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MODELLING THE SECONDARY BENDING IN RIVETED JOINTS
WITH ECCENTRICITIES

For riveted joints with eccentricities of the load path, bending moments referred
to as secondary bending are induced under nominally tensile loading conditions.
Two simple theoretical models proposed in the literature to estimate the
associated bending stresses are evaluated in the paper. Both approaches have been
implemented in computer programs and applied to estimate the effect of several
variables on the calculated bending stresses in the lap joint. Possibilities of the
experimental and numerical verification of the models are also considered. Finally,
a correlation between the secondary bending computed by one of the simple models
and the observed fatigue properties of riveted specimens, as reported in the literature,
is investigated. It is shown that deviations of the experimental results from the
theoretical expectations stem from additional to secondary bending factors, like the
inhomogeneous load transmission through the joint and the residual stresses induced
by riveting process. These phenomena are known to be relevant to the fatigue
behaviour of riveted joints, but they are not accounted for by the simple models.
A conclusion from the present study is that despite the limitations and approximations
inherent in the simple models, they provide reliable estimates of nominal bending
stresses at the critical rivet rows and can be utilized in currently used semi-empirical
concepts for predictions on the fatigue life of riveted joints.

1. Introduction

Riveting is one of the major methods for holding together sheet panels,
stringers and stiffeners of the fuselage of an aircraft and its use will continue
in the foreseeable future despite alternatives like welding and bonding.
Among primary advantages of the riveted joints are their low production
cost, utilization of conventional metal-working tools and techniques,
possibility of the riveting process automation, ease of inspection, possibility
of their repeated assembling and disassembling for the fabrication
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replacement or repair, good hole filling properties of the rivets and, last
but not least, a long-standing experience of the industry with riveted joints.
At the same time, however, the riveted joints represent a fatigue critical
element in metallic airframe construction. For example, the present problem
of aging aircraft is associated with fatigue of riveted lap joints in pressurized
fuselage structure [1]. Understanding the fatigue process within riveted joint
requires a detailed knowledge of the local stress state. The local stresses
are affected by factors associated with high stress concentration at the rivet
hole, the load transfer through the rivet and the rivet installation. The rivet
installation process imparts residual stresses in the vicinity of the holes.
Another result of rivet installation are frictional forces between the mating
sheets induced due to the clamp-up which contribute to fretting damage at
the faying surface. For riveted joints with eccentricities of the load path,
bending stresses which occur under a nominally tensile loading on the joint
must also be considered. Bending caused by the tensile load on the joint is
referred to as secondary bending. Crack path eccentricities are inherent in
riveted joints typically present in aircraft fuselages, namely longitudinal lap
joints and circumferential single strap joints.

The contribution of secondary bending is often quantified by the bending
factor defined as

kb =
Sb

S
(1)

where Sb is the maximum nominal∗ bending stress, and S is the nominal
tensile stress applied to the joint. Both Sb and S are computed for the gross
section of the sheet, i.e. neglecting the rivet holes.

Maximum bending moments occur at eccentricities, namely at the
fastener rows. For a lap joint with more than two rivet rows, the location of
the maximum bending moments is always at the outer rows, i.e. row I and III
for a most common configuration with tree rivet rows shown in Fig. 1. Due
to the deformation of the joint also depicted in Fig. 1, the nominal bending
stresses adopt the highest positive value at location A of sheet 1 and location
B of sheet 2. Their value is given by

Sb,i =
6Mb,imax

Bt2
i

(2)

∗ Nominal stress is computed for the cross section neglecting the stress concentration.
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where subscript i indicates the critical location (in sheet 1 or 2), Mb,imax is
the maximum bending moment and B and ti denote the specimen gross width
and thickness respectively.

Fig. 1. Lap joint with three rivet rows

Because outside the overlap region either sheet carries the full load P
coming from the pressurization of the fuselage, the maximum applied stresses
equal

Si =
P
Bti

(3)

and, consequently, the maximum total nominal tensile stresses (S + Sb)i in
the sheets also occur at A and B.

The nominal stresses due to the secondary bending can equal or even
exceed the applied stresses. Fractographic investigations of riveted joints
indicate that fatigue crack nucleation occurs at the sites of maximum bending
stresses [2,3].

The subject of the present paper is modelling the secondary bending in
riveted joint with eccentricities according to two simple theoretical concepts
proposed in the literature [4,5]. Both approaches have been implemented in
computer programs and applied to estimate the effect of several variables
on the calculated bending stresses in the lap joint. Possibilitie of the
experimental and numerical verification of the models are also considered.
Finally, a correlation between the secondary bending computed using the
simple models and the observed fatigue properties of riveted specimens is
investigated.
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2. Simple models to estimate bending stresses in joints with
eccentricities

In order to derive the bending moment at any site of a joint with eccen-
tricities, the out of plane deformations of the sheets must be known. Concepts
which enable to compute these deformations, represented by deflections of
the joint neutral axis, have been proposed by Schijve [4] and Das et al [5].
Within the overlap, i.e. between the outer rivet rows, the sheets are assumed
to act as a single integral beam, the flexural rigidity of which corresponds to
the combined thickness of the sheets. The rivets itself are not modelled. The
above simplifications imply that for a joint with more than two rivet rows,
the presence of the inner rivet rows is not accounted for.

With both approaches referred to above, the joint is decomposed into
segments of a constant flexural rigidity connected at the ends. As seen in
Fig. 1, there are three segments in the case of a simple lap joint. From the
theory of beams or flat shells under bending, the bending moment for segment
i sketched out in Fig. 2 can be computed from the differential equation for
the deflection wi(xi) at any point xi along the segment

Mb,i(xi) = Giw”
i (xi) (4)

with

Mb,i(xi) = Mi,A + Vxi + P [wi (xi) − wi (0)] , i = 1 to n (5)

where V is the fixing reaction, Gi is the bending stiffness of segment i,

w”
i (xi) =

d2wi(xi)
dx2

i

and n is the number of the segments.

Fig. 2. Nomenclature for the calculation of the bending moment for segment i of a riveted joint
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In the case of hinged clampings of the sheet ends, the fixing moments
M1A and Mn,B and the reaction V equal zero.

The general solution of Eq. (4) is in the form

wi(xi) = Ai cosh (αixi) + Bi sinh (α, xi) +Cixi + Di (6)

where:

αi = (P/Gi)1/2, Ci = −V /P and Di = −Mi,A/P (7)

The unknowns, namely the constants Ai, Bi, Ci and Di, the reaction V
and the moments Mi,A can be solved by considering the equilibrium of the
joint as a whole [4] or the equilibrium of the individual segments [5], and
by setting the boundary conditions at the segment intersections and at the
joint clamped ends, i.e. for x1 = 0 and xn = Ln. Matching the slopes at the
intersection of segment i and i+1 is governed by the equation

w
′
i(Li) = w

′
i+1(0) (8)

where w
′
i(xi) =

dwi(xi)
dxi

.

Though very much alike, the concepts of Schijve and Das et al differ,
however, in some details. The effect of the joint eccentricities is covered
in either model in a distinct way, as schematically shown in Fig. 3 for the
case of a hinged (a) and rigid (b) clamping of the sheet ends. According to
Schijve’s approach, often referred to as the neutral line model, the neutral
axis is stepped by the eccentricities between the segments both prior to and
after the joint deformation. In case of eccentricity ei between segment i and
i + 1 he assumes

wi=1(0) = wi(Li) ± ei (9)

Fig. 3. Modelling the eccentricities for the lap joint from Fig. 1 according to [4] and [5] in case
of hinged (a) and rigid (b) clamping of the sheet ends
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Contrary to Schijve, Das et al consider w(x) to be a continuous line which
implies

wi+1(0) = wi(Li) (10)

and they account for the eccentricity by introducing an additional moment

Mi+1,A = Mi,B ± Pei (11)

Another difference between both concepts lies in covering the deflections
in the overlap region. Schijve assumes that Eq. (4) holds also for segments
between the outer rivet rows whilst Das et al consider these segments to
be perfectly stiff. Thus, according to [5], if segment i represents the overlap
region which is connected to segments i − 1 and i + 1, then

wi(Li) = wi(0) + Liw
′
i(0) (12)

and, consistent with Eq. (10),

w
′
i(0) = w

′
i−1(Li−1) = w

′
i(Li) = w

′
i+1(0) (13)

To conclude the list of differences between both approaches, it should
be mentioned that Schijve assumes plane stress conditions which implies the
bending stiffness per unit width of

Gi = Et3
i /12 (14)

whilst plane strain conditions adopted by Das et al lead to

Gi = Et3
i /[12(1 − ν2)] (15)

where E is the modulus of elasticity and ν is Poisson’s ratio.

3. Effect of the stress level and design variables on the amount of
secondary bending in a lap joint

The models of Schijve [4] and Das et al [5] have been implemented in
computer programs and used to quantify the influence of several variables
on stresses induced by the secondary bending in the lap joint from Fig. 1.
To solve Eq. (4) for w(x), the joint has been divided into three segments,
as shown in Fig. 1, the detailed derivation for Schijve’s model being given
elsewhere [6]. For the results presented in this section, equal thickness of
both sheets are assumed, namely t1 = t2 = t.

The effect of the type of clamping the specimen ends on the model results
is studied first. As pointed out by Schijve [4], the influence of clamping
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conditions on the bending stress value can be avoided if the distance between
the clamping edge and the outer rivet row (the so called free length lf , Fig.
1) is sufficiently long. Müller [2] demonstrated numerically that for sheet
thicknesses below 2 mm the minimum free length lf of 50t suffices to make
the change in the Sb value due to the change of the clamping conditions
less than 1%. This is substantiated by the plots in Fig. 4 which present the
sensitivity of the kb-value to the type of clamping according to the model by
Schijve [4]. It is seen in Fig. 4 that for a given sheet thickness the bending
factor reaches a steady level at a certain limiting lf /t-value which increases
with t. A practical conclusion for laboratory fatigue tests is that in order to
avoid the influence of the fixture type, much shorter specimens suffice in the
case of thinner sheets compared to thicker sheets. The behaviour of model
[5] is similar to that shown in Fig. 4.

Fig. 4. Influence of the type of clamping the ends of the lap joint from Fig. 1 on the bending
factor (kb) depending on the sheet thickness (t) according to model [4].

The applied stress S=100 MPa

Plots in Fig. 5 demonstrate that the effect of secondary bending
represented by the peak bending stress Sb and the bending factor kb
computed according to Schijve’s model [4] becomes considerably reduced
with decreasing the specimen thickness and with increasing the spacing p
between the rivet rows. This could well be anticipated since thinner sheets
imply smaller eccentricities and because for a longer p-distance the joint
out-of-plane deflections are smaller. Note in Fig. 5 that Sb and, hence, also
kb are non-linear functions of the load on the joint and that the secondary
bending is more severe at lower applied stresses S.

For the lap joint from Fig. 1, the largest deflections and, hence, the
maximum bending moments occur at the end rivet rows, as already said
earlier. This is correctly predicted by both models, as indicated in Fig. 6
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Fig. 5. Effect of the applied stress level (S), sheet thickness (t) and the rivet row pitch (p) on the
bending factor (kb) and the bending stresses (Sb) at the critical rivet rows for the lap joint from

Fig. 1 according to model [4]

which shows variations of the bending stresses along the lap joint computed
for two sheet thicknesses at the applied stress S=120 MPa. It is seen that
for t=2 mm both solutions give very close results on the peak Sb-levels at
the outer rivets (136 MPa [4] and 130.2 MPa [5]), whilst for t=0.8 mm the
Sb-values differ quite significantly (Sb=99.1 MPa [4] and 66.5 MPa [5]). For
t=1.2 mm the corresponding Sb values (not shown in Fig. 5 for clarity) are
109.9 MPa [4] and 91.3 MPa [5].

Fig. 6. Variations of the bending stresses along the lap joint according to model [4] and [5]. The
applied stress S=120 MPa

Differences between the results from both models are further quantified
in Figs. 7 and 8. In Fig. 7, Sb[4] and Sb[5] denote the peak bending stresses
computed using the model of Schijve [4] and Das et al [5] respectively.
Except at very low applied stresses, the Sb[4]/Sb[5] ratio is above unity which
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indicates that, generally, the model of Das et al yields lower estimates on Sb
than the model of Schijve. The discrepancies become larger when the sheet
thickness decreases, as already revealed in Fig. 6. Fig. 7 also demonstrates
that for the very thin sheet of 0.8 mm in thickness the divergence in the
results dramatically increases with increasing the S-level.

Fig. 7. Comparisons between the estimates of peak bending stresses for the lap joint from Fig. 1
according to model [4] and [5] for several sheet thicknesses. The rivet row spacing p=25 mm

Fig. 8. Comparisons between the reduction in secondary bending due to increasing the rivet row
spacing in the lap joint from 25 mm to 40 mm predicted according to [4] and [5] for several

sheet thicknesses

Fig. 8 compares derived from both models estimate of the reduction in
the peak bending stress for a range of the t-values due to increasing the
spacing between the rivet rows. Here Sb(40) and Sb(25) denotes the bending
stress at the critical location for the row spacing of 40 mm and 25 mm
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respectively. Generally, compared to Schijve’s model [4], Das et al [5] predict
more benefits from increasing p, as evidenced by the plots according to [5]
falling below those according to [4] except at very low S-levels. Interestingly,
the results from either approach show a different behaviour with respect to
S and t. According to Schijve, the effect of increasing p becomes weaker at
higher applied stresses, whilst the reversed trend follows from the model of
Das et al. Also, contrary to the latter approach, Schijve’s model predicts the
benefits of the larger p-distance to fade when the sheet thickness decreases.
Consequently, in Fig. 8 the largest discrepancies in the Sb(40)/Sb(25)
ratio from both models are exhibited for the 0.8 mm thick sheet, whilst the
differences for the thicker sheets (2 and 2.4 mm) are moderate.

The pronounced discrepancies in the results for thinner sheets revealed
in the present study stem most probably from the distinct description of the
overlap region deformation adopted in either model. Obviously, the lower
is the sheet thickness, the more meaningful become differences between the
deflections computed for the flexible (according to [4]) and the perfectly rigid
(according to [5]) overlap. In the opinion of the present authors, disregarding
the deformation of the overlap hardly has a physical foundation. Therefore,
the model of Schijve [4] which does account for the overlap region deflection
will be utilized in the analyses presented further on in this paper.

4. Verification of the simple models

An experimental or numerical verification of the models considered here
is not straightforward. Experimental studies [2] and FE analyses [7] indicate
that due to the presence of holes and the discrete load transmission through
the rivets the stress distribution both along the joint width and along the rivet
columns is highly non-uniform. The so called edge effect caused by
differences in lateral contraction of the sheets in the overlap area can
additionally contribute to the stress state inhomogeneity in the riveted
joint. Because the above complexities are by assumption ignored in
the one-dimensional models considered here, these approaches only enable
estimates of the nominal stresses. Thus, it would not be appropriate to com-
pare the Sb-stresses produced by the simple models with experimental or
FEM results derived at locations close to the holes where a severe stress
concentration occurs. For lap joint specimens with three rivet rows Rijck [8]
noted a very good conformity of his strain gauge measurement results with
the bending stresses computed by the model of Schijve [4]. The gauges were
bonded along an inner rivet column outside the overlap area at a distance
of half the rivet pitch from the outer rivet row. Within the overlap region
where, however, the bending stresses are much lower (see Fig. 6), the com-
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puted and measured data compared less favourably which can be attributed
to neglecting in the model differences in the loads transmitted by the sheets
within the overlap. Also, Brenner and Hübsch [9] reported a satisfactory
agreement between the bending stresses computed for a single strap joint
using a method similar to Schijve’s model and those measured with strain
gauges bonded at a distance of 2 mm from the rivet rows and half way
between the rivet columns.

The regions of the most severe stress concentration which are of primary
concern for fatigue are located beneath the rivet heads and at the faying
joint surface, in either case hidden from the capabilities of conventional
experimental stress analysis techniques. These critical areas are, however,
accessible for numerical analyses. For the lap joint configuration considered
in the FE analyses by Rans et al. [7], the neutral line model by Schijve was
found to provide accurate predictions of secondary bending only up to a
distance of three rivet diameters from the rivet row centre line. More near
the hole the simple model proved inaccurate due to significant variations in
secondary bending along the joint width.

Altogether, the available literature evidence cited in this section suggests
that the model of Schijve can produce reliable estimates of nominal bending
stresses for riveted joints with eccentricities.

Das et al [5] provided favourable comparisons between the strain gauge
readings, 3-D FE results and local stresses computed based on the nominal
bending stresses derived from their simple model for a padded riveted lap
joint.

5. Effect of secondary bending on the fatigue performance of riveted
joints

Fatigue tests of Hartman and Schijve [3] were conceived to investigate
the dependence of the riveted joint fatigue performance on the amount of
secondary bending. The geometry and dimensions of their specimens are
shown in Fig. 9. Differences in the kb-factors for the two series of lap joints
(A and B, Fig. 9) were introduced by varying the rivet row spacing. The
differences for the single strap joints (C, D and E, Fig. 9) were obtained by
varying the number and the thicknesses of the straps. A symmetrical double
strap joint (F, Fig. 9) for which secondary bending does not occur served as
a reference case. Measures were taken by the authors to make the differences
in the fatigue behaviour of the specimens stem mainly from the differences
in the amount of secondary bending. With this end in view, all specimens
were cut from the same batch of the material (2024-T3 Alclad) and the rivet
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type, the rivet diameter (Do) and the rivet driven head diameter, D = 1.5Do,
were the same for all specimens.

Fig. 9. The geometry and dimensions of the riveted specimens tested by Hartman and Schijve [3]

The Sb vs. S dependence for each specimen can be derived utilizing the
neutral line model of Schijve [4]. The model application to the lap joint
has already been considered earlier in this paper, see also Fig. 1. As said
previously, for the type A and B configuration from Fig. 9, the maximum
bending stresses and, at the same time, the maximum total tensile stress
(S+Sb), where S is computed for the local sectional area neglecting the rivet
holes, always occur at the outer rivet rows (location A and B in Fig. 1). The
deflected neutral axis of a single strap joint and the division of the joint into
three segments is schematized in Fig. 10. Due to the joint symmetry it is
enough to only consider half of the configuration. The bending stresses were
computed at four sections (α, β, γ and δ) shown in Fig. 10. For specimen C
and D, the critical locations where the highest total tensile stresses occur are
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at the inner rivets (section δ, Fig. 10). This holds also true for specimen E
at S ≤25 MPa, but for larger applied stress levels the critical location shifts
to section α. Because all constant amplitude fatigue tests of Hartman and
Schijve were carried out at the same applied mean stress of 70 MPa, the
above implies that at the maximum of a fatigue cycle the peak total tensile
stress (S+Sb) in specimen E always occurred in section α. At the same time,
the total stress amplitude (S + Sb)a was always higher for section α than for
section δ.

Fig. 10. The deflected neutral line and the division into segments for a single strap joint

Fig. 11. The computed according to Schijve’s model peak total stress at the critical rivet row
against the applied stress amplitude for the specimens from Fig. 9

Plots in Fig. 11 show the peak total tensile stress at the critical location
calculated at the maximum (notation “max”) and at the minimum (notation
“min”) of a fatigue cycle presented against the applied stress amplitude Sa.
For specimens A, B, C and D the fatigue crack nucleation sites observed
by Hartman and Schijve on the specimen fracture surfaces agree with the
locations of the computed maximum tensile stresses. With specimens E,
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however, only at the highest applied stress amplitudes (Sa ≥ 56 MPa) the
failure changed over from the longer strap (section δ, Fig. 10) to the sheet at
the outer rivet row (section α). Such a behaviour can hardly be linked with
the bending stress performance described above.

Fig. 12. Correlation between the fatigue lives observed in test by Hartman and Schijve [3] and:
(a) the applied stress amplitude; (b) the peak total stress amplitude

In Figs 12a and b, the observed fatigue lives (Nf ) for all specimens are
correlated in terms of the applied stress amplitude Sa and the total stress
amplitude (S + Sb)a. Also shown are the corresponding trend lines. Equally
large scatter in the data points in seen for both ways of the presentation.
If the joint endurance were only dependent on (S + Sb)a, then taking into
account that Sb=0 for specimen F the following equation should be satisfied
for a given fatigue life

(S̆ + Sb)a,SB = Sa,F (16)
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where the subscript SB refers to any specimen for which secondary bending
occurs.

Shown in Fig. 13 by the dashed lines are the Ša vs. Nf plots for all
specimens with eccentricities ensuing from Eq. (16). Sb is computed from
Schijve’s model and Sa,F comes from the trend line representing the fatigue
test results for specimens F. The actual mean curves Sa vs. Nf for the other
specimens are also presented in Fig. 13 as the full lines. Evidently, the
predicted from Eq. (16) reduction in the fatigue strength due to the secondary
bending is larger than observed because for every specimen the Ša vs. Nf
curve falls significantly below the Sa vs. Nf curve.

Fig. 13. Comparisons between the actual and computed using model [4] mean S − N curves for
the specimens with eccentricities

Altogether, the results presented in Figs 12 and 13 imply that the (S+Sb)a
parameter is not capable of consolidating the data points for specimens of
various configurations along a single S−N curve and leads to an overestimate
of secondary bending detrimental effects on the joint fatigue properties. Even
qualitatively some misjudgments are obtained since, according to the fatigue
tests, the order of joints with decreasing fatigue strength is F, B/E, A, C, D
whilst, according to the increasing kb value the order is F, E, B/D, A, C.

The lack of correlation between the calculated bending and the fatigue
test results is not surprising since it is well known that the fatigue cracking
of a notched component is controlled by the local stresses at the crack
nucleation site rather than by the nominal stresses. As already said in
the Introduction, the stress state near the rivet hole depends on a number
of factors. Consequently, depending on a specific combination of the joint
geometry, rivet material and type, sheet material and the riveting process the
same nominal stress amplitude (S + Sb)a may be associated with different
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local stress amplitudes. Certainly with the tests by Hartman and Schijve,
the differences in the bending stresses are not the sole cause of the
observed differences in the fatigue performance of their specimens. First, the
load transmission is very different for the double strap joint (specimen F)
compared to the single strap joints C, D and E. Moreover, within the latter
joints the load transfer must have been also diversified due to the different
strap numbers and thicknesses. Fatigue tests on riveted specimens indicate
considerable fatigue life improvements due to increasing the rivet hole
expansion (e.g. by applying a larger riveting force or by plastically
expanding the hole prior to the rivet installation) and generating in this
way a more beneficial residual stress field [2, 10]. At the same time, the
experimental work by Müller demonstrates that the hole expansion becomes
smaller for a larger sheet thickness in spite of the same driven head diameter
[2]. With the experiments of Hartman and Schijve, the above implies that
installing the rivets to obtain the same D/Do ratio for all specimens could
lead to a diversification in the hole deformation depending on the joint total
thickness. It can be concluded that only for specimens A, B and C both
the load transmission and the residual stress field were very much alike.
Consequently, only for these joints the differences in the fatigue behaviour
can be fully attributed to secondary bending. The above reasoning is backed
up by comparing the scatter of the S − N data for specimens A, B, and C.
Whilst for the Sa vs. Nf presentation of the results the correlation coefficient
is 0.87, its value jumps up to 0.96 when the fatigue life is correlated using
(S + Sb)a.

A question arises about the significance of the simple models [4,5]
for predictions on the fatigue life of riveted joints. Only a semi-empirical
prediction approach, like for example the concepts by Das et al [5] or by
Homan and Jongebreur [11], is possible because it would be not feasible to
account analytically for all the influences involved. Both methods referred
to above are based on a similarity principle, namely it is assumed that the
same local stress amplitude at the critical location for two different riveted
joints yields the same fatigue life. The predictions for the actual joint are
extrapolated from a known S − N curve for a so called reference riveted
joint. The approach requires calculation of the peak local stress for the
actual riveted joint and for the reference joint. This local stress level can be
approximated by the superposition of three components, namely the stresses
induced by the bypass load, the transfer load∗∗ and secondary bending. Each
stress component is expressed as the product of the nominal stress and

∗∗ Bypass load is the part of the load passing the rivet hole, i.e. remaining in the sheet; transfer
load is the part of the load transmitted by the rivet to another sheet.
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the appropriate stress concentration factor. The experimental verification of
models [4,5] in the literature, as considered earlier in this paper, allows of
an opinion that these simple concepts may provide easy means to reliably
estimate the nominal stress induced by secondary bending for a given riveted
joint configuration.

6. Conclusions

1. Load path eccentricity in lap and single strap riveted joints causes bending
moments under nominally tensile loading conditions. Due to the above
phenomenon referred to as secondary bending significant bending stresses
are induced. For the lap joints, the peak bending stresses always occur at
the outer rivet rows.

2. The amount of secondary bending can be estimated by simple theoretical
models developed by Schijve and by Das et al. According to either model,
the joint region is considered as an integral beam and, hence, the presence
of the middle rivet rows as well as the inhomogeneous load transmission
through the sheets within the overlap area is not accounted for.

3. Differences between the results from both models become significant for
thinner sheets and tend to vanish when the sheet thickness increases. The
main reason for the discrepancies is a different description of the overlap
deflections inherent in either model.

4. From either model, the bending factor is a nonlinear function of the
applied stress level. The severity of bending increases for thicker sheets
and diminishes with increasing the spacing between the rivet rows.

5. From reported in the literature comparisons between simple model results,
strain gauge measurements and finite element analyses it can be concluded
that the models provide reliable estimates of the nominal bending stresses
at critical rivet rows.

6. The unsatisfactory correlation between the simple model results and the
observed fatigue lives for riveted joints with eccentricities stems from
disregarding by the simple models factors which, in addition to secondary
bending, can affect the fatigue behaviour of riveted joints.

7. Bending factors estimated using the simple models can be utilized in
currently used semi-empirical concepts for predictions on the fatigue life
of riveted joints.

The authors acknowledge a financial support from the Eureka project No.
E!3496.



386 MAŁGORZATA SKORUPA, ADAM KORBEL

Manuscript received by Editorial Board, September 01, 2008;
final version, November 25, 2008.

REFERENCES

[1] Schijve J.: Fatigue life until small cracks in aircraft structures. Durability and damage toler-
ance. Proc. FFA/NASA Int. Symp. on Advanced Structural Integrity Methods for Airframe
Durability and Damage Tolerance., Hampton, Virginia, 1994, Harris C.H. ed., Part 2, Publ.
No. 3274, pp.665-681.

[2] Müller R. P. G.: An experimental and analytical investigation on the fatigue behaviour of
fuselage riveted lap joints. The significance of the rivet squeeze force, and a comparison of
2024-T3 and Glare 3, Ph.D. Thesis, Delft University of Technology, 1995.

[3] Hartman A., Schijve J.: The effect of secondary bending on the fatigue strength of 2024-T3
Alclad riveted joints, NLR TR 69116U, Amsterdam, 1969.

[4] Schijve J.: Some elementary calculations on secondary bending in simple lap joints, NLR
TR 72036, Amsterdam, 1972.

[5] Das G. K., Miller M., Sovar T.: Durability assessment of fuselage single shear lap joint with
pads, Proc. of the 21st Symposium of the International Committee on Aeronautical Fatigue
(ICAF’ 2001), Design for Durability in the Digital Age, Ed. J. Rouchon, Toulouse, France,
June 27-29, 2001, Vol. I, pp.567-595.

[6] Skorupa M., Korbel A., Machniewicz T.: Analysis of secondary bending for riveted joints
with eccentricities, Bulletin of the Military University of Technology, Warsaw, Accepted for
publication in 2009 (in Polish).

[7] Rans C. D., Straznicky P.V., Alderliesten R.C.: Effects of Rivet Installation on Resid-
ual Stresses and Secondary Bending Stresses in a Riveted Lap Joint, Proc. of 48th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Waikiki, Hawaii, 2007.

[8] De Rijck R.: Stress analysis of fatigue cracks in mechanically fastened joints, Ph.D. Thesis,
Delft University of Technology, 2005.
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Modelowanie wtórnego zginania w nitowych połączeniach z mimośrodem

S t r e s z c z e n i e

W artykule rozważono dwa proste teoretyczne modele zaproponowane w literaturze do analizy
tzw. wtórnego zginania występującego w połączeniach nitowych z mimośrodem poddanych roz-
ciąganiu. Modele te zostały zaimplementowane w programach komputerowych i zastosowane do
określenia wpływu wybranych parametrów konstrukcyjnych połączenia nitowego oraz poziomu
obciążenia na naprężenia wywołane wtórnym zginaniem. Wyniki uzyskane z wykorzystaniem
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modeli oraz dostępne eksperymentalne i numeryczne dane literaturowe sugerują, że obie kon-
cepcje umożliwiają poprawną ocenę nominalnych naprężeń zginających w krytycznym rzędzie
nitów. Przeprowadzone analizy wykazują, że odnotowaną w literaturze redukcję wytrzymałości
zmęczeniowej połączenia nitowego w zależności od jego konfiguracji geometrycznej można pow-
iązać ze wzrostem wtórnego zginania. Pokazano, że niezadowalająca ilościowa korelacja pomiędzy
wynikami przewidywanymi przy użyciu jednego z rozważanych modeli a trwałością obserwowaną
w badaniach zmęczeniowych próbek nitowanych wynika z nieuwzględnienia w rozważanych kon-
cepcjach nierównomiernego transferu obciążeń przez złącza, a także pominięcia wpływu procesu
nitowania. Równocześnie stwierdzono, że omawiane tu proste modele są dogodnym narzędziem
do oceny wpływu wtórnego zginania i mogą znaleźć zastosowanie we współcześnie stosowanych
półempirycznych metodach przewidywania trwałości zmęczeniowej złączy nitowych.




