2m+2]. Note that

lim
m→∞

α
n2m

n2m+1

(
1− 1

m

)
= α.

Put

r(k) =




0, k = 1,
αn2m

n2m+1

(
1− 1

m

)
, k ∈ [n2m,n2m+2 −1].

It is clear that r(k) → α as k → ∞. Since ϕ(k) ≤ r(k) for all
k ∈ N, we have

µ = limsup
k→∞

ϕ(k)≤ limsup
k→∞

r(k) = α.

Therefore, µ = α . Thus, system (39) with the defined control
U(·) has the Lyapunov spectrum consisting of α , and the Lya-
punov spectrum of the equation (39) is assignable.

The example below explains why we changed the definition
of proportional global assignability for discrete-time systems
with comparison to definition for continuous-time systems.

Example 2. Let us consider a linear discrete-time scalar control
system

x(t +1) = x(t)+u(t). (42)

Here A(t), B(t) are scalars and A(t) = B(t) = 1 for all t. There-
fore, for the transition matrix of the homogeneous system

x(t +1) = x(t)

we have ΦA(t, t0) = 1 for all t, t0 ∈N0. Thus, system (42) is uni-
formly completely controllable. Since every solution x(t, t0,x0)
of system (42) is constant, it follows that the Lyapunov spec-
trum coincides with 0. Let us close system (42) by a feedback
u(t) =U(t)x(t). Then we get a system

x(t +1) = (1+U(t))x(t). (43)

By the Theorem 26 the Lyapunov spectrum of system (43) is
globally assignable, so for every α ∈ R we can construct a
control U , such that the Lyapunov spectrum of system (43)
coincides with the number α. Let us find out whether it is
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(39) with the defined U(·) coincides with the upper mean value
of the function ln(1+βb(·)), that is, with the value

µ = limsup
n→∞

n−1
n−1

∑
j=1

ln
(
1+βb( j)

)
.

Our aim is to prove that µ = α . Put ϕ(1) = 0 and

ϕ(n) =
1
n

n−1

∑
j=1

ln
(
1+βb( j)

)

for natural number n > 1. It is clear that

ln
(
1+βb(n)

)
=




α for n = 1,
α for n ∈ [n2m−1,n2m −1],

0 for n ∈ [n2m,n2m+1 −1],

for m = 2,3, . . . . Let α ≥ 0. Then,

0 ≤ ln(1+βb(n))≤ α

and therefore, ϕ(n)≤ α for all n ∈ N. Hence, µ ≤ α . However,

µ ≥ limsup
m→∞

ϕ(n2m)

= limsup
m→∞

1
n2m

n2m−1

∑
j=1

ln
(
1+βb( j)

)

≥ limsup
m→∞

1
n2m

n2m−1

∑
j=n2m−1

α

= α lim
m→∞

n2m −n2m−1

n2m
= α.

Thus, µ = α . Now let α ≤ 0. Then,

0 ≥ ln(1+βb(n))≥ α

and therefore 0 ≥ ϕ(n) ≥ α for all n ∈ N. Hence, µ ≥ α . For
each k ∈ [n2m−1,n2m] with any natural number m > 1, we have

ϕ(k) =
1
k

(
n2m−1−1

∑
j=1

ln(1+βb( j))+(k−n2m−1)α

)

= k−1(ϕ(n2m−1)n2m−1 +(k−n2m−1)α
)

=
n2m−1

k
ϕ(n2m−1)+α

k−n2m−1

k
≤ ϕ(n2m−1).

In addition, for k = n2m, we obtain

ϕ(n2m)≤ α
n2m −n2m−1

n2m
= α

(
1− 1

m

)
. (40)

For each k ∈ [n2m,n2m+1] with any m ∈ N, we also have

ϕ(k) = k−1ϕ(n2m)n2m ≤ n−1
2m+1ϕ(n2m)n2m = ϕ(n2m+1). (41)

Thus, ϕ(k) ≤ ϕ(n2m+1) for all k ∈ [n2m,n2m+2]. Moreover,
from (40) and (41) we get

ϕ(n2m+1) =
n2m

n2m+1
ϕ(n2m)≤ α

n2m

n2m+1

(
1− 1

m

)
,

so

ϕ(k)≤ α
n2m

n2m+1

(
1− 1

m

)

for all k ∈ [n2m,n2m+2]. Note that

lim
m→∞

α
n2m

n2m+1

(
1− 1

m

)
= α.

Put

r(k) =




0, k = 1,
αn2m

n2m+1

(
1− 1

m

)
, k ∈ [n2m,n2m+2 −1].

It is clear that r(k) → α as k → ∞. Since ϕ(k) ≤ r(k) for all
k ∈ N, we have

µ = limsup
k→∞

ϕ(k)≤ limsup
k→∞

r(k) = α.

Therefore, µ = α . Thus, system (39) with the defined control
U(·) has the Lyapunov spectrum consisting of α , and the Lya-
punov spectrum of the equation (39) is assignable.

The example below explains why we changed the definition
of proportional global assignability for discrete-time systems
with comparison to definition for continuous-time systems.

Example 2. Let us consider a linear discrete-time scalar control
system

x(t +1) = x(t)+u(t). (42)

Here A(t), B(t) are scalars and A(t) = B(t) = 1 for all t. There-
fore, for the transition matrix of the homogeneous system

x(t +1) = x(t)

we have ΦA(t, t0) = 1 for all t, t0 ∈N0. Thus, system (42) is uni-
formly completely controllable. Since every solution x(t, t0,x0)
of system (42) is constant, it follows that the Lyapunov spec-
trum coincides with 0. Let us close system (42) by a feedback
u(t) =U(t)x(t). Then we get a system

x(t +1) = (1+U(t))x(t). (43)

By the Theorem 26 the Lyapunov spectrum of system (43) is
globally assignable, so for every α ∈ R we can construct a
control U , such that the Lyapunov spectrum of system (43)
coincides with the number α. Let us find out whether it is
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possible to find a number � > 0, such that for all α > 0 there
exists a control U for which we have

λ (A+BU) = α, ‖U‖∞ ≤ �α. (44)

Here we restrict ourselves to the consideration of positive num-
bers α , since below we will prove that even for this case it is
impossible. Suppose that for each α > 0 there exists a control
U for which both conditions (44) are satisfied. Then for an ar-
bitrary nontrivial solution xU (t, t0,x0) of system (43) we have
estimates

α = λ (A+BU) = limsup
t→∞

1
t

ln |xU (t, t0,x0)|=

= limsup
t→∞

1
t

ln

∣∣∣∣∣
t−1

∏
j=1

(
1+U( j)

)
x0

∣∣∣∣∣≤

≤ limsup
t→∞

1
t

ln
t−1

∏
j=1

(
1+ |U( j)|

)
|x0| ≤

≤ limsup
t→∞

1
t

ln
t−1

∏
j=1

(
1+ �α

)
|x0|=

= limsup
t→∞

1
t

ln
(
1+ �α

)t−1|x0|= ln(1+ �α).

Thus, there exists � > 0 such that for each α > 0 the inequality
α ≤ ln(1+ �α) holds, that is, eα ≤ 1+ �α. But this is impossi-
ble, since the exponential function grows faster than any linear
function. However, if we choose an arbitrary ∆ > 0, then there
exists an � = �(∆) > 0 such that for each α ∈ R, |α| < ∆ there
exists a control U for which the conditions (44) are satisfied.
Here we can take U(t) = eα −1. Then

‖U‖∞ = |eα −1| ≤ e|α| −1 ≤ �|α|,

where �=
e∆ −1

∆
.

In order to present a deeper relation between global
assignability and uniform complete controllability let us intro-
duce the concept of Bebutov hull of a sequence. For any bounded
sequence F0 = (F0(t))t∈N ⊂Rr×q and any h ∈N, let us consider
a sequence Fh = (Fh(t))t∈N, where Fh(t) = F0(t+h) is a shift of
F0(t) by h. Let us denote by R(F0) the closure in the topology
of pointwise convergence on N of the set {Fh(·) : h ∈ N}. It is
well known that R(F0) is metrizable by means of the metric

ρ
(

F, F̂
)
= sup

t∈N
min

{
‖F(t)− F̂(t)‖, t−1

}
.

The space (R(F0),ρ) is compact [60, p. 34] and it is called the
Bebutov hull of the sequence F0 (see [61, p. 32], [62]).

Let us identify system (24) with the sequence (A,B) =(
A(t),B(t)

)
t∈N ⊂ Rn×(n+m). The space R(A,B) will be called

the Bebutov hull of system (24).

Theorem 27. [56] System (24) is uniformly completely con-
trollable if and only if for each system from R(A,B) the corre-

sponding closed-loop system has globally assignable Lyapunov
spectrum.

For a given system (24), which is not uniformly completely
controllable, the problem of finding a system from R(A,B) such
that corresponding closed-loop system does not have assignable
Lyapunov spectrum is in general a difficult task. The proof of
Theorem 27 does not give a recipe to find a “bad” system from
the hull, but only establishes the fact of its existence.

Now we will present a result about local proportional
assignability of the spectrum of system (29).

Theorem 28. Let system (24) be uniformly completely control-
lable and assume that at least one of the following conditions
holds:
1) system (25) is regular;
2) system (25) is diagonalizable;
3) the Lyapunov spectrum of system (25) is stable;
4) system (25) is a system with integral separation.

Then the Lyapunov spectrum of system (29) is proportionally
locally assignable.

Points 1–3 of this theorem were proved in [57] and point 4
in [59].

Let us consider one more concept of assignability, which is
connected to the Lyapunov regularity coefficients.

Definition 39. [58] The Lyapunov spectrum and the Lyapunov
irregularity coefficient of system (29) are called simultaneously
proportionally locally assignable if there exist � > 0 and δ > 0
such that for all

µ = (µ1,µ2, . . . ,µn) ∈ O(λ (A))

and σ ∈ [0,δ ) there exists an admissible feedback control U for
system (24), such that estimate

‖U‖∞ ≤ �max{σ , |λ1(A)−µ1|, . . . , |λn(A)−µn|} (45)

and equalities

λ (A+BU) = µ, σL(A+BU) = σ

are satisfied.

Theorem below contains a result concerning the defined above
concept of assignability.

Theorem 29. [58] System (29) has the property of simultaneous
proportional local controllability of the Lyapunov spectrum and
the Lyapunov irregularity coefficient if system (24) is uniformly
completely controllable and the free system (26) is regular.

4. Summary

In this paper we presented results concerning problems of loca-
tion by feedback of Lyapunov invariants of linear discrete and
continuous-time controlled systems. We concentrated on one of

the most important numerical characteristics – Lyapunov expo-
nents, which describe exponential stability (Theorem 1 and 22).
These results were presented in the context of complete con-
trollability and uniform complete controllability (Theorems 4,
6, 11, 12, 16, 26, 27 and 28). Moreover, for continuous-time
system we are able to present results about shifting of the Bohl
exponent with connection to the concept of uniform complete
controllability (Theorem 7) and optimalizability (Theorem 8).
Also for continuous-time systems, it can be shown that uniform
complete controllability together with the property of bound-
ness away implies nonmultiply proportional local assignability
(Theorem 20). Theorems 11, 17, 18 and 29 give sufficient condi-
tions for assignability of another numerical characteristics such
as regularity coefficients and central exponents.

When we compare the results for continuous and discrete-
time systems then we see that for the latter we don’t have the
relations between complete stabilizability, optimalizability and
Riccati equation as well as we don’t have the concept of bounded
away systems and its relation with proportional local assignabil-
ity. Another further direction of research in this area is to solve
the problem of assignability of numerical characteristics of time-
varying systems which correspond to imaginary parts of eigen-
values. The proposition of such characteristics is formulated
in [63]. Finally, an effective methods of designing of the feed-
back that ensures desired location of the different numerical
characteristics should be a subject of further research.
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the most important numerical characteristics – Lyapunov expo-
nents, which describe exponential stability (Theorem 1 and 22).
These results were presented in the context of complete con-
trollability and uniform complete controllability (Theorems 4,
6, 11, 12, 16, 26, 27 and 28). Moreover, for continuous-time
system we are able to present results about shifting of the Bohl
exponent with connection to the concept of uniform complete
controllability (Theorem 7) and optimalizability (Theorem 8).
Also for continuous-time systems, it can be shown that uniform
complete controllability together with the property of bound-
ness away implies nonmultiply proportional local assignability
(Theorem 20). Theorems 11, 17, 18 and 29 give sufficient condi-
tions for assignability of another numerical characteristics such
as regularity coefficients and central exponents.

When we compare the results for continuous and discrete-
time systems then we see that for the latter we don’t have the
relations between complete stabilizability, optimalizability and
Riccati equation as well as we don’t have the concept of bounded
away systems and its relation with proportional local assignabil-
ity. Another further direction of research in this area is to solve
the problem of assignability of numerical characteristics of time-
varying systems which correspond to imaginary parts of eigen-
values. The proposition of such characteristics is formulated
in [63]. Finally, an effective methods of designing of the feed-
back that ensures desired location of the different numerical
characteristics should be a subject of further research.
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