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System identifications of a 2DOF pendulum controlled
by QUBE-servo and its unwanted oscillation factors

System identification is an approach for parameter detection and mathematical
model determination using response signals of a dynamic system. Two degrees of
freedom (2DOF) pendulum controlled by a QUBE-servo motor is a great experiment
device to work with; though it is not easy to control this system due to its complex
structure and multi-dimensional outputs. Hence, system identification is required for
this system to analyze and evaluate its dynamic behaviors. This paper presents a
methodology for identifying a 2DOF pendulum and its dynamic behaviors including
noise from an encoder cable. Firstly, all parameters from both mechanical and elec-
trical sides of the QUBE-servo motor are analyzed. Secondly, a mathematical model
and identified parameters for the 2DOF pendulum are illustrated. Finally, disturbances
from encoder cable of the QUBE-servo motor which introduce an unwanted oscil-
lation or self-vibration in this system are introduced. The effect of itself on output
response signals of the 2DOF QUBE-pendulum is also discussed. All identified pa-
rameters are checked and verified by a comparison between a theoretical simulation
and experimental results. It is found that the disturbance from encoder cable of the
2DOF QUBE-pendulum is not negligible and should be carefully considered as a
certain factor affecting response of system.

1. Introduction

System identification is an approach for parameters detection andmathematical
model determination by using response signals of a dynamic system [1, 2]. The
process of system identification includes two steps, collecting response signals
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of the system in either time or frequency domain and estimating the adjustable
parameters of that system with a predicted mathematical model [3, 4]. Moreover,
this process also comprises an optimal design of experimental data for efficiently
generating parameter information of the system. The goals of system identification
aremathematical relations between behavior and inputs of the systemwithout going
into much detail of the system’s dynamics [5, 6]. For example, system identification
can be applied to recognize the controllability matrix and observability matrix of
a system or to perceive the failure of sensors and actuators [7]. In addition, system
identification is an important process to detect unknown external disturbances
affecting system response [8, 9]. Obviously, system identification can both improve
the quality of controller design and help to clearly understand physical phenomena
happening in the system.

In fact, a 2DOF pendulum that operates on a rotary platform of K. Furuta is a
genuine model to study not only control methods but also system identification. For
instance, some researches on nonlinear sliding mode control and predictive control
were applied in this type of pendulumwith simulatedmodels [10, 11]. Furthermore,
experimental results of the designed controller used in swing-up term of pendulum
is also illustrated to verify the proposed control methods [12–14]. Validation to
confirm the effectiveness of several swing-up controls can be determined based
on swing-up periods [15]. Recently, an upgraded version for the Furuta pendulum
was presented with a double-inverted pendulum arm [16]. However, to success-
fully control the 2DOFs pendulum model of Furuta, all parameters and external
impacts to operation of the pendulum have to be collected and verified with system
identification [16, 17].

Besides, a 2DOFpendulumcontrolled by aQUBE-servomotor is a good choice
for the experimental activities for system identification. However, this device has
a complicated structure and multi-dimensional outputs, resulting in difficulty in
controlling the system [18]. The 2DOF rotary pendulum attached to the coreless
brushed DC servo motor of Quanser provider is an excellent device for controls
topics [19–23]. In general, one 2DOF QUBE-pendulum comprises a rotating pen-
dulum arm magnetically fixed on the vertical rotating shaft of DC servo motor
as shown in Fig. 1. An external encoder with long-distance cable is used to mea-
sure the rotational angle of the pendulum. Up to date, several works have been
done with this test-rig device. First of all, Kathpal from India [19] used a toolbox
in MATLAB, SimMechanics, to build a simulation model for LQR control tech-
niques of QUBE-pendulum. In [20], D.L. Peters tried to develop a new platform
for an example of both the second-underdamped model and Ziegler-Nichols PID
tuning on the QUBE-system. Moreover, parameter identification of DC motor of
the QUBE system using inertia is simulated and validated by experimental results
[21, 22]. Lastly, in Krishman’s dissertation [23], a completed non-linear control of
2DOF pendulum controlled by the QUBE-servo motor is illustrated and validated
with its estimated parameters. However, all previous researches did not distinguish
between the sources of external disturbances and did not evaluate the influence
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of encoder cable of pendulum on response of QUBE system. Due to this lack
of information, system identification that considers the effect of encoder cable
of pendulum is required for QUBE system to analyze and evaluate its dynamic
behavior.

Fig. 1. Test rigs of 2DOF pendulum controlled by the QUBE-servo

This paper presents a methodology for identifying a 2DOF pendulum and its
dynamic behaviors including noise from the encoder cable. At the first step, all
parameters from both electrical and mechanical sides of a DC servo motor deliv-
ered by Quanser provider are evaluated. Next, a mathematical model and identified
parameters for the 2DOF pendulum are described. Finally, the disturbances from
encoder cable of the QUBE-servo motor making an unwanted oscillation or self-
vibration in this system are introduced, and the effect of itself to output response
signals of the 2DOF QUBE-pendulum is also discussed. All the collected parame-
ters of identification are checked and verified by a comparison between a theoretical
simulation and experimental results.

2. Introduction of test-rig

A diagram of 2DOF pendulum controlled by the QUBE-servo motor and its
control system are illustrated in Fig. 2. Based on the structure of this model, the
vertical DC motor makes an oscillation of a pendulum link, which is connected to
the output-shaft of the motor by a pendulum arm. Motor and pendulum angles are
measured by two high-precision encoders. Command input for the motor and the
data of motor encoder is given by a controller named NI-myRio through a DAQ
board and a PWM amplifier. However, a cable is used to connect the pendulum
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encoder with the DAQ board for acquiring data. This cable has an unwanted effect
on collected results from the angular movement of pendulum at the output. Hence,
with this structure model, the process of system identification can be divided into
three parts:motor identification, pendulummodel and effect of unwanted oscillation
originating from pendulum encoder cable. Furthermore, information on the control
system is shown in Table 1 [18].

Table 1.
Specifications for control system of the 2DOF QUBE-pendulum

NI myRIO
Controller

Power Requirement

Power supply voltage 6–16 VDC

Maximum power consumption 14 W

Analog Input

sample rate 500 kS/s

Resolution 12 bits

Bandwidth 2–20000 Hz

Analog Output

maximum update rates 345 kS/s

Resolution 12 bits

Bandwidth 2–50000 Hz

Digital I/O

Number of lines 1 port of 8 DIO lines

Logic level 5 V compatible LVTTL input;
3.3 V LVTTL output

Input logic levels 2.0 Vmin; 5.25 Vmax

Output logic levels 2.4 Vmin; 3.465 Vmax

Maximum frequencies for PWM 100 kHz

QUBE-servo

Dimension (W × L × H) 10.2 × 10.2 × 11.7 cm

Overall mass 1.2 kg

Pendulum mass 0.1 kg

Pendulum length 9.5 cm
Motor and pendulum encoder resolution
(non-quadrature decoding) 512 counts/revolution

Motor input voltage 18 VDC

Motor nominal current 0.54 A

DC motor nominal speed (no load) 4050 rpm
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Fig. 2. Experimental diagram of 2DOF pendulum controlled by the QUBE-servo

3. System identification

3.1. DC servo motor identification

A DC servo motor is an electro-mechanical system which directly provides
a rotary motion in the system [24]. The equivalent circuit and free-body diagram
of the QUBE-servo motor are shown in Fig. 3. Basically, this armature circuit
consists of the internal electric resistance Rm and inductance Lm. The armature
current im of the motor is generated in this circuit by an input voltage source
Vm, then transferred to the motor torque Tm as output. Moreover, position θm and
speed θ̇m of the QUBE-servo motor shaft depend on changes of the applied input
voltage Vm.

Fig. 3. Equivalent circuit and free-body diagram of the QUBE-servo motor
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The mathematical model of this QUBE-servo motor is illustrated in Eq. (1)
based on Kirchoff’s Voltage Law and Newton’s Second Law for one electro-
mechanical system.

Jmθ̈m + bmθ̇m = Kt im ,

Lm
dim
dt
+ Rm im = Vm − Kmθ̇m .

(1)

The term Lm(dim/dt) is negligible compared to Rm im(t), because of small
inductance value. Furthermore, the motor torque Kt and the motor back EMF
constant Km are equal and are the inverse of steady-state gain K . Thus, Eq. (1) can
be written as Eq. (2).

Jmθ̈m + bmθ̇m = Km im ,

Rm im = Vm − Kmθ̇m .
(2)

The relationship between the input – voltage Vm and the output – position
(or speed) of motor shaft θm (or θ̇m) is illustrated by Laplace transfer function as
Eqs. (3)–(6). Based on it, there are four unknown parameters of this QUBE-servo
motor: internal motor resistance Rm, the steady-state gain K , motor viscous friction
coefficient bm, and the total moment of inertia acting on the motor shaft Jm.

Θm(s)
Vm(s)

=
Km

(Jm s + b)Rm + K2
m

, (3)

Θ̇m(s)
Vm(s)

=
Km

τs + 1
(4)

with

τ =
JRm

K2
m

, (5)

Km =
1
K
=

Steady-state output value
Input value

. (6)

The internal motor resistance Rm is determined by measurement, whereas
motor steady-state gain K , motor viscous friction coefficient bm, and total moment
inertia Jm can be derived from data acquisition of motor response. In particular,
the internal resistance of motor Rm in the armature circuit can be measured by a
digital multi-meter; and the value of Rm in this used system is 8.4 Ω. However, the
value of motor gain and total moment of inertia should be determined based on the
response of the output signal of motor shaft, as shown in Fig. 4.

The steady-state gain K (or DC gain) is the ratio between the steady-state
value of output (speed) and the input value (voltage), as shown in Fig. 4. Hence, the
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Fig. 4. Settling and steady states of angular velocity of the QUBE-servo motor

motor back emf constant Km is the inverse of steady-state gain K , Km = 0.0431.
Moreover, the total moment of inertia acting on motor shaft Jm can be found by
using the value of time constant τ which is a time for response to reach 63.2% final
value, internal motor resistance Rm, and motor back emf constant Km, as shown in
Eq. (7), Jm = 6 × 10−5 kgm2.

Finally, based on the response of output angular velocity and value of armature
current in motor with various values of input voltage as shown in Fig. 5; the
motor viscous damping coefficient can be calculated by using Eq. (8). The viscous
damping coefficient of the motor is estimated as the average value of current results
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Fig. 5. Response of motor angular velocity (left) and armature current (right) with various input
voltages
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in the steady-state of motor, bm = 3 × 10−4 Nm/rad/s.

Jm =
τK2

m

Rm
, (7)

bm = average *
,

n∑
i=1

Kmi imi

θ̇mi

+
-
. (8)

3.2. Characteristics of the rotary pendulum

When the pendulum is attached to the motor shaft as shown in Fig. 2, the
dynamic system of the rotary pendulum controlled by the QUBE-servo becomes a
second-order system. In comparison to the traditional pendulum,whose systembase
is attached on a limited rail and its movement is made by linear motion, the rotary
pendulum uses an unlimited rotation as the input and transfers the movement to the
pendulum link. As shown in Fig. 6, the pendulum arm LA is set in oscillationwith an
angle θm by the QUBE-servo motor which causes an oscillation of pendulum link
LL with an angle θL . Based on Euler-Lagrange differential equation, the equations
of motion (EOM) for the rotary pendulum are described as Eqs. (9), (10) [13, 15].(

mLL2
A +

1
4

mLL2
L −

1
4

mLL2
L cos2 θL + JA

)
θ̈m −

1
2

mLLLLA cos θL θ̈L

+
1
2

mLL2
L sin θL cos θL θ̇m θ̇L +

1
2

mLLLLA sin θL θ̇2
L = Tm − DAθ̇m ,

1
2

mLLLLA cos θL θ̈m +
(
JL +

1
4

mLL2
L

)
θ̈L −

1
4

mLL2
L cos θL sin θL θ̇2

m

+
1
2

mLLLg sin θL = −Dp θ̇L ,

(9)

Fig. 6. Free-body diagram for the rotary pendulum
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where:

Tm = Km

(
Vm − Kmθ̇m

)
Rm

: input from motor. (10)

The parameters of this pendulum system can be identified by measurement.
First, the weight and length of the pendulum arm and link (mA, mL , LA, LL) can be
collected by using a weight scale and a caliper. The inertia moment of pendulum
arm JA and link JL can be calculated based on their weight and length, as shown
in Eqs. (11), (12), respectively. Moreover, the damping coefficient of pendulum
arm DA is also the viscous damping coefficient of motor bm; whereas the damping
coefficient of pendulum link DL , which is the ratio between applied torque and
the speed in an individual test of pendulum link, can be checked by using a torque
tester such as Helixa-I of Mecmsin or the one provided by the manufacturer of
pendulum link, DL = 5 × 10−4 Nm/rad/s. However, because of its small value, the
damping coefficient of pendulum link DL can be neglected.

JA =
7
48

mAL2
A , (11)

JL =
1
3

mLL2
L . (12)

A simulation model for the 2DOF pendulum controlled by the QUBE-servo
motor is built based on the above identified parameters in MATLAB. The block
diagram of simulation model is illustrated in Fig. 7. Generally, the command
input with motor angle is transferred through a motor controller and a MATLAB
function for solving nonlinear EOM of the rotary pendulum; the data of actual
motor angle θm and pendulum-link angle θL is known at the output. With all
identified parameters, we can simulate the vibration response of pendulum and
collect characteristics of the 2DOF QUBE rotary pendulum system.

Fig. 7. Simulation model of the 2DOF QUBE rotary pendulum in MATLAB

In fact, the rotary pendulum attached to the QUBE-servo motor has all charac-
teristics of the second-order system. The vibration response of the rotary pendulum
is illustrated in Fig. 8. This response shows that the rotary pendulum works as an
underdamped system, that moves quickly to the equilibrium. Characteristics of this
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underdamped system [25] are determined by the damping ratio and the natural
frequency, as shown in Fig. 8. Whereas, the damping ratio ζP of the rotary pendu-
lum system can be extracted by using peak-values (y(t), y(t + nTd)) of vibration
response with log-decrement method as Eq. (13) (with TdP: time period of the
oscillations); the natural frequency ωnP can be calculated from damped natural
frequency ωdP and damping ratio ζP as Eq. (14).

ξP =
1√

1 +
(
2π
δP

) with δ =
1
n

ln
y(t)

y(t + nTd)
: log-decrement, (13)

ωnP =
ωdP√
1 − ξ2

P

with ωd =
2π
Td

: damped natural frequency. (14)
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Fig. 8. Response characteristics of the system

3.3. Effect of encoder cable on the response of system and its unwanted
oscillation factors

With all identified parameters, the output response of the system for a predicted
input should be matched to simulation and experiment results, but there is a differ-
ence between them. In fact, this distinction is illustrated in Fig. 9. The comparison
results indicate that the oscillation of pendulum link in the 2DOF QUBE rotary
pendulum system is longer than its usual one. The simulation result of pendulum
vibration with correctly identified parameters in previous sections is shown by the
blue-line in Fig. 9. However, this simulation result did not closely match experi-
mentally measured results shown by the red-dashed-line. Evidently, this result is
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affected by outer disturbances or un-modeled parameters such as air-friction and
elastic deformation, electromagnetic and feedback signal delay of the encoder ca-
ble. In that, the effect from encoder cable of pendulum link is the main contributor
to this difference.
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Fig. 9. A comparison between responses of pendulum vibration with and without cable effect

By subtracting time responses resulting from experiment from those of simu-
lation of pendulum oscillation, we show the unwanted effect of the encoder cable,
illustrated in Fig. 10. It is clearly seen that the response of the encoder cable
oscillation is also a function of second-order system. A transfer function of oscil-
lation response of encoder cable is presented as Eq. (15), with damping ratio of
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Fig. 10. Unwanted oscillation of encoder cable in the 2DOF QUBE-pendulum
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cable oscillation ξn_cableP = 0.034 and its natural frequency ωn_cableP = 10.36 Hz
calculated by Eqs. (13), (14), respectively.

Θcabble(s)
Θm(s)

=
ω2
n_cableP

s2 + 2ςcableP ωn_cablePs + ω2
n_cableP

. (15)

The encoder cable of the pendulum increases the fluctuation of pendulum
link, whereas it reduces the oscillation of the pendulum arm (motor angle). The
comparison betweenmotor responseswhen theQUBE-pendulummodel is attached
to the encoder cable and when QUBE-pendulum model does not have the encoder
cable is shown in Fig. 11. In detail, motor response of the 2DOF QUBE-pendulum
having no encoder cable is shown as the blue-line in Fig. 11. This result is verified
and validated by both simulation and experiment. Obviously, the motor response or
the position response of the pendulum arm in the 2DOF QUBE-pendulum model
should also be an underdamped system [20]. However, due to the influence of
encoder cable, the motor response of QUBE-pendulum is becoming a response of
critically damped system. The difference between responses of the motor having
QUBE-pendulum with and without encoder cable is also shown in Fig. 12; then it
is estimated as a function using Eq. (16). This equation is a Fourier series for the
reduction angle θMotorDamp(t) due to the effect of cable on the response of pendulum
arm, a function of time t,with the coefficients derived from a spectral analysis in
frequency domain of data in Fig. 13. Furthermore, these coefficients are indicated
in Table 2.

θMotorDamp(t) =
n∑
i=1

Ai cos(2π f it + ϕi). (16)
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Fig. 11. Comparison of motor responses with and without cable effect
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Fig. 12. Unwanted damping on motor affected by encoder cable
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Fig. 13. Frequency analysis for unwanted damping on motor

Table 2.
Estimated Fourier coefficients of unwanted damping due to encoder cable

No Frequency fi (Hz) Amplitude Ai (rad) Phase φi (rad)

1 0.4998 0.062 −1.033

2 1.4988 0.128 0.829

3 2.4988 0.1464 −1.122

4 3.4983 0.067 0.972

5 4.4983 0.0359 0.401
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4. Conclusions

This paper presents a methodology for identifying a 2DOF pendulum and its
dynamic behaviors including the disturbance effect from an encoder cable. All
the collected parameters of identification are checked by a comparison between a
theoretical simulation and experimental results of the system shown in Table 3.
Some conclusions can be drawn from the results, as follows:

1. The output response of the 2DOF QUBE rotary pendulum can be feasibly
used to identify parameters of the system. However, the disturbance which
occurs an unwanted oscillation inside the QUBE-pendulum system should
be carefully considered. One can conclude that this effect cannot be ignored
and should be remarkably noted as an important factor which affects to the
output responses of system.

2. It should be noted that, while the unwanted damping factor from the encoder
cable in the 2DOFQUBE-pendulum systemmakes the pendulum link more
flexible, it reduces the vibration amplitude of the motor.

3. Further works using methods to reduce oscillation of system having the
same structure as the 2DOF QUBE-pendulum should include a calculation

Table 3.
Identified parameters of the 2DOF QUBE-pendulum system

Parameters Symbol Value and units

Internal resistance of motor Rm 8.94 Ω

Motor back-emf constant Km 0.0431

Total moment of inertia acting on motor shaft Jm 6 × 10−5 kgm2

Viscous damping coefficient bm 3 × 10−4 Nm/rad/s

Damping coefficient of pendulum arm DA 3 × 10−4 Nm/rad/s

Damping coefficient of pendulum link DL 5 × 10−4 Nm/rad/s

Weight of pendulum arm mA 0.053 kg

Weight of pendulum link mL 0.024 kg

Length of pendulum arm LA 0.086 m

Length of pendulum link LL 0.128 m)

Inertia moment of pendulum arm JA 5.72 × 10−5 kgm2

Inertia moment of pendulum link JL 1.31 × 10−4 kgm2

Damping ratio of the rotary pendulum ζP 0.367

Natural frequency of the rotary pendulum ωnP 11.12 Hz

Damping ratio of encoder cable oscillation ξn_cableP 0.034

Natural frequency of encoder cable oscillation ωn_cableP 10.36 Hz
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for the effect of encoder cable. Disturbance from the encoder cable is also
a certain factor which influences optimal energy in the swing-up process of
the 2DOF QUBE-pendulum.
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