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Exact and approximate distributed controllability of
processes described by KdV and Boussinesq equations:

The Green’s function approach

JERZY KLAMKA, ARA S. AVETISYAN and ASATUR ZH. KHURSHUDYAN

In this paper, we study the constrained exact and approximate controllability of traveling
wave solutions of Korteweg-de Vries (third order) and Boussinesq (fourth order) semi-linear
equations using the Green’s function approach. Control is carried out by a moving external
source. Representing the general solution of those equations in terms of the Frasca’s short
time expansion, system of constraints on the distributed control is derived for both types of
controllability. Due to the possibility of explicit solution provided by the heuristic method,
the controllability analysis becomes straightforward. Numerical analysis confirms theoretical
derivations.
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1. Introduction

One of the most challenging topics in contemporary control theory is the
development of a universal and efficient method for analysis of controllability
of systems with nonlinear constraints. A significant advance in controllability
analysis of nonlinear systems has been reported in past several decades (see, for
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instance, [1–6], as well as related references therein). Application of different
methods for analysis of particular control systems requires different complexi-
ties and/or computational costs. Apparently, computationally efficient numerical
methods are mostly desired. This motivates a new research towards improvement
of existing methods and development of new ones.

Controllability of a system is its ability to be transmitted from a given state
to a desired state within a specified amount of time by means of admissible con-
trols. Depending on the accuracy of the desired state implementation, two types
of controllability are mainly distinguished. If the desired state is implemented
exactly, the system is referred to as exactly controllable. If the implemented state
is, in a certain sense, close to the desired one, then the system is referred to as
approximate controllable.

Mathematically, a system whose state is described by w : Rn × R+ → Rm

obeying a set of state constraints (e.g., differential equations and initial/boundary
conditions, etc.), is exactly controllable in a given time 0 < T < +∞, if for any
given initial and terminal states w0 : Rn → Rm and wT : Rn → Rm, there exists
an admissible control u : R+ → Rm such that the residue

RT (u) = ∥w (x,T ) − wT (x)∥WT
= 0, (1)

where WT is the space of terminal states (appropriate Hilbert space). More
generally, if there exists an admissible control u such that

RT (u) ¬ ε (2)

for a given accuracy ε, then the system is called approximately controllable.
Apparently, the exact controllability implies approximate controllability with
arbitrarily small accuracy ε, while approximate controllability does not guarantee
exact controllability.

In some problems, it is to some extent sufficient to prove the existence of an
admissible control providing either exact or approximate controllability. How-
ever, more often, it is desirable to determine the corresponding control regimes
explicitly. To this aim, the method of moments [2], the norm minimization ap-
proach [5] or the heuristic method [7] can be applied. See, e.g., [8–12] for specific
applications of the heuristic method in combination with the Green’s function
approach for the controllability analysis of linear and nonlinear systems.

Admissible controls that provide (1) are called exactly resolving. IfU denotes
the set of admissible controls, the set of exactly resolving controls is denoted by
U ex

res. Thus,
U ex

res = {u ∈ U : (1)} .
Approximately resolving controls are defined analogously. The set of approxi-
mately resolving controls is defined by

U ap
res = {u ∈ U : (2)} .
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In this terminology, a system is exactly controllable at T if and only ifU ex
res∩U ,

∅. Similarly, a system is approximately controllable if and only ifU ap
res ∩U , ∅.

The difficulty of the controllability analysis and its computational complexity
strongly depends on the structure ofU . In some pure theoretical studies, there are
no any constraints posed on u. However, in practice, controls that any controller
can implement is, at least, bounded. Controllability under constraints on control
is often referred to as constrained controllability (see the relevant studies [13–16].

In this paper, we aim to establish exact and approximate controllability condi-
tions for externally controlled nonlinear Korteweg-de Vries (KdV) and Boussi-
nesq equations. Note that usually boundary (exact and approximate) controlla-
bility of both mentioned equations is considered. Exact controllability of the
nonlinear KdV equation by means of right-hand side has been studied relatively
less. The first has been made in [17], and some further developments are de-
scribed in the extensive review [18]. Controllability of the Boussinesq equation
by means of the right-hand side is studied, e.g., in [19].

We start with a short description of the Green’s function approach for study-
ing exact and approximate controllability of systems described by higher order
non-homogeneous semi-linear equations. Using the Frasca’s short time expansion
representation of the solution, the dependence RT on u is made explicit allowing
to carry out straightforward controllability analysis. Note that nonlinear Green’s
function of both equations are explicitly found and the error of approximation
by corresponding Frasca’s solutions is examined numerically in [20]. Assuming
that the distributed control represents a moving source, necessary and sufficient
conditions for exact controllability are derived. Sufficient conditions for approx-
imate controllability are derived as well. We also address the problem of explicit
determination of the setsU ex

res andU ap
res (partly) for both equations.

2. The Green’s Function approach

In this section we will briefly outline the Green’s function approach to con-
trollability analysis developed in [6]. Let a control process be described by the
following semi-linear ordinary differential equation:

dnw

dtn + N
(

dn−1w

dtn−1 , . . . ,w

)
= f (u, t) , t > 0, (3)

where N is a generic non-linearity, f is the external influence on the process, u
is a control. Let appropriate Cauchy conditions be attached to (3):

d kw

dtk

�����t=0
= wk, k = 0, 1, . . . , n − 1. (4)
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It is numerically established in [20] that the general solution of (3) is repre-
sented as follows:

w(t) =

t∫
0

Ĝ (t − τ) f (u, τ) dτ, (5)

where
Ĝ(t) = G(t) · g(t),

with G determined as the general solution of the following Cauchy problem:

dnG
dtn + N

(
dn−1G
dtn−1 , . . . ,G

)
= sδ(t), (6)

subject to
d kG
dtk

����t=0
= 0, k = 0, 1, . . . , n − 1, (7)

function g ∈ Cn−1 [0,T] is chosen in numerical purposes to minimize the approx-
imation error, s is a real parameter, δ is the Dirac function. In specific problems,
g is expanded into a Taylor series [21] near t = 0 and the expansion coefficients
are determined in terms of quantities w(k) (0) specified by the attached Cauchy
conditions (k = 1, 2, . . . , n − 1) and evaluating (3) and its derivatives at t = 0
(k  n). Moreover, the following result is proved.

Theorem 1 [20] Let the non-linearity possesses the following generalized ho-
mogeneity property:

θ(t) · N
(

dn−1w

dtn−1 , . . . ,w

)
= N

(
θ

dn−1w

dtn−1 , . . . , θw

)
, (8)

where θ is the Heaviside function and satisfies the existence and uniqueness
conditions for (3), (4). Then, the nonlinear Green’s function of (3), (4), i.e., the
general solution of (6), (7) admits the following representation:

G(t) = θ(t)w0(t), (9)

where w0 is the general solution of the homogeneous equation

dnw0
dtn + N

(
dn−1w0

dtn−1 , . . . ,w0

)
= 0, (10)

subject to non-homogeneous Cauchy conditions

d kw0

dtk

����t=0
= 0, k = 0, 1, . . . , n − 2,

dn−1w0

dtn−1
����t=0
= s. (11)
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Remark 1 The advantage of representation (9) is that because of the Dirac
function in the right hand side, the solution of (6), (7), whenever possible, is
considerably sophisticated, while the handbooks like [22] mostly contain exact
solutions of homogeneous equations like (10). Moreover, since these solutions
contain some arbitrary constants, the unique solution satisying (11), in principle,
can be found. It is also noteworthy that there are several approaches allowing to
reduce quasi-linear PDEs to ODEs of the form (6). See [23] for details.

Now, once the state function admits the representation (5), then its controlla-
bility is established by quantifying the following residue:

RT (u) =

��������
T∫

0

Ĝ (T − τ) f (u, τ) dτ − wT

�������� , (12)

where wT is the desired value to be achieved at t = T . Control function can be
determined from (12) using the heuristic method developed in [7].

3. Controllability analysis

In this section we apply the Green’s function approach described in the pre-
vious section for establishment of controllability conditions for the KdV and
Boussinesq equations. For error estimate of the nonlinear Green’s function solu-
tion of these equations for various source functions, see [20].

3.1. KdV equation

Consider the following KdV equation governed by a distributed control of
special form:

∂w

∂t
+
∂3w

∂x3 + 6w
∂w

∂x
= u (x − vt) , x ∈ [0, l], t > 0. (13)

Here u represents a moving control function with constant velocity v > 0. For a
given function wT ∈ L2[0, l] (=WT ) and given time moment 0 < T < +∞, let
us consider the following residue:

RT (u) = ∥w (x,T ) − wT (x)∥WT
. (14)

Then, the problem is to find admissible controls

u ∈ U =
{
u ∈ L2[0, l] : |u| ¬ ϵ, supp(u) ⊆ [0, l]

}
,
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where supp(u) = {ξ ∈ R : u(ξ) . 0} is the support of u, providing

RT (u) = 0, (15)

for exact controllability, or
RT (u) ¬ ε (16)

with a given precision ε for approximate controllability.

Remark 2 Thus, the set of admissible controls contains bounded, compactly
supported functions from L2. Therefore, exact and approximate controllability
conditions obtained below are for constrained controllability.

3.1.1. Green’s function solution of (13)

The traveling wave solution of (13) is determined from the following nonlinear
ODE:

d
dζ

[
d2w̃

dζ2 + 3w̃2 − vw̃
]
= u(ζ ), ζ ∈ [0, l], (17)

where w̃(ζ ) = w̃ (x − vt) = w (x, t).
Evidently, in this case, (8) is satisfied allowing to write the nonlinear Green’s

function of (17) as follows:

G̃(ζ ) = θ(ζ )w̃0(ζ ),

where w̃0 is the general solution of the following homogeneous equation:

d
dζ

[
d2w̃0

dζ2 + 3w̃2
0 − vw̃0

]
= 0, (18)

subjected to the Cauchy conditions:

w̃0(0) =
dw̃0
dζ

����ζ=0
= 0,

d2w̃0

dζ2
����ζ=0
= s. (19)

The general solution of (18), (19) is given as follows:

w̃0(ζ ) = ζ3 +
(
ζ2 − ζ3

)
sn2

[
1
2

√(
4ζ3 + 2ζ2 − v

) (
ζ + c3

)2,
ζ2 − ζ3
ζ1 − ζ3

]
. (20)

Here sn is the Jacobi snoidal function defined as follows:

sn (σ,m) = sin φ, where σ =

φ∫
0

dϕ√
1 − m sin2 ϕ

,
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ζ1, ζ2, and ζ3 are the roots of the cubic equation

2ζ3 − vζ2 − 2c1ζ − c2 = 0,

and c1, c2, and c3 are integration constants determined from the Cauchy conditions
(19). The expressions of ζ1, ζ2 and ζ3 can be made explicit. However, since they
are not important for this study, we will not extend the text by them.

Thus, making use of (5), the general solution of (13) can be represented as
follows:

w (x, t) =

x−vt∫
0

Ĝ
(
x − vt − ξ) u(ξ)dξ. (21)

3.1.2. Constrained exact controllability

Following to [6], the exact controllability of (13) is equivalent to the following
equality:

x−vT∫
0

Ĝ
(
x − vT − ξ) u(ξ)dξ − wT (x) = 0 a.e. in [0, l]. (22)

Let φn ∈ L2[0, l] for all n ∈ N, be a family of functions orthogonal (probably with
some weight) in [0, l] forming a basis in the space of terminal states wT . Then,
expanding both sides of the last equality into a series of φn, we will eventually
derive the following infinite system of equations:

l∫
0


x−vT∫
0

Ĝ
(
x − vT − ξ) u(ξ)dξ

 φn(x)d x = wTn, n = 1, 2, . . . , (23)

where

wTn =

l∫
0

wT (x)φn(x)d x.

Due to the linearity of (23), the set

Ũ ex
res =

{
u ∈ U : (23), ∥u∥L2 → min

} ⊂ U eq
res

can be constructed by means of the method of moments [2]. Nonetheless, in order
to explore extended possibilities of U eq

res, here we employ the heuristic method
developed in [7]. Let us assume that the resolving control can be expanded into an
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orthogonal series of functions ϕm ∈ L2[0, l] for all m ∈ N, orthogonal (possibly
with some weight) in [0, l]:

u(ξ) =
∞∑

m=1
umϕm(ξ), (24)

such that u ∈ U . Then, from (23) for unknown coefficients um we derive the
following infinite system of liner algebraic equations:

Φ(T )u = wT, (25)

with

Φ =
{
Φ

n
m
}∞

m,n=1 , Φ
n
m(T ) =

l∫
0


x−vT∫
0

Ĝ
(
x − vT − ξ) u(ξ)dξ

 φn(x)d x,

uT = {um}∞m=1 , wT
T = {wTn}∞n=1 .

The solvability of (25) in general case is studied in the well-known fashion
of [24]. Recall the following result.

Theorem 2 ([24], p. 27) If for given l, v, T , wT , and ϵ , infinite system (25) is
regular, i.e.,

σn(T ) =
∞∑

m=1

��Φn
m(T )�� < 1, n = 1, 2, . . . , (26)

and for a positive constant C

|wTn | ¬ C [1 − σn(T )] , n = 1, 2, . . . , (27)

then (25) has a bounded solution

|um | ¬ C, m = 1, 2, . . . . (28)

Moreover, if the solution of the majorant system
∞∑

m=1

��Φn
m(T )�� vm = C [1 − σn(T )] , m = 1, 2, . . . , (29)

is strictly positive, then (28) is unique.

At this, the solution of (25) is determined by computing the limit of the
truncated N × N-dimensional system when N → ∞. Note that if the mentioned
conditions hold, the truncated system has a unique bounded solution.

Thus, the following assertion becomes evident.
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Theorem 3 (about constrained exact controllability) If for given l, v, T , wT , and
ϵ , the matrix and free term of infinite system (25) satisfy the conditions of Theorem
2, then KdV equation (13) is constrained exact controllable in T .

Proof. Indeed, when Theorem 2 holds, then infinite system (25) has a unique
bounded solution. The resulting controls (24) satisfy (22) which is necessary and
sufficient for exact controllability of (13).

Remark 3 In other words, in that case, as soon as (24) with (25) are inU , then
U ex

res , ∅.

Remark 4 Usually, moving controls are modeled as a concentrated load de-
scribed by Dirac delta function [25–28]. It is one of the advantages of this
approach that it is possible to consider more general forms of the moving source
provided that for corresponding basis functions ϕm, (25) is regular, i.e., (26)
holds.

3.1.3. Constrained approximate controllability

Derivation of constrained approximate conditions for (13) are more straight-
forward. The following assertion holds true.

Theorem 4 If for given wT and desired accuracy ε,

εT = ε − ∥wT ∥WT
 0, (30)

then, for given l, v, T , and ϵ ,
gT (u) ¬ εT (31)

is sufficient for approximate controllability of (13) in T .
In other words,

Ũ ap
res = {u ∈ U : gT (u) ¬ εT } ⊆ U ap

res .

Proof. Making use of the triangle inequality, for the residue (14) we derive the
following estimate:

RT (u) =


x−vT∫
0

Ĝ
(
x − vT − ξ) u(ξ)dξ − wT (x)

WT

¬ gT (u) + ∥wT ∥WT
,

where

gT (u) =


x−vT∫
0

Ĝ
(
x − vT − ξ) u(ξ)dξ

WT

. (32)
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The Green’s function approach also has the convenience to consider extensions
ofU to accommodate sliding mode controls described by generalized functions.
Let, in particular,

u(ξ) = u0δ(ξ).

Then,
gT (u) = |u0 | · Ĝ (x − vT )WT

,

and the approximately resolving controls are defined by

|u0 | ¬
εTĜ (x − vT )WT

,

provided that
KT =

Ĝ (x − vT )WT
, 0. (33)

Note that the existence of a nontrivial solution requires that KT < ∞, equivalent
to Ĝ (x − vT ) ∈WT .

In view of the apparent inequality

gT (u) ¬ ϵ


x−vT∫
0

Ĝ
(
x − vT − ξ) dξ

WT

,

we obtain

Corollary 3 (about constrained approximate controllability) If for given wT
and desired accuracy ε, (30) holds, and for given l, v, and T , there exists a
constant C such that 

x−vT∫
0

Ĝ
(
x − vT − ξ) dξ

WT

¬ C,

then
ϵ ¬

εT

C
is sufficient for constrained approximate controllability of (13) in T .

In other words

U ap
res = {u ∈ U : Cϵ ¬ εT } ⊆ U ap

res .

Evidently, in the case of null-controllabilty, (30) always holds.
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3.2. Boussinesq equation

Now let us consider the Boussinesq equation

∂2w

∂t2 +
∂

∂x

[
w
∂w

∂x

]
+
∂4w

∂x4 = u (x − vt) , x ∈ [0, l], t > 0. (34)

Its traveling wave solution is determined from the following ODE:

d2

dζ2

[
d2w̃

dζ2 +
1
2
w̃2 + v2w̃

]
= u(ζ ). (35)

In this case also the nonlinear term possesses homogeneity condition (8), and
thus, (9) holds. However, we were able to derive the explicit solution of the
homogeneous equation

d
dζ

[
d2w̃0

dζ2 +
1
2
w̃2

0 + v
2w̃0

]
= 0

as follows:

w̃0(ζ ) = ζ3 +
(
ζ2 − ζ3

)
sn2


1
2

√(
2
3
ζ3 +

1
3
ζ2 + v2

) (
ζ + c3

)2,
ζ2 − ζ3
ζ1 − ζ3

 ,
where ζ1, ζ2, and ζ3 are the roots of the following cubic equation:

ζ3 + 3v2ζ − 6c1ζ − 3c2 = 0,

constants c1, c2, and c3 are determined from Cauchy conditions (19). The explicit
expressions of the roots are too long to include into the text.

Then, the function G̃1(ζ ) = θ(ζ )w̃0(ζ ) satisfies

d2

dζ2

 d2G̃1

dζ2 +
1
2

G̃2
1 + v

2G̃1

 = sδ′(ζ ),

and therefore, G̃1 is the first order Green’s function of Boussinesq equation (35).
This means that the general solution of (35) is given as follows [20]:

w̃(ζ ) =

ζ∫
0

Ĝ
(
ζ − ξ) U (ξ)dξ,
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where U is the anti-derivative of u:

U (ξ) =

ξ∫
0

u(η)dη.

The exact and approximate controllability conditions in this case look similar
to (23) and (31), but with U substituted instead of u.

Note that in particular case of point moving source, i.e., when u(ζ ) = u0δ(ζ ),
we get U (ζ ) = u0. Then, the following assertion holds.
Corollary 4 (about constrained approximate controllability) If for given wT and
desired accuracy ε, (30) holds, and for given l, v, and T (c.f. (33))

BT =


x−vT∫
0

Ĝ
(
x − vT − ξ) dξ

WT

, 0,

then
|u0 | ¬

εT

BT
, (36)

is sufficient for the constrained approximate controllability of Boussinesq equa-
tion (34).

In other words,
Û ap

res = {u ∈ U : (36)} ⊆ U ap
res .

For the existence of the nontrivial solution, it is required that ϵT < ∞.

4. Numerical examples

In this section we carry out a numerical test in order to verify theoretical
derivations above. For the sake of simplicity, only the KdV equation is considered.
Nonetheless, the analysis is straightforwardly the same also for the Boussinesq
equation.

We begin with the controlled KdV equation (17). Assume that at ζ = 0,

w̃(0) = 1,
dw̃
dζ

����ζ=0
=

d2w̃

dζ2
����ζ=0
= 0.

The control problem requires to find admissible controls u ∈ U that provide
wT ≡ 2 a.e. in [0, l] as t  T . Let us fix l = 50, v = 1, and T = 50. For the sake
of simplicity, let us consider the approximate controllability requiring to ensure

RT (u) ¬ ε (37)
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Since in this case wT ≡ 2, (30) holds only for ε > 2. That is why we need to
evaluate the residue RT directly. Below we consider the heuristic control [7]

u(ζ ) = u0
[
θ
(
ζ − ζ0

) − θ (
ζ − ζ1

)]
= u0 χ[ζ0,ζ1](ζ ). (38)

Here, u0, 0 ¬ ζ0 < ζ1 < l are arbitrary parameters that need to be determined to
provide required accuracy in (37). At this, we consider two cases: when u0 is a
constant and u0 ∈ C[0, l] is a function. First, let u0 = const. Then, substituting
(38) into (32), Theorem 4 implies that, e.g., whenu0 = 0.2, ζ0 = 0, ζ1 = 40, then
(37) is provided with ε = 0.036. On the other hand, when

u0(ζ ) = α sin
(
ωζ + β

)
, (39)

where α, ω and β are arbitrary parameters, the accuracy of (37) can be reduced.
Indeed, choosing α = 0.402, ω = 0.1, β = 0, ζ0 = 0 and ζ1 = 30, it is possible
to provide (37) with ε = 0.005 (see Fig. 1). By a proper choice of corresponding
parameters, both estimates can be further improved.

Figure 1: Controlled solution of (17) for ζ ∈ [0, 50] (left) and the difference between
required and implemented states for ζ ∈ [40, 60] (right)

Now, we consider L2-null-controllability of the KdV equation. In the case of
exact null-controllability, one of the trivial solutions when

w̃(0) = 0,
dw̃
dζ

����ζ=0
=

d2w̃

dζ2
����ζ=0
= 0,

is
u(ζ ) = u0δ(ζ ).

This control regime corresponds to a point source moving in the direction of the
traveling wave with the same velocity.

Consider the approximate null-controllability of the KdV equation attained
by the regime (38) with (39). Since in this case wT ≡ 0, then (30) always holds.
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Therefore, fixing

l = 150, v = 3, T = 50, w̃(0) = −0.025,
dw̃
dζ

����ζ=0
= 0.002,

d2w̃

dζ2
����ζ=0
= −7·10−3,

and making use of the Theorem 4, we find that α = 10−3, ω = 0.1, β = 0,
ζ0 ≈ 17.8, ζ1 ≈ 52.2 ensures (37) with ε = 0.0204.

Moreover, in that case, when

w̃(0) = −0.01,
dw̃
dζ

����ζ=0
=

d2w̃

dζ2
����ζ=0
= 0,

the conditions of Corollary 3 are satisfied and (38) with |u0 | ¬ 2.5 · 10−3 ensures
(37) with ε = 0.0185 (see Fig. 2).

Figure 2: Controlled solution of (17) for ζ ∈ [0, 150] (left) and the difference between
required and implemented states for ζ ∈ [50, 140] (right)

5. Conclusion

Constrained exact and approximate distributed controllability conditions for
the KdV (third order) and Boussinesq (fourth order) nonlinear equations are
obtained by means of the Green’s function approach. Using the traveling wave
ansatz, the semi-linear PDEs are reduced to ODEs, the general solution of which
is represented by Frasca’s short time expansion. Evaluating the residue between
the implemented and desired states, an infinite system of equality type constraints
on admissible controls providing exact controllability. Sufficient conditions in the
form of inequalities are derived for the approximate controllability. In both cases,
inequality type constraints on nonlinear Green’s function are derived posing
appropriate constraints on system parameters and initial and terminal states. The
heuristic method allows to construct exactly and approximately resolving controls
explicitly. Due to integral relation for the general solution, it becomes possible
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to consider extensions of the set of admissible controls to contain sliding mode
controls expressed by generalized functions. The case point source described
by Dirac’s delta function is considered. Numerical analysis confirms theoretical
derivations and reveals advantages of the Green’s function approach.
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