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List of main symbols

J – set of tasks
M – set of machines

n – number of tasks
π – permutation defining tasks order
Ti – tardiness of a task i
wi – weight of tardiness of a task i
di – demanded completion time (due date)

Oi,k – operation of task i on machine k
pi,k – duration of an operation Oi,k
Si, j – starting time of an operation Oi, j
Ci, j – finishing time of an operation Oi, j
Ci – finishing time of a task i

1. Introduction

In the problem called ‘total tardiness minimization in two 
machine flow shop problem’ (denoted by F2||∑wiTi accord-
ing to Graham’s notation [13]), each of the n tasks should be 
executed sequentially on the first and then on the second ma-
chine. There are times of task completion and the due dates of 
their completion (on the second machine) given. Exceed-ing 
this due dates results in a penalty, which depends on the 
amount of delay and a fixed penalty rate. It is necessary to de-
termine the order of performing tasks (the same on both ma-
chines), which minimizes the sum of penalties. This problem 
will be denoted by T2FS in brief. It is a generalization of NP-
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hard, single-machine problem of scheduling tasks with mini-
mization of the sum of penalties for tardiness (1||∑wiTi). A de-
tailed description of the problem, its specific properties and a
very effective algorithm based on the tabu search method were
presented in the work by Bożejko, Grabowski and Wodecki [5].
The properties shown there are a certain development of the
ideas contained in Wodecki’s works [35] and [36] regarding
multi-machine problems with all-cost goal functions. The two-
machine flow shop problem with criterion Cmax (i.e., minimiz-
ing the end of execution for all tasks, F2||Cmax) is a polyno-
mial problem (Johnson’s algorithm [17]). However, the prob-
lem with the sum-cost criterion ∑wiTi belongs to NP-hard class
of problems, Lenstra et al. [22]. In Schaller’s work [28] a two-
machine flow shop problem with minimization of the sum of
total tardiness, F2||∑Ti was presented. In it, there were five
elimination properties given: ‘if there are some dependencies
between the l and k task parameters, then in the optimal so-
lution the task l is before the task k’. Due to them, by search-
ing the neighborhood, one can omit many suboptimal solutions.
In the work [28], using the Koulamus results [20], there was
presented the idea of a proof of a strong NP-hardness of the
considered in this work problem F2||∑wiTi. In turn, Lee and
Kim [21] consider a two-machine flow shop problem F2‖∑Ti
with an additional constraint concerning the availability of tasks
on the first machine. Metaheuristic algorithms for this problem
are presented in the work by Ta et al. [30]. Furthermore, opti-
mal algorithms (based on the B&B scheme) for different vari-
ants of the tasks scheduling problem on two machines with sum
criteria are described in the works: Bank et al. [4], Moukrim
et al. [24], as well as Hamdi et al. [15]. As the authors write,
one can solve examples with a number of tasks not exceed-
ing 50 in a reasonable time. There are many more works de-
voted to approximate algorithms: construction, metaheuristic
ones and their hybrids. Especially interesting seem to be the
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W. Bożejko, M. Uchroński, and M. Wodecki

works that have appeared in recent years: Ahmadi et al. [1],
Cheng et al. [10], as well as Ardakan et al. [3] and Bożejko et
al. [7]. There are also new, promising methods of local search,
using new neighborhoods, such as the golf one (e.g. Bożejko
et al. [8]).

The problem of tasks scheduling on two machines in the
Just-in-Time system is considered in the work of Al-Salema et
al. [2]. There is presented an algorithm based on the dynamic
programming method. For small examples, this is an optimal
algorithm. However, for larger examples there are some cut-
offs causing the algorithm to work much faster, yet the des-
ignated solutions are only suboptimal. In turn, Kharbeche and
Haouari [19] used the discrete integer programming method to
solve this problem.

There are relatively few publications devoted exclusively to
the problem considered in this work and methods of solving
it. Some theoretical results and good approximation algorithms
are presented in the works: Gupta and Harari [14], Lina [23]
and Bulfin and Hallaha [9]. In turn, Khalili et al. [18] consider
the multicriteria optimization problem with two goal functions:
maximum completion time of tasks – makespan) and the sum
of the total weighted tardiness).

Problems of tasks scheduling on a single or two machines
with sum-cost goal functions have very long, over 50 years of
history. Despite the simplicity of formulation, they mostly be-
long to the class of NP-hard problems. They are important both
from the point of view of theory and practice. Their various
variants are still intensively studied, and the results obtained are
also an inspiration for research on much more complex multi-
machine problems. In many practical applications, a single or
two-machine cell is an important part of more complex pro-
duction systems and constitutes a “bottleneck” of the system.
In this case, production scheduling boils down to the optimal
use of these machines. For example, in the production process
of bicycle frames, the cell is formed by two different presses
working in a flow system. Some elements of each frame are
pressed on the first and then on the second press. When stamp-
ing various types of frames, specific templates are used. There
is therefore a need for frequent replacements. Hence, stamping
operations are very time consuming compared to other opera-
tions and determine the efficiency of the entire system. Due to
the size, weight and the cost of purchase and operation, it is
not possible to increase the number of presses. According to
the order, a certain batch of frames should be made in advance.
The production scheduling process has been divided into two
stages:
1) optimization of the presses cell,
2) optimizing the work of other cells including the press

schedule.
Both issues are NP-hard, so metaheuristic algorithms were used
to solve them. Despite this, better results were obtained than
when the entire production process was optimized simultane-
ously.

In the further part of the work we present a detailed descrip-
tion of the considered problem F2||∑wiTi and its mathemati-
cal model. We prove the specific properties, namely – the so-
called block elimination properties, which are a generalization

of ideas included in Bożejko et al. [5], which significantly im-
prove efficiency of algorithms for solving multi-machine cost
problems. In case of their use in constructions of algorithms
based on the local search method there was observed a signifi-
cant reduction in the number of elements of generated in each
iteration neighborhood. Due to this fact, better results were ob-
tained in shorter time of the calculations.

2. Description of the problem and its
mathematical model

Two-machine permutation flow shop problem with minimiza-
tion of the sum the tardiness costs can be formulated as follows:

Problem 1. There is a set of tasks J = {1,2, . . . ,n} and the
set of machines M = {1,2} given. The task i ∈ J consists of
two operations Oi,1, Oi,2. Operation Oi,k corresponds to execu-
tion of task i on machine k ∈ M . For task i ∈ J , let di be the
demanded completion time (due date), wi coefficient of penalty
function, whereas pi,k time of execution of operation Oi,k. It is
necessary to perform tasks on the machines, wherein the fol-
lowing restrictions must be fulfilled:
(a) each task should be performed on the first one and then on

the second machine,
(b) the task execution cannot be interrupted,
(c) the task can be performed simultaneously on only one ma-

chine,
(d) the machine cannot perform more than one task at the same

time,
(e) the order of performing tasks, on both machines must be the

same.

For the determined order of performing tasks on machines,
let Si, j be the moment of starting the operation Oi, j (i ∈ J ,
j = 1,2). It follows from restrictions (b) and (c) that Ci, j = Si, j+
pi, j is the time the completion of operation Oi j. These moments
can be determined from the following recursive dependencies:

Ci, j = max
{

Ci−1, j, Ci, j−1
}
+ pi, j ,

i = 1,2, ... .n, j = 1,2,
(1)

with initial conditions:

C0, j = 0, j = 1,2 and Ci,0 = 0, i = 1,2, ... ,n. (2)

By Ci = Ci2 we denote the date of completion of task i, i.e.
operation Oi2. Then

Ti = max{0,Ci −di} (3)

is tardiness for completing the task i, fi = wi · Ti penalty for
tardiness (in other words – cost of task execution). If Ti = 0, the
task is called early, otherwise – tardy.

Each solution, i.e. the order of performing tasks (the same
on both machines) can be represented by the permutation of
tasks from the set J . Let Π be a set of all such permutations.
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For a permutation

π = (π(1), . . . ,π(n))

penalty for tardiness of tasks execution (in short solution cost)

F(π) =
n

∑
i=1

fπ(i) =
n

∑
i=1

wπ(i) ·Tπ(i) . (4)

In the problem under consideration, there should be deter-
mined the order of performing tasks that minimize the penalty
for tardiness, i.e. optimal permutation π∗ ∈ Π, for which

F(π∗) = min{F(π) : π ∈ Π}. (5)

3. Johnson’s algorithm

In the introduction we wrote that the two-machine flow shop
problem with the Cmax criterion belongs to the P class. In or-
der to solve it there is Johnson’s algorithm used [17] (see Algo-
rithm 1).

Algorithm 1: Johnson’s algorithm – determination of the
optimal solution for the problem F2||Cmax

Input : n – number of tasks,
pi, j – tasks time of execution, i = 1,2, . . . ,n,

j = 1,2.
Output: π – tasks permutation (order of tasks execution)

1 for i ← 1,2, . . . ,n do
2 λi ← min{pi,1, pi,2};
3 sort elements λi such that λ1 ≤ λ2, . . . ,λn;
4 mi ← 1; mx ← n;

5 for i ← 1,2, . . . ,n do
6 if λi = pi,1 then
7 π(mi)← i;
8 mi ← mi+1;
9 else

10 π(mx)← i;
11 mx ← mx−1;

The computational complexity of Johnson’s sequential algo-
rithm is equal to O(n lnn). In further part of the work we will
use this algorithm to determine optimal, due to the criterion
Cmax, order of certain tasks. Since this element of the algorithm
solving the problem will be run very often, in the next section
we will present a proposal for parallelizing the Johnson’s algo-
rithm.

3.1. Parallel Johnson’s algorithm. In this section, a parallel
version of the Johnson algorithm will be proposed to thoroughly
solve the problem of F2||Cmax a used in the further part of the
work to optimally set tasks in the block.

Algorithm 2: Optimal parallel algorithm for the prob-
lem F2‖Cmax based on the idea of sequential Johnson’s
algorithm

Input : αi – time of execution of i-th task on the 1st
machine;
βi – time of execution of i-th task on the 2nd
machine;
n – number of tasks;

Output: permutation π – order of tasks execution;
1 k := 1; l := n; γi := εi := 0; i = 1,2, . . . ,n;
2 parfor i = 1,2, . . . ,n do
3 δi = min{αi,βi};
4 if δi = αi then
5 γi := δi;
6 a(i) := i; b(i) := 0;
7 else
8 εi := δi;
9 b(i) := i; a(i) := 0;

10 end
11 end
12 Sort (γi,a(i)) pairs in parallel, in non decreasing order due

to the first element of a pair element;
13 x := n;
14 parfor i = 1,2, . . . ,n−1 do
15 if a(i) = 0 and a(i+1) �= 0 then
16 x := i; (number of non-negative εi)
17 end
18 end
19 Sort (εi,b(i)) pairs in parallel, in non decreasing order due

to the first element of a pair element;
20 y = n− x; (number of non-negative γi);
21 parfor i = 1,2, . . . ,n do
22 if i ≤ n− x then
23 π(i) = a(i+ x);
24 else
25 π(i) := b(n− (i− y)+1);
26 end
27 end

Theorem 1. Parallel Johnson’s algorithm (Algorithm 2) can be
run in time O(logn) on n-processor EREW PRAM.

Proof. Both substitutions in line 1 and a parallel loop in lines
2–11 (Algorithm 2) can be performed in a fixed time O(1) on
n processors. Sorting in lines 12 and 14 of n element sequence
can be done with the parallel algorithm of mergesort in the time
O(logn) on the n – processor EREW PRAM [11]. Searching for
the first non-zero position in the array a can be done in a fixed
time (loop in lines 14–18) by checking in parallel by the proces-
sors i = 1,2, . . . ,n− 1, whether in the corresponding cells a(i)
there are zero and the next a(i+1) – if they are different from
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zero. There is only one such position i and it is the equivalent
of x denoting the number of zeros in the array a.

The substitution in lines 13 and 20 is performed in a constant
time on one processor. The parallel loop in lines 20–26 will be
performed in a fixed time using n processors (without the need
for simultaneous reading) which completes the proof. �

The parallel implementation of the Johnson’s algorithm will
be used in the procedure of determining blocks of tasks in per-
mutation.

4. Properties of the problem

To solve the considered NP-hard scheduling problem there will
be algorithms based on the local search method used. The es-
sential element of this method, having decisive influence not
only on the time of calculations but also on the values of de-
termined solutions, is a procedure for generating and searching
the neighborhood.

In many metaheuristic algorithms solving the flow shop
problem with minimizing the date for completion of perform-
ing tasks (i.e. F ||Cmax) there are neighborhoods used generated
by insert type of moves, in short called i–moves. If π ∈ Π, then
i–move ikl (1 ≤ k, l ≤ n) generates from π the new permuta-
tion ikl (π) = πk

l by swapping the element π(k) to the position l.
The neighborhood generated by these moves has n(n− 1) ele-
ments. These moves and generated by them neighborhoods are
described precisely in the work of Bożejko et al. [5].

In the best metaheuristic algorithms for solving the prob-
lem F ||Cmax there are the so-called ‘block elimination prop-
erties’ used (Nowicki and Smutnicki [26], Grabowski and
Wodecki [12]). Due to them, in the neighborhood search pro-
cedure, one can omit many of the worse solutions. As demon-
strated by computational experiments, due to this procedure,
not only the neighborhood search time is shortened, but also
better solutions are obtained. In the further part of this sec-
tion there will be similar properties introduced allowing us for
elimination, through indirect review, of many solutions. Weak-
ening or omitting some limitations in the definition of classic
blocks (used in algorithms for solving cost problems, Bożejko
et al. [5], Wodecki [35,36], there is a new concept of a ‘weaker’
block introduced, the so-called semi-block.

Any sequence of immediately appearing one after another
elements in permutation π will be called subpermutation. If

η = (π(u),π(u+1), . . . ,π(v)), 1 ≤ u ≤ v ≤ n,

is the subpermutation of the permutation π , then the cost of the
execution of tasks from η

Fπ(η) =
v

∑
i=u

(wη(i) max{0,Cη(i)−dη(i)}), (6)

where Cη(i) completion date of the execution of the task η(i)
in permutation π . By Y (η) we denote the set of elements of

subpermutation η , i.e.

Y (η) = {π(u),π(u+1), . . . ,π(v)}.

Let

α = (1,2, . . . ,a−1), β = (a,a+1, . . . ,b−1,b),

γ = (b+1,b+2, . . . ,n),
(7)

where 1 < a < b ≤ n, will be some subpermutations in π , i.e.

π = (1,2, . . . ,a−1,a,a+1, . . . ,b−1,b,b+1, . . . ,n). (8)

Then, permutation π = (α,β ,γ) is a sequence (concatena-
tion) of three subpermutations, and its cost

F(π) = Fπ(α)+Fπ(β )+Fπ(γ). (9)

4.1. Blocks of early tasks. Let permutation π ∈ Π be a se-
quence of three subpermutations, i.e. π = (α,β ,γ) defined
in (7).

To the set of tasks from subpermutation β we use Johnson’s
algorithm (section 3, Algorithm 1). In this way there is a new
order of tasks designated

β ′ = (a′,a′+1, . . . ,b′ −1,b′). (10)

Subpermutation β ′ will be called Johnson optimal, in short J-
opt. It is the optimal order due to the minimization of the due
date completion of all tasks from β .

We are considering permutation π = (α,β ,γ) ∈ Π and

π ′ = (α,β ′,γ), (11)

where β ′ is a subpermutation J-opt. It’s easy to show that the
moment of completion of the last task in β ′ is not bigger than
the moment of completion of the last task in β . This fact will
be used in the proof of the following theorem.

Theorem 2. If the permutation δ = (α,β ′′,γ) was generated
from π ′ (11) by swapping the order of tasks in J-opt of the sub-
permutation β ′, then the completion time of any task from γ (in
permutation δ ) is not smaller than the moment of completion
of this task in permutation π ′.

Proof. Let permutation π = (α,β ′,γ), where subpermutation
β ′ jest J-opt. From π we generate permutation δ = (α,β ′′,γ)
by swapping the order of tasks in subpermutation β ′. There-
fore Y (β ′) = Y (β ′′). Thus, β ′ and β ′′ are permutations of the
same subset of the tasks set. By b(β ′) and b(β ′′) we denote the
last element respectively in the subpermutation β ′ and β ′′. Fur-
ther, let l(γ) be the first element of subpermutation γ . It follows
from the definition of the problem that the tasks on the first ma-
chine can be carried out directly one by one (i.e., can be pushed
to ‘left’). Therefore, the completion times for tasks b(β ′) and
b(β ′′), on the first machine, are equal to each other, i.e.

Cb(β ′),1 =Cb(β ′′),1. (12)
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In addition, the completion times for the task l(γ) on the first
machine, in both permutations π and δ , are the same, and

Cl(γ),1 =Cb(β ′),1 + pl(γ),1. (13)

We assumed that β ′ is subpermutation J-opt. This means that it
is optimal (the order of tasks from the set Y (β ′)) due to Cmax
criterion. In this case the value Cmax, is equal to the completion
date of the task b(β ′) on the second machine, i.e. Cb(β ′),2. Since
β ′′ is a certain permutation of elements of the same set Y (β ′)
the completion date of the last task on the second machine is
Cb(β ′′),2 ≥ Cb(β ′),2. Therefore we proved that the completion
times of the last task from β ′ and β ′′ meet the dependencies:

(Cb(β ′),1 =Cb(β ′′),1) ∧ (Cb(β ′),2 ≤Cb(β ′′),2). (14)

Therefore, the starting date (and therefore the completion mo-
ment) of the task l(γ) (the first one in the subpermutation γ) in
the permutation δ is not less than in the permutation π ′, sim-
ilarly on the second machine. Thus, we proved that in gener-
ated from π ′ permutation δ executing the l(γ) task will not end
sooner (‘it will not move to the left’). It is easy to show that it is
similar to the other tasks of the subpermutation γ , which ends
the proof of the theorem. �

Definition 1. Let permutation π ′ = (α,β ′,γ), where β ′ be the
supermutation J-opt. If all tasks in β ′ are early tasks, the β ′

subpermutation is called block of early tasks (in brief T-block).

Theorem 3. (Eliminating property of T-block)
If the permutation π ′ was generated from π ∈ Π by swapping
the order of tasks in some T-block, then

F(π ′)≥ F(π)
.
Proof. Let β be some T-block in permutation π = (α,β ,γ)
(π ∈ Π), and π ′ permutation generated from π by swapping the
order of elements in β . Therefore, permutation π ′ = (α,β ′,γ),
where β and β ′ are permutations of the same set of elements
i.e. Y (β ) = Y (β ′). Let us assume that subpermuations:

α = (1,2, . . . ,a−1), β = (a,a+1, . . . ,b),

γ = (b+1, b+2, . . . ,n).
(15)

It follows from the definition of the cost function (4) and (6)
that

T (π) = Tπ(α)+Tπ(β )+Tπ(γ) =

=
a−1

∑
i=1

fπ(i) +
b

∑
i=a

fπ(i) +
n

∑
i=b+1

fπ(i) , (16)

and
T(π ′) = Tπ ′(α)+Tπ ′(β ′)+Tπ ′(γ) =

=
a−1

∑
i=1

fπ ′(i) +
b

∑
i=a

fπ ′(i) +
n

∑
i=b+1

fπ ′(i) , (17)

where fi is penalty function for tardiness of task i. We are con-
sidering successively the sums occurring in expressions (17)
and (16). From definition of permutation π and π ′ the first sums
are equal, i.e.

a−1

∑
i=1

fπ(i) =
a−1

∑
i=1

fπ ′(i) . (18)

Since β is T-block (all tasks have due dates), therefore

b

∑
i=a

fπ(i) = 0. (19)

Thus,

b

∑
i=a

fπ ′(i) ≥
b

∑
i=a

fπ(i) . (20)

It follows from Theorem 2 that for i = b+ 1,b+ 2, . . . ,n tasks
completion moments π(i) and π ′(i) satisfy inequality:

Cπ ′(i) ≥ Cπ(i), for i = 1,2, . . . ,n.

It follows from the above that also inequalities fπ ′(i) ≥ fπ(i), are
fulfilled. By adding sides we receive

n

∑
i=b+1

fπ ′(i) ≥
n

∑
i=b+1

fπ(i) . (21)

To sum up, it follows from relation (18)–(21) that F(π ′) ≥
F(π), which ends the proof of the theorem. �

Proposition 1. Generating some permutations from π one can
omit those that were created by swapping the order of tasks in
any T-block, since they do not improve the value of the criterion
function (4).

Let π = (α,β ,γ), π ∈ Π and π ′ = (α,β ′,γ) where β ′ is su-
permutation J-opt. Let us assume that not all tasks in β ′ are due
date tasks. Therefore, β ′ is not a T-block. We are considering
the following conditions:

(A) (F(π ′)−F(π))/F(π ′)< ε;
(B) F(β ′)< λ ;
(C) (Cβ −Cβ ′)/Cβ ,

where ε,λ ,ρ are certain parameters (non-negative real num-
bers).

Definition 2. If J-opt subpermutation β ′ is not a T-block in the
π permutation, and at the same time meets one of the conditions
(A) or (B) or (C), then we call it a semi T-block (abbreviated to
sT-block).

Unfortunately, sT-block does not have the T-block property
contained in Proposition 1. Swapping the order of elements in
sT block can lead to an improvement in the value of the objec-
tive function. However, the size of the improvement can be con-
trolled through appropriate choice of parameters. Due to this,
one can possibly reject only slightly better solutions.
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In addition, the completion times for the task l(γ) on the first
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To sum up, it follows from relation (18)–(21) that F(π ′) ≥
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omit those that were created by swapping the order of tasks in
any T-block, since they do not improve the value of the criterion
function (4).

Let π = (α,β ,γ), π ∈ Π and π ′ = (α,β ′,γ) where β ′ is su-
permutation J-opt. Let us assume that not all tasks in β ′ are due
date tasks. Therefore, β ′ is not a T-block. We are considering
the following conditions:

(A) (F(π ′)−F(π))/F(π ′)< ε;
(B) F(β ′)< λ ;
(C) (Cβ −Cβ ′)/Cβ ,

where ε,λ ,ρ are certain parameters (non-negative real num-
bers).

Definition 2. If J-opt subpermutation β ′ is not a T-block in the
π permutation, and at the same time meets one of the conditions
(A) or (B) or (C), then we call it a semi T-block (abbreviated to
sT-block).

Unfortunately, sT-block does not have the T-block property
contained in Proposition 1. Swapping the order of elements in
sT block can lead to an improvement in the value of the objec-
tive function. However, the size of the improvement can be con-
trolled through appropriate choice of parameters. Due to this,
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Generating the neigborhood in local improvement algo-
rithms, to eliminate certain solutions we will generally apply
T-blocks. If it turns out that the number of tasks in T-blocks is
small then we will use sT-blocks. We will experimentally deter-
mine not only which of the limitations (A), (B) or (C) but also
with which parameters they will be used.

4.2. Blocks of tardy tasks. Let permutation of tasks

π = (1,2, . . . ,a,a+1,a+2 . . . ,b,b+1, . . . ,n) = (α,β ,γ),

where

α = (1,2, . . . ,a), β = (a+1,a+2, . . . ,b),

γ = (b+1,b+2 . . . ,n).

Let us assume that in subpermuation β all tasks are tardy,
what is more

∀i ∈ β , di < Ca−1 + pi,2 . (22)

If a = 1, then we assume Ca−1 = 0.
From the condition (22) it follows that any task from β

placed in the first position, in β i.e. on the position a, is tardy.
Let us assume that in the β subpermutation all tasks are tardy,

i.e. (22) restrictions are met. From β we generate two new sub-
permutations:
(a) J-opt subpermutation β ′, i.e. we designate the order of ele-

ments using Johnsona’s algorithm (Algorithm 1),
(b) subpermutation β ′′ setting tasks according to non increasing

values of quotients wi/(pi,1 + pi,2).

Proposition 2. In single machine problem with the criterion
∑wiTi subpermutation β ′′ (point (b)) it’s optimal due to the sum
of the costs of tardiness (Smith [29]).

Definition 3. Subpermutation β ′′ (point (b)) is called a semi
D-block (in short sD-block), if

(Cb′′ −Cb′)/Cb′′ ≤ ϕ,

where ϕ is a parameter, whereas Cb′′ and Cb′ are the due dates
for completing the last task, respectively in β ′ and β ′′.

Defining the neigborhood, we will omit the solutions gener-
ated by swapping the order of tasks in any sD-block.

Theorem 4. Any permutation π ∈ Π can be shown in the form
of a sequence

π = [B1,B2, . . . ,Bt ],

where Bi (i = 1,2, . . . , t) is a block or semi-block.

Proof. The proof is similar as in Property 1 in Wodecki’s
work [36]. �

In the further part of the work we will consider blocks and
semi-blocks, which:
(i) have at least 4 elements,

(ii) are maximum due to the inclusion, i.e. an element cannot be
added to the beginning or end in such a way that the block
or semi block definition is still met.

5. Tabu search algorithm

In order to solve the T2FS problem there was a standard version
of the tabu search method (abbreviated to TS) with the neigh-
borhood generated by insert type moves.

The algorithm starts with some feasible (base) solution π0.
In i-th iteration, the neighborhood N (π i) of the solution π i is
generated. It is a subset of the set of solutions generated from
π i through moves (changes in the position of elements in the
permutation). An element from the neighborhood with the min-
imum value of the objective function is the base solution in the
next iteration of the algorithm. During the execution of next
iterations, the best found solution π∗ is stored. The algorithm
terminates when the stop condition is met (e.g. fixed calcula-
tion time or number of iterations).

To prevent cyclic repetition of solutions, there is the so-called
tabu list (abbreviated as TL) used. Some attributes of recently
considered base solutions are remembered on this list. When
determining the minimum element from the neighborhood, so-
lutions that have their attributes on the TL list are omitted.
There is also the so-called criterion of aspiration used. If the
value of the goal function F(β ), from the TL list of some solu-
tion β is less than F(π∗), then the solution is not treated as tabu.
In order to diversify the search process, there was a backtrack
jump) mechanism introduced, which consists in resuming the
search process starting from remembered promising solutions.
It is implemented through the so-called long-term memory (ab-
breviated to LT M). It has the form of a fixed length list, where
(β ,T L) pairs are stored, in which β is the solution, whereas TL
is the tabu list. If F(β ) < F(π∗) (where β is not the best solu-
tion from the searched neighborhood, then the element β and
the current list of forbidden moves (tabu list) T L with added
solution attributes β are added to LT M list. Backtrack jump (to
the last element saved in the LT M list) is executed in the case
when in the search process there appears a cycle with a previ-
ously fixed length, or when through the process of executing a
certain, fixed number of iterations there is no improvement to
the best solution that has been found so far.

Simple local search procedures, as Descent Search, rely on
the monotonic improvement and stop after obtaining local min-
imum for which all solutions in the so-called neighborhood are
worse or not better than the obtained minimum solution. The
main improvement of considered Tabu Search method com-
pared to classic Descent Search is that it can overcome local
optima and keep the searching process going. To prevent the
trajectory from making cycles, Tabu Search remembers the his-
tory of the searching process in the list of forbidden moves.
Usually only a few last solutions are kept, however in some
theoretical cases it is assumed to remember the whole search-
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ing history, which makes it possible to prove theoretical con-
vergence of such a TS algorithm (see Hanafi [16]). However
there is no theoretical convergence property for the classic Tabu
Search method with limited short-time memory remember on
tabu list, however the method is extremely fast convergent,
much faster than almost all other metaheuristics – but this con-
vergence is observed empirically. What is more, for some kinds
of neighborhoods (e.g. N1 neighborhood in TSAB algorithm of
Nowicki and Smutnicki [26]) there is no connectivity property,
which means that there is no theoretical possibility proven to
achieve all the feasible solutions of the space searched from a
starting solution. Even without this theoretical property, over
23-years old TSAB algorithm is one all the best metaheuristics
for jobs-scheduling problems up to now.

6. Parallel tabu search algorithm

In order to use the parallel computational platform used ear-
lier in the launch of the Johnson parallel algorithm described
in Section 3.1, a parallel tabulation algorithm was implemented
in MPSS version (Multiple starting Points Single Strategy) ac-
cording to the Voß [34] classification describing parallel tabu
search algorithm. The algorithm in the proposed version is
adapted to be implemented using the MPI library (see Fig. 1),
and its pseudo-code is included in the Algorithm 3. Wider con-
siderations on parallel tabu search algorithms in order to solve
scheduling problems can be found in the work of Bożejko
et al. [6].

Fig. 1. Schema of the independent MPSS paralell tabu search

The algorithm starts work with a vector of startup solu-
tions π0 assigned to individual processors (line 1) using the
MPI_Bcast function. Each processor stores its own local best
solution π∗

p (line 4), which is used in the mechanism of back-
track jump in the lack of improvement in the quality of the
current solution πp by a certain number of iterations max_it
(line 15). The loop in lines 5–20 is the core of the algorithm.
Successively it is performed concurrently in it:
• generating the neighborhood Np(πp) of the current solution

πp (line 6),
• removing from this neighborhood solutions forbidden by

the local tabu list T Lp (line 7),

• selection of the best solution βp from the neighborhood
(line 8),

• add move parameters to the local tabu list T Lp (line 9) and
go to the next solution (line 10).

Next, it is checked if the current solution is better than the
best remembered (lines 11–14) and possible correction of this
solution along with saving it on the long-term memory list
LT M used for back-track jumps. Finally, the best solutions
πp, p = 1,2, . . . ,max_CPU , obtained by individual processors
(line 21) are collected using the MPI_Reduce function.

Algorithm 3: Parallel tabu search algorithm

Input : π0 – vector of max_CPU initial permutations;
L – vector of max_CPU lengths of tabu lists;
|LT M| – lenght of the long time memory list;

Output: solution π∗ – optimal permutation;
1 Broadcast starting solutions π0;
2 parfor p = 1,2, . . . ,max_CPU do
3 πp ← π0

p; { local for each CPU }
4 π∗

p ← π0
p; T Lp ← /0;

5 for i = 1,2, . . . ,max_iteration do
6 Generate a neighborhood Np(πp) of the

solution πp;
7 Remove from Np(πp) solutions forbidden by T Lp;
8 βp = argminσp∈Np(πp) F(σp);
9 Add arguments of the move from πp to βp to the

T Lp removing the oldest one not exceeding the
length Lp ;

10 πp ← βp;
11 if F(πp)< F(π∗

p) then
12 π∗

p ← πp;
13 Add π∗

p to LT M together with T Lp = T L
including the next move;

14 end
15 if (there is no improvement of π∗

p from the last
max_it iterations) then

16 Take a new πp from the LT M together with its
tabu list T L;

17 T Lp ← T L;
18 end
19 end
20 end
21 Reduce all the π∗

p to the best π∗;
22 return π∗;

7. Test examples

Since there are no test examples in the literature, for the prob-
lem under consideration, thus for the needs of implementation
of computational experiments were there were nine different
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ing history, which makes it possible to prove theoretical con-
vergence of such a TS algorithm (see Hanafi [16]). However
there is no theoretical convergence property for the classic Tabu
Search method with limited short-time memory remember on
tabu list, however the method is extremely fast convergent,
much faster than almost all other metaheuristics – but this con-
vergence is observed empirically. What is more, for some kinds
of neighborhoods (e.g. N1 neighborhood in TSAB algorithm of
Nowicki and Smutnicki [26]) there is no connectivity property,
which means that there is no theoretical possibility proven to
achieve all the feasible solutions of the space searched from a
starting solution. Even without this theoretical property, over
23-years old TSAB algorithm is one all the best metaheuristics
for jobs-scheduling problems up to now.

6. Parallel tabu search algorithm

In order to use the parallel computational platform used ear-
lier in the launch of the Johnson parallel algorithm described
in Section 3.1, a parallel tabulation algorithm was implemented
in MPSS version (Multiple starting Points Single Strategy) ac-
cording to the Voß [34] classification describing parallel tabu
search algorithm. The algorithm in the proposed version is
adapted to be implemented using the MPI library (see Fig. 1),
and its pseudo-code is included in the Algorithm 3. Wider con-
siderations on parallel tabu search algorithms in order to solve
scheduling problems can be found in the work of Bożejko
et al. [6].

Fig. 1. Schema of the independent MPSS paralell tabu search

The algorithm starts work with a vector of startup solu-
tions π0 assigned to individual processors (line 1) using the
MPI_Bcast function. Each processor stores its own local best
solution π∗

p (line 4), which is used in the mechanism of back-
track jump in the lack of improvement in the quality of the
current solution πp by a certain number of iterations max_it
(line 15). The loop in lines 5–20 is the core of the algorithm.
Successively it is performed concurrently in it:
• generating the neighborhood Np(πp) of the current solution

πp (line 6),
• removing from this neighborhood solutions forbidden by

the local tabu list T Lp (line 7),

• selection of the best solution βp from the neighborhood
(line 8),

• add move parameters to the local tabu list T Lp (line 9) and
go to the next solution (line 10).

Next, it is checked if the current solution is better than the
best remembered (lines 11–14) and possible correction of this
solution along with saving it on the long-term memory list
LT M used for back-track jumps. Finally, the best solutions
πp, p = 1,2, . . . ,max_CPU , obtained by individual processors
(line 21) are collected using the MPI_Reduce function.

Algorithm 3: Parallel tabu search algorithm

Input : π0 – vector of max_CPU initial permutations;
L – vector of max_CPU lengths of tabu lists;
|LT M| – lenght of the long time memory list;

Output: solution π∗ – optimal permutation;
1 Broadcast starting solutions π0;
2 parfor p = 1,2, . . . ,max_CPU do
3 πp ← π0

p; { local for each CPU }
4 π∗

p ← π0
p; T Lp ← /0;

5 for i = 1,2, . . . ,max_iteration do
6 Generate a neighborhood Np(πp) of the

solution πp;
7 Remove from Np(πp) solutions forbidden by T Lp;
8 βp = argminσp∈Np(πp) F(σp);
9 Add arguments of the move from πp to βp to the

T Lp removing the oldest one not exceeding the
length Lp ;

10 πp ← βp;
11 if F(πp)< F(π∗

p) then
12 π∗

p ← πp;
13 Add π∗

p to LT M together with T Lp = T L
including the next move;

14 end
15 if (there is no improvement of π∗

p from the last
max_it iterations) then

16 Take a new πp from the LT M together with its
tabu list T L;

17 T Lp ← T L;
18 end
19 end
20 end
21 Reduce all the π∗

p to the best π∗;
22 return π∗;

7. Test examples

Since there are no test examples in the literature, for the prob-
lem under consideration, thus for the needs of implementation
of computational experiments were there were nine different
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sets of test instances randomly generated. Adaptation of Val-
lada, Ruiz and Framinan test instances [33] was not possible
by taking only two machines and wi and di, respectively, be-
cause the delay values Ti for data of [33] and solutions to our
problem would in most cases be equal to zero. In turn, in the
cited work [28], no test instances are available. So we decided
to propose the new test instances and publish them in [32].

Task execution times on individual machines were gener-
ated randomly, according to uniform distribution from the set
{1,2, . . . ,99}, whereas weights of the wi penalty function from
the set of {1,2, . . . ,9}. The values of the requested due dates
for completing tasks were designated basing on two parame-
ters: T – tardiness factor and R – due date range. These terms
(non-negative integers) were, according to the uniform distribu-
tion, drawn from the interval [P(1−T −R/2),(1−T +R/2)].
Parameter

P =
n

∑
i=1

2

∑
j=1

pi, j ,

is the upper bound value (the sum of execution times of all oper-
ation) for the criterion Cmax (see Taillard [31]). This method of
determining the desired dates of the completion of tasks was
described by Potts at work [27]. Test examples were gener-
ated for each pair of the parameter values T = {0.2,0.4,0.6}
and R = {0.2,0.6,1.0}. In total there are nine such pairs. In
some cases, especially for small values of T and for large val-
ues of R, the drawn number can be negative. In such cases it
was assumed that the requested the due date for completing the
task is zero. Examples were generated for the number of tasks
n = 10,20,50,100,200,500 and 1000. For each value of n there
were 10 examples generated, in total 70 examples, for each pair
of values T and R. Ultimately, in computational experiments
there were 630 examples used that have also been placed on the
website of Uchroński [32].

8. Computational experiments

The algorithm for solving two-machine flow shop problems
with the minimization of the sum of tardiness costs was imple-
mented in the C++ language. Computational experiments were
carried out on the Bem cluster in the Wrocław Network – Su-
percomputer Center(grant no. 96) working under 64-bit control
operating system Scientific Linux 6.7 (Carbon) equipped with
Intel Xeon processors E5-2670 (2.30 GHz). The results of three
algorithms were compared:
NEH – construction algorithm [25], in which tasks were

sorted according to non-increasing values
pi,1 + pi,2

wi
,

T SB – tabu search with long-term memory and the use of sT
and sD-blocks properties,

T SBJ – tabu search with long-term memory, the use of sT and
sD-blocks properties and Johnson’s algorithm.

The starting point for metaheuristic algorithms was natural per-
mutation and calculation time, of a single example (algorithms
T SB and T SBJ) was limited to 60 sec.

For each example there was the value of relative error calcu-
lated:

δ =
Tre f −TAlg

Tre f
·100% (23)

where Tre f is the value of the objective function for the refer-
ence solution, whereas TAlg is the value of criterion function
for the solution determined by the tested algorithm,

Alg ∈ {T SB, T SBJ , NEH}.

For the reference solution Tre f the results of the tabu search
algorithm without block properties were accepted.

Having performed the calculations, it turned out that the dif-
ficulty of the example (relative improvement of the start-up
solution) depends on the parameter values R and T determin-
ing the size and position on the a numerical interval axis from
which tasks completion dates are drawn. Results of parallel tabu
search algorithm solutions quality are presented in Table 1. Ex-
periments have been conducted for the number of processors
p = 2,4 and 8. One can observe, that increasing of the num-
ber of processors results in improving of the quality of the ob-
tained solutions. Table 2 presents mean relative errors δaprd of
examples generated for the smallest ones values of R= T = 0.2.
According to the solution’s expectations the construction algo-
rithm NEH was on average almost 70% worse than T S solu-
tions. The best results were obtained when in construction of
the algorithm there were blocks and quasi blocks used. In this
case the average relative error (improvement of the solution) is
−6.97%. Using only the blocks themselves is much less effec-
tive, because the average error (improvement) is almost 3 times
smaller and amounts to −2.40%. These examples were thor-
oughly analyzed and it turned out that the drawn random values
of task completion dates are small and not much varied. There
are many tasks that are tardy and what is more blocks of due
date tasks are practically absent. Hence their low efficiency.

Table 1
Values δaprd for groups of test examples with different parameters

T and R

parameters n p = 2 p = 4 p = 8

T = 0.2, R = 0.2 10 −1.31 −1.88 −3.00

T = 0.2, R = 0.6 20 −7.47 −9.41 −11.18

T = 0.2, R = 1.0 50 −9.12 −11.57 −13.58

T = 0.4, R = 0.2 100 −0.50 −0.75 −0.95

T = 0.4, R = 0.6 200 −4.45 −6.56 −9.79

T = 0.4, R = 1.0 500 −5.21 −11.55 −15.06

T = 0.6, R = 0.2 100 −0.21 −0.38 −0.55

T = 0.6, R = 0.6 200 −1.33 −1.91 −3.01

T = 0.6, R = 1.0 500 −2.10 −3.07 −4.48

mean −3.52 −5.23 −6.84
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Table 2
Values δaprd for groups of test examples with parameters T = 0.2 and

R = 0.2

problem n NEH T SB T SBJ

2FPWT01-10 10 75.39 1.99 8.20

2FPWT11-20 20 78.41 0.40 42.88

2FPWT21-30 50 93.70 −2.11 −21.57

2FPWT31-40 100 117.16 −0.92 −51.01

2FPWT41-50 200 117.19 −5.79 52.66

2FPWT51-60 500 6.09 −8.86 4.02

2FPWT61-70 1000 1.37 −1.51 1.37

mean 69.90 −2.40 5.22

In turn, for larger values of the parameters R and T examples
are much easier, i.e. it is definitely more effective the use of
both blocks and semi-blocks. The results obtained for a group
of examples with maximum values of both parameters are pre-
sented in Table 3. The surprising fact is, in this case, a con-
siderable improvement of the solutions of the algorithm T SBJ
for examples with the smallest size n = 10,20,30 and 40. It
is from 54 to 75 percent. At the same time, the improvement
for the biggest examples of n = 1000 is only −3.69%. In this
case, a single iteration of the algorithm appeared to be time-
consuming. With computation time limited to 60 seconds too
few iterations are performed to significantly improve the start-
ing solution. In both cases (Table 2 and 3) the error of NEH
algorithm is exceptionally big (with complexity O(n2), which
on average is over 82%. In the classic flow shop problem with
– criterion Cmax (i.e. F ||Cmax problem) mean relative error of
the NEH algorithm in relation to the best known solutions of
Taillard’s examples [31]) does not exceed several percent. For
the algorithm discussed in this paper it is then not useful.

Table 3
Values δaprd for groups of test examples with parameters T = 0.6 and

R = 1.0

problem n NEH T SB T SBJ

2FPWT01-10 10 34.50 0.00 −54.00

2FPWT11-20 20 73.76 1.17 −67.84

2FPWT21-30 50 191.67 3.57 −75.96

2FPWT31-40 100 234.87 1.77 −69.32

2FPWT41-50 200 40.72 −4.83 −19.55

2FPWT51-60 500 1.81 −2.59 −11.75

2FPWT61-70 1000 0.80 −0.09 −3.69

mean 82.59 −0.14 −43.16

Mean relative errors, after computing all 630 examples, for
two metaheuristic algorithms described in this paper, are pre-
sented in Table 4. The use of blocks in the construction of a tabu

search algorithm gave some improvement in results. The av-
erage improvement is −6.57%. The introduction of additional
quasi-blocks has already given a significant improvement of re-
sults. In relation to the output algorithm. this improvement is
−43.16%. For examples of smallest sizes (n = 10 and 20) us-
ing the complete review method, there were optimal solutions
determined. It turned out that in 95% solutions determined by
the algorithm T SBJ were optimal and the maximum relative er-
ror (in relation to optimal solutions) did not exceed 3%.

Table 4
Values δaprd for test examples and different parameters T and R

parameters n T SB T SBJ

T = 0.2, R = 0.2 10 −2.40 −6.97

T = 0.2, R = 0.6 20 −10.26 −62.58

T = 0.2, R = 1.0 50 −10.11 −74.45

T = 0.4, R = 0.2 100 0.15 −5.52

T = 0.4, R = 0.6 200 −4.18 −33.92

T = 0.4, R = 1.0 500 6.05 −77.88

T = 0.6, R = 0.2 100 −0.06 −7.20

T = 0.6, R = 0.6 200 −1.14 −24.22

T = 0.6, R = 1.0 500 −6.57 −43.16

mean −2.4 −37.94

Results of parallel Johnson’s algorithm speedup values are
presented in Table 5. Experiments have been conducted for dif-
ferent problem size (from 103 to 5 · 106) using parallel proces-
sors p = 2,4,8 and 16. One can observe, that for a different val-
ues of n the speedup initially increases fairly rapidly and then
reaches maximum value. Obtained speedup values depends also
on the size of the problem.

Table 5
Values of speedups for different number of processors – Intel Xeon

E5-2670

n/103 p = 2 p = 4 p = 8 p = 16

1 1.48 0.29 0.12 0.02

2 1.73 1.71 0.29 0.04

5 1.84 2.37 0.38 0.14

10 1.88 2.70 1.13 0.33

20 1.88 3.07 1.71 0.50

50 1.90 3.27 3.17 0.96

100 1.90 3.34 4.26 1.77

200 1.89 3.35 4.91 3.19

500 1.85 3.31 5.05 5.30

1000 1.81 3.29 5.24 5.27

2000 1.79 3.22 5.17 5.95

5000 1.74 3.18 5.21 6.54

Bull. Pol. Ac.: Tech. 68(1) 2020 9



39

Blocks for two-machines total weighted tardiness flow shop scheduling problem

Bull.  Pol.  Ac.:  Tech.  68(1)  2020

Blocks for two-machines total weighted tardiness flow shop scheduling problem

Table 2
Values δaprd for groups of test examples with parameters T = 0.2 and

R = 0.2

problem n NEH T SB T SBJ

2FPWT01-10 10 75.39 1.99 8.20

2FPWT11-20 20 78.41 0.40 42.88

2FPWT21-30 50 93.70 −2.11 −21.57

2FPWT31-40 100 117.16 −0.92 −51.01
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2FPWT51-60 500 6.09 −8.86 4.02

2FPWT61-70 1000 1.37 −1.51 1.37

mean 69.90 −2.40 5.22

In turn, for larger values of the parameters R and T examples
are much easier, i.e. it is definitely more effective the use of
both blocks and semi-blocks. The results obtained for a group
of examples with maximum values of both parameters are pre-
sented in Table 3. The surprising fact is, in this case, a con-
siderable improvement of the solutions of the algorithm T SBJ
for examples with the smallest size n = 10,20,30 and 40. It
is from 54 to 75 percent. At the same time, the improvement
for the biggest examples of n = 1000 is only −3.69%. In this
case, a single iteration of the algorithm appeared to be time-
consuming. With computation time limited to 60 seconds too
few iterations are performed to significantly improve the start-
ing solution. In both cases (Table 2 and 3) the error of NEH
algorithm is exceptionally big (with complexity O(n2), which
on average is over 82%. In the classic flow shop problem with
– criterion Cmax (i.e. F ||Cmax problem) mean relative error of
the NEH algorithm in relation to the best known solutions of
Taillard’s examples [31]) does not exceed several percent. For
the algorithm discussed in this paper it is then not useful.

Table 3
Values δaprd for groups of test examples with parameters T = 0.6 and

R = 1.0

problem n NEH T SB T SBJ

2FPWT01-10 10 34.50 0.00 −54.00

2FPWT11-20 20 73.76 1.17 −67.84

2FPWT21-30 50 191.67 3.57 −75.96

2FPWT31-40 100 234.87 1.77 −69.32

2FPWT41-50 200 40.72 −4.83 −19.55

2FPWT51-60 500 1.81 −2.59 −11.75

2FPWT61-70 1000 0.80 −0.09 −3.69

mean 82.59 −0.14 −43.16

Mean relative errors, after computing all 630 examples, for
two metaheuristic algorithms described in this paper, are pre-
sented in Table 4. The use of blocks in the construction of a tabu

search algorithm gave some improvement in results. The av-
erage improvement is −6.57%. The introduction of additional
quasi-blocks has already given a significant improvement of re-
sults. In relation to the output algorithm. this improvement is
−43.16%. For examples of smallest sizes (n = 10 and 20) us-
ing the complete review method, there were optimal solutions
determined. It turned out that in 95% solutions determined by
the algorithm T SBJ were optimal and the maximum relative er-
ror (in relation to optimal solutions) did not exceed 3%.

Table 4
Values δaprd for test examples and different parameters T and R

parameters n T SB T SBJ

T = 0.2, R = 0.2 10 −2.40 −6.97

T = 0.2, R = 0.6 20 −10.26 −62.58

T = 0.2, R = 1.0 50 −10.11 −74.45

T = 0.4, R = 0.2 100 0.15 −5.52

T = 0.4, R = 0.6 200 −4.18 −33.92

T = 0.4, R = 1.0 500 6.05 −77.88

T = 0.6, R = 0.2 100 −0.06 −7.20

T = 0.6, R = 0.6 200 −1.14 −24.22

T = 0.6, R = 1.0 500 −6.57 −43.16

mean −2.4 −37.94

Results of parallel Johnson’s algorithm speedup values are
presented in Table 5. Experiments have been conducted for dif-
ferent problem size (from 103 to 5 · 106) using parallel proces-
sors p = 2,4,8 and 16. One can observe, that for a different val-
ues of n the speedup initially increases fairly rapidly and then
reaches maximum value. Obtained speedup values depends also
on the size of the problem.

Table 5
Values of speedups for different number of processors – Intel Xeon

E5-2670

n/103 p = 2 p = 4 p = 8 p = 16

1 1.48 0.29 0.12 0.02

2 1.73 1.71 0.29 0.04

5 1.84 2.37 0.38 0.14

10 1.88 2.70 1.13 0.33

20 1.88 3.07 1.71 0.50

50 1.90 3.27 3.17 0.96

100 1.90 3.34 4.26 1.77

200 1.89 3.35 4.91 3.19

500 1.85 3.31 5.05 5.30

1000 1.81 3.29 5.24 5.27

2000 1.79 3.22 5.17 5.95

5000 1.74 3.18 5.21 6.54

Bull. Pol. Ac.: Tech. 68(1) 2020 9



40

W. Bożejko, M. Uchroński, and M. Wodecki

Bull.  Pol.  Ac.:  Tech.  68(1)  2020
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9. Summary

In the work, a two-machine total weighted tardiness flow shop
scheduling problem was considered. The description, mathe-
matical model and properties accelerating the neighborhood
search were presented. Applying some of these properties (i.e.
blocks and quasi-blocks) causes omission of better solutions
than current ones. Generally, this is a situation that we would
like to avoid because it can lead to the elimination of good so-
lutions. The above presented properties have been used in the
construction of an algorithm based on the tabu search method.
Since there is no test data in the literature, they were gener-
ated randomly. The conducted computational experiments have
unambiguously demonstrated that the algorithm ‘with proper-
ties’ sets significantly better solutions (on average the relative
improvement of the solution is almost 38%) than the algo-
rithm without these properties. Methods for determining moves
being representatives of certain sets of moves were also pre-
sented, i.e. generating not worse solutions. Unfortunately, their
application brought a small improvement – just at the level of
about 0.5%. As it turned out, designation of representatives is a
time-consuming procedure. Since the operation time of the tabu
search algorithm was limited to 60 seconds, the designation of
representatives of moves resulted in reducing the number of it-
erations of the algorithm and this may be the reason for their
low efficiency.
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