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Motion control algorithm and tuning rules
for mechanical devices with low

sampling-rate electronics

JORGE JUAN GIL and IÑAKI DÍAZ

Controlling mechanical systems with position and velocity cascade loops is one of the
most effective methods to operate this type of systems. However, when using low-rate sampling
electronics, the implementation is not trivial and the resulting performance can be poor. This
paper proposes effective tuning rules that only require establishing the bandwidth of the inner
velocity loop and an estimation of the inertia of the mechanism. Since discrete-time mechatronic
systems can also exhibit unstable behavior, several stability conditions are also derived. By using
the proposed methodology, a P-PI control algorithm is developed for a desktop haptic device,
obtaining good experimental performance with low sampling-rate electronics.

Key words: motion control, cascade control loops, discrete-time systems, stability, mecha-
tronic systems

1. Introduction

Motion control algorithms usually consist of two cascade loops where the
inner loop controls the velocity of the mechanism and the outer loop the po-
sition. This control scheme is widely used in industry and more specifically in
computer numerical control (CNC) systems. The automatic tuning of cascade
controllers has been explored in the scientific literature [1–3], and useful guide-
lines are available in industry [4]. Although each loop could have a complete
PID controller, a P-PI scheme, that is, a proportional controller for the position
loop and a proportional-integral controller for the velocity loop, is commonly
used in robotics [5] and machine tool [6] as the simplest strategy to manage
independently each joint.
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The main challenge in machine tools is to increase the position bandwidth of
the system, which is limited by the first natural frequency of the mechanical ele-
ments of the transmission [7]. To overcome this limitation, several solutions have
been proposed such as the inclusion of feed-forward paths based on acceleration
and velocity [8,9]. This solution is also suitable to compensate non-linear effects
due to friction or backlash [10].

Industrial applications require high position tracking precision and very fast
response, and thus, the applied control techniques become more complex. How-
ever, some robotic applications do not require such demanding specifications
and are driven by cost-effective electronics [11]. These electronic systems usu-
ally face limitations due to the relatively slow sampling rate they can achieve,
compromising both the performance of the robotic system and its overall stabil-
ity. This paper analyses thoroughly this limitation and proposes a methodology
with effective tuning rules for the P-PI control algorithm that only requires an
estimation of the inertia of the mechanism and the desired bandwidth for the
internal velocity loop. These recommendations take into account the limitations
imposed by cost-effective electronic devices, and stability limits are derived to
show achievable safe-boundaries with low sampling rate features. Finally, the
proposed methodology is applied to a desktop haptic mechanism showing that
good performance can be achieved with this method.

The paper is organized as follows: Section 2 describes the control block
diagram of a robotic mechanism controlled by a P-PI cascade control algorithm.
Section 3 analyses the gain selection for the proposed control architecture and
Section 4 particularizes the strategy for slow sampling rate control. Section 5
derives stability implications for the mechatronic system and Section 6 shows the
real implementation of the proposed method and the obtained results. Finally,
Section 7 gathers conclusions.

2. System description

Fig. 1 shows the block diagram of a robotic mechanism and the P-PI cascade
controller if both position and velocity signals are measured by analog sensors.

Figure 1: Continuous-time description of the mechanism and the P-PI
cascade controller
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X is the position of the system in Laplace domain, Xr is the setpoint and Fr
represents any external disturbance. The behavior of the mechanism is modeled
by a linear transfer function with inertia m and viscous damping b. The output
position of the system with respect the setpoint is:

X
Xr
=

KKPs + KKI

ms3 + (b + KP)s2 + (KI + KKP)s + KKI
. (1)

The output position of the system with respect the disturbance is:
X
Fr
=

s
ms3 + (b + KP)s2 + (KI + KKP)s + KKI

. (2)

Thus, using a proportional (P) controller for the position loop and a
proportional-integral (PI) controller for the velocity loop, the resulting system
is of third order.

3. Gain selection based on system model

The inner PI controller forces the system to achieve the velocity reference
commanded by the position controller while also rejects the disturbances (e.g., the
static friction or external forces). Even in absence of disturbances, it is necessary
a PI controller to get zero error in this inner loop. And with this controller,
the velocity loop is a second-order system whose output as a function of the
reference is:

V
Vr
=

KPs + KI

ms2 + (b + KP)s + KI
. (3)

Parameters KP and KI could be selected using sensitivity criteria and relative
stability [12]. However, with a suitable choice of KP and KI , it is possible to obtain
any transient characteristics in the inner loop, in terms of natural frequency and
damping factor. However, it is necessary to know the inertia m and the viscous
damping b of the mechanism. If there are no particular restrictions, we propose
to set the poles of transfer function (3) critically damped (ζ = 1) and leave the
natural frequency ωn to the decision of the engineer. Thus, using the following
parameters

KP = 2mωn − b, (4)

KI = mω2
n, (5)

the dynamics of the velocity loop is:

V
Vr
=

2ωn

(
s +

ωn

2

)
(s + ωn)2 . (6)
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Besides the two identical real poles, there is a dominant zero, and thus,
velocity response always exhibits the same overshoot (around 13% for any ωn
selected). Natural frequency ωn imposes the bandwidth of the velocity loop, and
it is usually set between 60 rad/s and 200 rad/s. Within this range, and for most
desktop mechanisms, the effect of viscous damping b on (4) is marginal, and
thus, it can be neglected:

KP ≈ 2mωn . (7)

Disturbance rejection (2) depends on both inner and outer controllers, but
once the inner PI is chosen depending on ωn, the response to external forces only
depends on the selection of gain K . The root locus of the system is used to choose
this gain. The poles of the system are the roots of the following characteristic
equation:

ms3 + (b + KP)s2 + (KI + KKP)s + KKI = 0. (8)

Using parameters (4) and (5), it yields:

ms3 + 2mωns2 + (mω2
n + 2mKωn − Kb)s + Kmω2

n = 0. (9)

Neglecting viscous damping b, the characteristic equation does not depend
on the inertia:

s3 + 2ωns2 + (ω2
n + 2Kωn)s + Kω2

n = 0, (10)

1 + K
2ωns + ω2

n

s(s2 + 2ωns + ω2
n)
= 0, (11)

1 + 2ωnK
s +

ωn

2
s(s + ωn)2 = 0. (12)

Thus, the positioning of the three poles of characteristic equation (9) changes
as a function of gain K and follows the paths of the root locus depicted in Fig. 2.

There is a trade-off between the time constant of the dominant real pole, that
moves from s = 0 to s = −0.5ωn, and the pair of complex poles, whose damping
factor can change from 1 to 0. Thus, trying to shorten the transient response
of the disturbance rejection, undamped oscillations could arise. We propose to
choose the gain that places the poles approximately in the red crosses depicted in
Fig. 2. Applying the magnitude condition in the real pole located in s = −0.4ωn,
it yields that:

2ωnK =
0.6ωn 0.6ωn 0.4ωn

0.1ωn
, (13)

K = 0.72ωn . (14)
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Figure 2: Root locus as a function of gain K

For the proposed gain (14), the damping factor of the pair of complex poles
is ζ ≈ 0.6. We do not recommend higher gains because the position of the real
pole barely changes, while the complex poles become poorly damped. To show
the disturbance rejection around the proposed gain, some Matlab simulations
are performed with arbitrary values of inertia and damping: m = 10 kg and
b = 1 Ns/m (Fig. 3). The position setpoint is Xr = 0, the external disturbance is
a step input of magnitude Fr = 100 N at t = 0 s. PI controller is tuned using (4)
and (5) with ωn = 60 rad/s.

It is worth noting that for the selected bandwidth, a force similar to the
weight of the mechanism produces a deviation outside the reference position
of approximately 1 mm. Both the magnitude of this deviation and the transient
duration can be shortened by increasing the bandwidth.

As a conclusion to this section, the values proposed for the gains of the
controllers, (5), (7) and (14), only depend on the velocity bandwidth ωn and the
inertia of the device m. This inertia should be known or at least estimated. The
selection ofωn is not straightforward because the continuous-time model (Fig. 1)
does not present any stability limit, and thus, in principle, the higher bandwidth
the better performance.
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Figure 3: System response to an external disturbance force Fr = 100 N

4. Tuning methodology under sampling rate limitations

The use of the proposed gains and, in particular, the selection of ωn, require
a more detailed analysis if the electronics cannot reach a fast sampling rate. In
this work, the mechanism used as testbed is the haptic interface PHANToM 1.0
(Fig. 4). The inertia of this device is m ≈ 70 g. Viscous damping b is supposed
to be negligible. The electronics is described in detail in [11], and it includes
an Arduino MEGA board. With this electronics the sampling period cannot be
smaller than T = 2 ms, which is 10 times larger than typical values in industrial
PLCs [4], and thus, it is difficult to achieve a high bandwidth for the velocity loop.

Figure 4: Device and electronics used for the experiments
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The discrete-time description of the system (Fig. 5) is used to analyze the
limitations imposed by the sampling rate. This model includes three new elements:
the sample-and-hold process, the estimation of the velocity using the backwards
difference, and a first-order digital filter to reduce the quantization noise.

Figure 5: Discrete-time description of the P-PI cascade controller

The filter is the digital version of the following continuous-time transfer
function,

G f (s) =
1

τf s + 1
, (15)

where τf is the time constant and the cut-off frequency of the filter is 1/τf rad/s.
The block diagram also includes the digital version of the PI controller.

The discrete-time system behaves similar to the ideal continuous-time de-
scription (Fig. 1) if the dynamics of the filter is much faster than the dynamics of
the velocity loop, which also must be much faster than the sampling rate:

ωn ≪
1
τf
≪ π

T
. (16)

The three frequencies in (16) are given in rad/s. To fulfill this inequation, each
frequency should be at least five times greater that the former [13, 14]. Since the
sampling period is relatively long, there is small room to select ωn and τf . We
have chosen for our system the following values: ωn = 50 rad/s and τf = 4 ms.
And the selected values achieve these relations:

ωn = 50 rad/s
×5−−→ 1

τf
= 250 rad/s

×6.3−−−→ π

T
= 1570.8 rad/s. (17)

5. Stability analysis

An important requirement before the experimental implementation is to guar-
antee the stability of the system. This analysis is carried out by using the discrete-
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time description of the system (Fig. 5). The characteristic equation without ve-
locity filtering (τf = 0) is a fourth-order polynomial in z (18).[(

e−
bT
m − 1 +

bT
m

)
z + 1 −

(
1 +

bT
m

)
e−

bT
m

]
·

· [(KP + KIT )z − KP
] [

(KT + 1)z − 1
]
+

+ z(z − 1)2
(
z − e−

bT
m

) Tb2

m
= 0. (18)

The stability conditions are derived using the Routh-Hurwitz criterion after
applying a bilinear transformation. Substituting the proposed values for K , KP
and KI using (4), (5) and (14), and the physical estimated values of the device,
m ≈ 0.07 kg and b ≈ 0.6 Ns/m, we have computed in Matlab the stable values of
the two remaining parameters: ωn and T . However, the exact stability boundary
(Fig. 6) barely changes with the physical parameters of the inertia and the viscous
damping.

Figure 6: Stability boundary without velocity filtering

Interestingly, the critical bandwidth can be approximated by expression (19).
Thus, known the sampling period of the system, this formula indicates the maxi-
mum value for ωn, from the stability point of view, if no filtering is introduced.

ωn ≈
1

2T
. (19)

This stability limit is further reduced if the estimation of the velocity is
filtered. In our case, the inclusion of the first-order digital filter leads to a different
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characteristic equation (20), but it is still a forth-order polynomial.[(
e−

bT
m − 1 +

bT
m

)
z + 1 −

(
1 +

bT
m

)
e−

bT
m

]
·

· [(KP + KIT )z − KP
] [

(KT + Kτf + 1)z − Kτf − 1
]
+

+
[
(T + τf )z − τf

]
(z − 1)2

(
z − e−

bT
m

) b2

m
= 0. (20)

Fig. 7 shows the exact stability boundaries computed in Matlab for the sam-
pling periods T = [1, 2, 3, 4, 5] ms. The longer time constant τf , the smaller
bandwidth ωn can be implemented. Again, stability boundaries barely change
with the inertia and the viscous damping. A good approximation for all the
stability boundaries is:

ωn ≈
1

2T + τf
. (21)

Although stability condition (21) is useful, it only applies to the P-PI controller
that uses the parameters proposed in Section 3, and the tuning rule is (16). Plus
sign (+) in Fig. 7 shows the parameters selected for the experimental setup
(ωn = 50 rad/s and τf = 4 ms) and how they fall within the stable region
for T = 2 ms.

Figure 7: Stability boundaries with first-order digital filtering
of the velocity
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6. Experimental response to a smooth position setpoint

This section analyzes experimentally the P-PI controller described in Fig. 5
using the proposed bandwidth ωn = 50 rad/s and the inertia of the device m =
0.07 kg. Substituting these values in (5), (7) and (14), the gains are K = 35 s−1,
KP = 7 Ns/m and KI = 175 N/m. The time constant of the digital filter is
τf = 4 ms. For the position setpoint, a S-shaped smooth curve [15] is used instead
of a step input. These smooth trajectories limit the velocity and the acceleration
of the input reference in order to prevent the excitation of vibrational modes of
the mechanism, and they are widely used in industrial applications.

To generate the smooth trajectory, some maximum values for the velocity,
vmax, the acceleration, amax and the jerk, jmax should be selected. If all the
maximum values are reached, seven consecutive sections arise from the initial
to the final position (Fig. 8). The final value for the position, xmax, could be

Figure 8: Position, velocity, acceleration and jerk profiles
of a smooth trajectory with 7 sections
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considered as another restriction for the generation of the smooth trajectory.
Three main relations are shown in Fig. 8:

t12 =
amax
jmax

, (22)

t23 =
vmax
amax

, (23)

t45 =
xmax

vmax
. (24)

All the transitions between sections can be obtained using these three defi-
nitions. From the initial position up to the final position reference xmax, it takes
the sum of the three main relations: t12 + t23 + t45. In Appendix A, we have
included the Matlab code that generates a smooth trajectory after introducing the
maximum values of position, velocity, acceleration and jerk. This code generates
the smooth trajectory even if the velocity or the acceleration profiles cannot reach
their respective maximum values.

The maximum values should be defined depending on the experimental appli-
cation. In our case, the selected displacement, xmax = 0.1 m, is compatible with
the workspace of the mechanism. The rest of the parameters, vmax = 0.5 m/s,
amax = 5 m/s2, and jmax = 55.5 m/s3, are selected to get a fast response and also
to ensure that all the maximum values of the profiles are reached during short
intervals of time.

The smooth trajectory (blue line in Fig. 9) is computed in the setup() func-
tion of the Arduino sketch, using a C version of the code proposed in Appendix A.
The P-PI controller is programmed in a dedicated function, and this subroutine
is executed at the sampling rate using internal timer interruptions.

Figure 9: Experimental system response
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Fig. 9 shows the experimental response of the device. At t = 0.7 s, a dis-
turbance of 3.5 N (five times the equivalent weight of the device) is introduced.
The performance of the controlled system is quite satisfactory. The experimental
response also shows an observable outcome of gain K = 35 s−1. This gain is
directly related with the apparent delay between the smooth reference and the
actual position of the mechanism, which is the inverse of K , that is 0.028 s.

Substituting the selected parameters in characteristic equation (20), the four
poles of the system are:


z1 = 0.9602
z2 = 0.8714 + 0.0636 j
z3 = 0.8714 − 0.0636 j
z4 = 0.1538

s= ln z
T−−−−→


s1 = −20.32
s2 = −67.52 + 36.45 j
s3 = −67.52 − 36.45 j
s4 = −936.13

. (25)

As expected, the selected bandwidth ωn for the inner velocity loop imposes a
dominant real pole located at s1 ≈ −0.4ωn. The other real pole s4 arises due to
the velocity estimation and filtering, and that is why was not included in the root
locus of Fig. 2. Nevertheless, if condition (16) is held, the influence of this pole
on the disturbance rejection performance is negligible.

The pair of complex poles s2 and s3 have a damping factor of 0.88 which
differs from the expected 0.6. This is a consequence of time discretization and
the presence of the new real pole, that modifies the branches of the root locus
associated to these complex poles.

Fig. 10 shows the velocity signal directly estimated by the backwards dif-
ference and after applying the digital filter. The device reaches the maximum

Figure 10: Filtered and non-filtered velocity



MOTION CONTROL ALGORITHM AND TUNING RULES FOR MECHANICAL DEVICES
WITH LOW SAMPLING-RATE ELECTRONICS 135

velocity value for the smooth trajectory: vmax = 0.5 m/s. Filtering the velocity is
quite useful for the rejection of external disturbances.

7. Conclusion

This work analyses and describes an effective control algorithm based on two
cascade loops to drive mechanical devices. The algorithm uses a P controller
for the outer position loop and a PI controller for the inner velocity loop. The
gains of the controller are selected based on the continuous-time model of the
system. These parameters only depend on the natural frequency ωn, chosen as
the bandwidth of the velocity loop, and the inertia of the device. This control
strategy is able to reject external disturbances smoothly and quickly.

When the system is driven by cost-effective electronics, performance and
stability can be limited due to the low sampling rate that governs the control loop.
This works describes a methodology to effectively tune control gains under this
assumption and to evaluate its implication for the stability of the system. The
proposed methods are validated on a desktop haptic device showing that good
performance can be achieved with cost-effective electronics with proper control
strategies and parameter selection.

A. Matlab code to generate smooth trajectories

% Script reference.m to generate a smooth setpoint
% Input parameters: final position (m)
% maximum velocity (m/s)
% maximum acceleration (m/s^2)
% maximum jerk (m/s^3)
% Output: time (s)
% position (m)

function F = reference(pmax,vmax,amax,jmax)

Dt = 0.002; % Dt = 0.002 s could be an input
time = 0:Dt:3; % t_final = 3 s could be an input
leng = length(time);
p = zeros(1,leng);
v = zeros(1,leng);
a = zeros(1,leng);

t12 = amax/jmax;
t23 = vmax/amax;
t45 = pmax/vmax;
t67 = t23+t45;

index_avoidfour = 0.0;
index_noamax = 0.0;
n = 1;
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for k = 2:leng

switch n
case 1

if time(1,k)+Dt >= t12
n = 2;

end
a(1,k) = jmax * time(1,k);
v(1,k) = v(1,k-1) + a(1,k) * Dt;
% Check if we get vmax before reaching amax
if 2*v(1,k) >= vmax
n = 3;
t12 = time(1,k);
t23 = time(1,k);
t67 = t23+t45;
amax = a(1,k);

end
p(1,k) = p(1,k-1) + v(1,k) * Dt;
% Check if we get pmax before reaching amax
if 12*p(1,k) >= pmax
n = 3;
t12 = time(1,k);
t23 = time(1,k);
t45 = time(1,k)+t12;
t67 = t23+t45;
amax = a(1,k);
index_avoidfour = 1.0;

end
case 2

if time(1,k)+Dt >= t23
n = 3;

end
a(1,k) = amax;
v(1,k) = v(1,k-1) + a(1,k) * Dt;
p(1,k) = p(1,k-1) + v(1,k) * Dt;
% We get pmax befofe reaching vmax
% Jump to 3 with order to omit 4, else jump to 6
if 2*(p(1,k)+t12*(v(1,k)+amax*t12/3)) >= pmax
n = 3;
t23 = time(1,k);
t45 = time(1,k)+t12;
t67 = t23+t45;
index_avoidfour = 1.0;

end
case 3

a(1,k) = amax - jmax * ( time(1,k) - t23 );
% Check if as in section 5 and then jump to 6
if index_avoidfour == 1.0
if a(1,k) <= -amax

a(1,k) = -amax;
n = 6;

end
% Condition to jump from section 3 to 4
elseif time(1,k)+Dt >= t23+t12
n = 4;

end
v(1,k) = v(1,k-1) + a(1,k) * Dt;
p(1,k) = p(1,k-1) + v(1,k) * Dt;

case 4
if time(1,k)+Dt >= t45
n = 5;
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end
a(1,k) = 0.0;
v(1,k) = v(1,k-1) + a(1,k) * Dt;
p(1,k) = p(1,k-1) + v(1,k) * Dt;

case 5
if time(1,k)+Dt >= t45+t12
n = 6;

end
a(1,k) = - jmax * ( time(1,k) - t45 );
v(1,k) = v(1,k-1) + a(1,k) * Dt;
p(1,k) = p(1,k-1) + v(1,k) * Dt;

case 6
if time(1,k)+Dt >= t67
n = 7;

end
a(1,k) = -amax;
v(1,k) = v(1,k-1) + a(1,k) * Dt;
p(1,k) = p(1,k-1) + v(1,k) * Dt;

case 7
if time(1,k)+Dt >= t67+t12
n = 8;

end
a(1,k) = -amax + jmax * ( time(1,k) - t67 );
v(1,k) = v(1,k-1) + a(1,k) * Dt;
p(1,k) = p(1,k-1) + v(1,k) * Dt;

case 8
a(1,k) = 0.0;
v(1,k) = 0.0; % Force zero velocity
p(1,k) = p(1,k-1) + v(1,k) * Dt;

end

end

pfinal = pmax * p / max(p); % For integration errors
plot(time,pfinal,’k’); % Optional plot
F = [time’ pfinal’]; % Output in columns
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