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Abstract: This paper presents the current stage of the development of EA-MOSGWA – a tool for
identifying causal genes in Genome Wide Association Studies (GWAS). The main goal of GWAS is to
identify chromosomal regions which are associated with a particular disease (e.g. diabetes, cancer) or
with some quantitative trait (e.g height or blood pressure). To this end hundreds of thousands of Single
Nucleotide Polymorphisms (SNP) are genotyped. One is then interested to identify as many SNPs as
possible which are associated with the trait in question, while at the same time minimizing the number of
false detections.

The software package MOSGWA allows to detect SNPs via variable selection using the criterion
mBIC2, a modified version of the Schwarz Bayesian Information Criterion. MOSGWA tries to minimize
mBIC2 using some stepwise selection methods, whereas EA-MOSGWA applies some advanced evolution-
ary algorithms to achieve the same goal. We present results from an extensive simulation study where we
compare the performance of EA-MOSGWA when using different parameter settings. We also consider
using a clustering procedure to relax the multiple testing correction in mBIC2. Finally we compare results
from EA-MOSGWA with the original stepwise search from MOSGWA, and show that the newly proposed
algorithm has good properties in terms of minimizing the mBIC2 criterion, as well as in minimizing the
misclassification rate of detected SNPs.
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1. Introduction

Recently there has been considerable interest in developing variable selection meth-
ods for Genome-wide association studies (GWAS), see for example [7] or [10]. A com-
prehensive overview can be found in [4], where the methods implemented in the software
package MOSGWA were first introduced in the context of quantitative traits. MOSGWA
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uses mBIC2, a modified version of the Bayesian Information Criteria which is designed
to control the false discovery rate. A fully Bayesian variable selection approach for
GWAS based on Markov chain Monte Carlo (MCMC) sampling was developed by [6].
Some review on the latest methods for GWAS analysis can be found for example in [1].

The original MOSGWA package as described in [4] tries to minimize the model
selection criterion mBIC2 using some sophisticated stepwise selection procedures. In
contrast EA-MOSGWA makes use of some specifically designed evolutionary algorithm
[5, 8] to fulfill the same task, hence the name of the new method is EA-MOSGWA. The
evolutionary algorithm we present here is very similar to the memetic algorithm used for
QTL mapping which was described in [3].

EA-MOSGWA has been developed at the Department of Mathematics and Computer
Science of Jan Długosz University in Czestochowa in cooperation with the Wroclaw
University of Technology and the Medical University of Vienna. EA-MOSGWA is a
module of the larger, more elaborate program MOSGWA, which has been developed for
several years at the Medical University of Vienna and Wroclaw University of Technol-
ogy. The program MOSGWA (Model Selection for Genome Wide Associations) is an
advanced tool to analyze GWAS data, and its software architecture is flexible enough to
make it relatively easy to incorporate new methods.

2. Theoretical Background

We will focus in this article on the detection of SNPs which are associated with
a quantitative trait. The measurement of the trait for the ith individual is denoted as
yi, i ∈ {1, . . . , n}. For each individual the genotypes of p SNPs are assumed to be
known, where we use the coding xij ∈ {−1, 0, 1}, j ∈ {1, . . . , p}. To model the genetic
influence on the trait me make use of a classical linear regression model of the form

yi = µ+
∑
j∈M

βjxij + εi, (1)

where µ is the intercept andM denotes some subset of markers which influence the trait.
We assume that the error term is normally distributed, εi ∼ N

(
0, σ2

)
. Model selection

is then performed by trying to minimize the following modification of the Bayesian
information criterion

mBIC2 := n logRSS + k log(np2/16)− 2 log(k!), (2)

where k = |M | denotes the size of the evaluated model, n is the number of individuals,
and p is the number of SNPs. An extensive justification of this approach is provided in
[4].
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In principle one might consider to compute the criterion for all possible subsets of
SNPs and thus find the model which minimizes mBIC2. However, this approach has
exponential complexity in p, and therefore all subset selection is entirely hopeless given
the vast number of SNPs in GWAS. In practice it is therefore necessary to perform
variable selection by searching only over a subset of models. To this end EA-MOSGWA
uses an evolutionary algorithm for searching through the space of all subsets, trying
to find a model which minimizes mBIC2. During the search the algorithm stores the
mBIC2 values of all visited models, and the gathered information is used to direct the
search into regions of the solution space which appear to be most promising. As a result
EA-MOSGWA not only reports that model along its search path that minimizes mBIC2,
but it provides the information of a large number of interesting models.

3. Implementation

The idea of evolutionary algorithms is inspired by observing the development of
species, where over several generations a population is getting better adapted to the en-
vironmental conditions in which it resides. In analogy in the case of computer programs
evolutionary algorithms are trying to obtain better solutions by allowing a population of
existing solutions to evolve in such a way, that the fitness of the population increases
[5, 8].

The evolutionary algorithm used by EA-MOSGWA is fairly similar to the Memetic
Algorithm (MA) presented in [3]. The memetic algorithm works with a population of
individuals, where each individual corresponds to a particular model M according to
(1). The population then refers to a collection of such models, where we will denote
the population size by u. The fitness of each individual M is measured by the mBIC2
criterion (2). The smaller the value of mBIC2, the fitter is an individual.

MA from [3] was implemented in Matlab, and it was designed to work on experi-
mental populations, where usually less than 500 markers are explored. In contrast our
new algorithm works for several hundred thousand markers as in GWAS. The general
structure of both algorithms is the same, but due to the much larger number of poten-
tial regressors our new algorithm differs in several ways, as will be described in the
subsections below.

The general outline of EA-MOSGWA is as follows. The algorithm starts with creat-
ing an initial population of size u. Then three evolutionary steps are repeated till some
stopping criterion is fulfilled. Each iteration starts with a selection step, where two indi-
viduals from the population are chosen as parents. Next comes the recombination step
in which with rather large probability a new individual, the so called child, is generated
as an offspring from the two parent models. In a third step with rather low probability
the child then undergoes mutation. Finally at the end of each iteration local improve-
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ment takes place,where the fitness of the child is further improved by some greedy local
search.

At the end of each iteration the fitness of the new individual is compared with the
weakest member of the current population. If the fitness of the new individual is better,
then the population is updated by substituting the weakest individual by the new individ-
ual. Otherwise no update occurs. The algorithm terminates after a certain number IS of
consecutive iterations took place without any update ranging among the B best models
of the population.

In the following subsections we will describe the main ingredients of our algorithm
in more detail.

3.1. Representation of Models

For EA-MOSGWA models have to be coded in a suitable way to become individuals
of the memetic algorithm. A model consists of a set of SNPs which might be thought
of as causal SNPs. Each set of SNPs uniquely characterizes a linear regression model as
specified in (1).

3.2. Initial Population

The first step of EA-MOSGWA is to generate an initial population, which is obtained
by repeatedly performing some rather specific greedy forward selection steps, like the
multi-forward step described in [4]. To this end all SNPs are first ordered according
to their marginal p-values, and then a directed search is performed along this order.
Markers are added to the model whenever they lower the original BIC criterion

BIC = n log(RSS) + k log(n) . (3)

The number of potential SNPs to be added to the models is reduced by considering only
those markers for which the marginal p-values are smaller than 0.15. For computational
purposes the size of models which are created in the initial population is limited to 150
SNPs. This procedure is then repeated iteratively to obtain all members of the initial
population, where the multi-forward search is performed always over the set of SNPs
which has not yet been selected before. We know that BIC has a tendency to select
too large models, and we therefore deliberately design the process of generating the
initial population in such a way that a large number of potentially interesting SNPs are
considered.

3.3. Selection

For the selection step we use the classic method of tournament selection, where the
number of participants in each tournament equals to 2. Specifically in a tournament two
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individuals from the population are selected randomly, and the model with better fitness
is the winner. The winner of the first tournament becomes the first parent. Then a second
tournament is performed, and its winner becomes the second parent if it differs from the
first parent. Otherwise the second tournament is repeated till two different parents are
obtained, which are then used in the following recombination step to generate a new
offspring.

3.4. Recombination

In the recombination step we perform some forward selection procedure and some
backward selection procedure to generate an offspring. Let S1 and S2 be the sets rep-
resenting the two parents. Let SI = S1 ∩ S2 be the intersection, SU = S1 ∪ S2 be the
union, and SD = SU\SI be the symmetrical difference of the two parents.

• The forward selection procedure starts from SI and then consecutively includes
markers of SD in a greedy fashion. The fittest model obtained by this forward
search is taken as the child candidate from forward selection.

• The backward elimination procedure starts from SU and consecutively removes
markers of SD in a greedy fashion. The fittest model obtained by this backward
elimination is taken as the child from the backward selection.

The fitter one of the two models obtained above will become the child obtained by re-
combination. A recombination step is performed with probability pCross = 0.95.

3.5. Mutation

In the mutation step two actions can occur with the same probability: either a new
marker is added to the child model, or a marker is removed from the child model.

In the case of insertion, a new marker is selected at random from all SNPs which are
not in the model. If that new marker is strongly correlated with one of the SNPs which
are already in the model (that is |R| > 0.5 where R is the pairwise correlation), then the
selection of a new marker is repeated.

In the case of removal, one randomly selects a marker from the model to be removed.
If the model has only one marker then this SNP is not removed but replaced by another
randomly chosen marker.

In the case that in an iteration no recombination was performed than a mutation step
is mandatory. Otherwise a mutation step follows with pMutation = 0.25.

3.6. Local Improvement

The local improvement step probably differs most from MA of [3]. As in MA we try
to improve the model by exploiting the known correlation structure between markers,
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but in GWAS the correlation structure is much more complicated than in QTL mapping.
Consider an individual S = {s1, s2, . . . , sk} with k markers. Having calculated

mBIC2 for S we try to improve the model by exchanging s1 with markers which are
strongly correlated (|R| > 0.5) and close to s1 (window size 50), while keeping all
other markers fixed. We then continue iteratively with such exchange steps for all the
remaining markers within the model.

4. Experimental Results

Simulations were carried out using real genetic data from the POPRES sample [9].
We used the imputed genotype data of 23171 SNPs from chromosome 6 from 4077
individuals.

4.1. Causal Model

Table 1: 20 SNPs selected to be causal for the simulation study. All SNPs are from the 6th chromosome of the POPRES
sample. The consecutive columns contain: SNP number in the data set, SNP id, position (in base pairs) and the regression
coefficient (βj )

SNP no SNP Id Pos βj

13 SNP_A-1871676 197772 0.05
1207 SNP_A-1984915 6106312 0.06
2404 SNP_A-1834615 12980206 0.07
3611 SNP_A-1949543 20443039 0.08
4800 SNP_A-2287359 29479863 0.09
6004 SNP_A-1985686 36347031 0.10
7207 SNP_A-1886942 44806243 0.11
8423 SNP_A-2139356 53493302 0.12
9602 SNP_A-1828353 67482625 0.13

10803 SNP_A-2157434 77315837 0.14
12008 SNP_A-1794641 85875697 0.15
13213 SNP_A-1815281 96003236 0.16
14400 SNP_A-2202441 106377385 0.17
15616 SNP_A-2309459 116424331 0.18
16808 SNP_A-2160092 125903635 0.19
18017 SNP_A-1850477 135835399 0.20
19202 SNP_A-2289125 146389095 0.21
20407 SNP_A-1829559 154045512 0.22
21607 SNP_A-2208065 161575001 0.23
22999 SNP_A-1786242 169452387 0.24

We selected 20 SNPs to be causal which were approximately equally spaced along



257

the chromosome. These selected SNPs were all common (minimum allelic frequency
larger than 0.3) and they had pairwise correlation smaller than 0.2. Using this set of
SNPs Xj , j = 1, . . . , 20 we simulated 100 different data sets of quantitative traits ac-
cording to (1), where effect sizes βj were equally spaced between 0.05 and 0.24. This
choice of effect sizes covers the range of very small effect sizes which are in practice not
detectable, to very large effect sizes which are detected very easily. The most interest-
ing effect sizes are lying in the middle, where causal SNPs can be detected, but not too
easily. Table 1 shows the details on the causal SNPs and the corresponding effect sizes.

When summarizing the results of our analysis we count as True Positive if the algo-
rithm either detects exactly a causal SNP, or a SNP which is strongly correlated with a
causal SNP (i.e. if |R| > 0.5). If the algorithm detects many SNPs that are correlated
with the same causal SNP, only one of them is regarded as a True Positive, while the
others are counted as False Positives.

4.2. Preliminary factors

In this section we will study two different preliminary factors which influence the
performance of EA-MOSGWA: Clustering of correlated SNPs and the number of itera-
tions IS which determines the stopping criterion.

EA-MOSGWA uses the mBIC2 criterion to evaluate models, which depends on the
total number of available SNPs p. If there is a large number of correlated SNPs than
a penalty based on p might be too strict, and as described in [4] it is common practice
to work with an ‘efficient’ number of SNPs. Such an efficient number can be obtained
for example by clustering. Similarly as in [4] we compute clusters with the algorithm
described in [2], and then replace the value of p in (2) by the total number of clusters, pC .
With the resulting milder criterion EA-MOSGWA will typically yield larger models.

The second factor we consider in this subsection is the number of iterations IS with-
out any update after which the algorithm terminates. We will compare IS = 2000 with
IS = 4000.

Table 2 summarizes the main results of this subsection. We estimate the power as the
average number of True Positives divided by 20, the number of causal SNPs. As usual
the false discovery rate is estimates as the average of #FP

#TP+#FP , where this ratio is set
to zero in case of no detections.

The first observation is that the results do not change much whether we use IS =
2000 or IS = 4000 for the stopping criterion. The estimated Power, FDR and number of
false positives are almost identical. The average value of mBIC2 also drops only rather
insignificantly when using IS = 4000, whereas the runtime becomes much larger. We
conclude that a choice of IS = 2000 for the maximum number of iterations without a
model improvement is sufficient to ensure that EA-MOSGWA converges.

The second comparison is concerned with the influence of using mBIC2 with the
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Table 2: Results for the first two preliminary factors. The first column (Nr) specifies whether the total number of SNPs p
or the efficient number of SNPs pC was used to compute mBIC2. The second column (IS ) refers to the maximum number
of iterations without a model improvement that was allowed before stopping. The third and fourth column contain the
average values of the runtime and the criterion mBIC2 taken over 100 simulation runs. The remaining columns contain
the average of Power, FDR, and number of False Positive detections (FP)

Nr IS Time mBIC2 Pow FDR FP
p 2000 00:40:09 34195,8 0,58 0,015 0,19
p 4000 01:14:53 34195,1 0,58 0,015 0,19
pC 2000 00:49:53 34166,1 0,63 0,035 0,47
pC 4000 01:35:06 34165,2 0,63 0,037 0,51

effective number pC instead of p. Table 2 indicates, as expected, that working with pC
yields larger power, but at the same time also larger Type I error rate. In general an FDR
between 3% and 4% seems to be quite acceptable, and therefore we will present in the
next section only results obtained with the effective number pC .

Fig. 1: Frequency of detection of causal SNPs with clustering (mBIC2 with pC ) and without clustering (mBIC2 with p),
where IS = 2000.

Figure 1 shows the power to detect each causal SNP, where again one can see that
working with the efficient number pC uniformly improves the power compared to work-
ing with the total number of SNPs p in the criterion. Figure 1 also illustrates that our
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simulation study was designed such that the power to detect SNPs with the smallest ef-
fect size is close to zero, whereas SNPs with the largest effect size are detected almost
always. The trend is not completely linear, because the power to detect a SNP will also
depend on its minimum allelic frequency.

4.3. Influence of population size and update parameter B

In this subsection we will discuss the influence of the population size u and the two
parameters B and IS which are involved in defining the stopping criterion. We consider
population sizes u ∈ {10, 20, 60}, and for the largest population size we consider various
values of B. As previously in the last section we additionally vary the maximal number
of iterations without an update between IS = 2000 and IS = 4000. The results for these
different parameter settings are presented in Table 3.

Table 3: Dependence of the performance of EA-MOSGWA on the population size u, and the two parameters B and IS
which determine the stopping criterion. As in Table 2 we report the average value of the runtime, mBIC2, Power, FDR,
and the number of false positive detections.

u B IS Time mBIC2 Pow FDR FP
10 10 2000 00:49:53 34166,1 0,625 0,035 0,47
10 10 4000 01:35:06 34165,2 0,625 0,037 0,51
20 10 2000 00:50:13 34164,8 0,626 0,037 0,50
20 10 4000 01:32:49 34166,3 0,622 0,037 0,50
60 5 2000 00:37:18 34164,7 0,628 0,035 0,48
60 5 4000 01:06:19 34164,5 0,629 0,036 0,50
60 10 2000 01:00:54 34164,9 0,626 0,034 0,47
60 10 4000 01:39:14 34164,5 0,628 0,037 0,51
60 30 2000 02:10:38 34164,5 0,630 0,037 0,51
60 30 4000 03:21:25 34164,8 0,629 0,039 0,54
60 60 2000 03:28:34 34164,6 0,628 0,037 0,51
60 60 4000 05:31:11 34164,9 0,629 0,036 0,50

The first observation is that increasing the population size while keeping B = 10
fixed allows for obtaining lower values of mBIC2, which goes along with a rather small
increase in power, whereas the effect on the false discovery rate is not entirely clear. At
the same time the runtime increases only quite moderately.

Changing the value of B which determines the stopping criterion has a huge effect
on the runtime, but a rather negligible influence on the performance of our algorithm,
which suggests that a small value of B can be recommended. Similarly it makes hardly
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any difference whether we work with IS = 2000 or IS = 4000, and therefore like in the
last section we can conclude that IS = 2000 is sufficiently large.

4.4. Comparison of EA-MOSGWA with original Stepwise procedure

In Table 4 we report the results illustrating the performance of the deterministic
Stepwise procedure implemented in MOSGWA, once again with and without clustering.
This procedure is described in full detail in [4].

Table 4: Results for the Stepwise method. The first column (Nr) specifies whether the total number of SNPs p or the
efficient number of SNPs pC was used to compute mBIC2. The second and third column contain the average values
of the runtime and the criterion mBIC2 taken over 100 simulation runs. The remaining columns contain the average of
Power, FDR, number of False Positive detections (FP), respectively.

Nr Time mBIC2 Pow FDR FP
p 00:04:15 34197,1 0,60 0,017 0,22
pC 00:03:46 34168,7 0,63 0,041 0,58

Comparing the results reported in Tables 2 and 4 we conclude that EA-MOSGWA
yields (on average) smaller values of mBIC2 than the stepwise procedure. Interestingly,
in our simulation study the stepwise procedure has at least in case of working with p a
slightly larger power of detecting causal SNPs than EA-MOSGWA, which is however
counterbalanced by a slight increase of FDR.

5. Conclusions

The results of our simulation study confirm the ability of EA-MOSGWA to con-
verge, even when the population size is rather small, and that EA-MOSGWA is fairly
robust with respect to the choice of different tuning parameters. The simulations also
confirm the effectiveness of the modification of mBIC2, with the penalty dependent on
the number of clusters rather than on the total number of SNPs.

Due to a very good performance of the Stepwise method in our future work we plan
to include the solution provided by this method into the initial population for EA. We
also plan to consider the whole information collected by EA for the quantification of
the statistical uncertainty related to the choice of the "best model". This task can be
accomplished by the comparison of values of mBIC2 for different models visited by EA
in the process of the search for the global minimum.
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EA-MOSGWA – narzędzie do identyfikacji przyczynowych SNPów w badaniach
asocjacyjnych całego genomu

Streszczenie

W artykule przedstawiony jest aktualny stan rozwoju programu EA-MOSGWA –
narzędzia służącego do identyfikacji przyczynowych genów w badaniach asocjacyjnych
całego genomu (ang. Genome Wide Association Studies, GWAS). Głównym celem tych
badań jest określenie tych rejonów chromosomu, które są związane z występowaniem
chorób genetycznych (np. cukrzyca, rak) lub wpływają na daną cechę (np. wysokość
lub ciśnienie krwi). Sprowadzają się one do przebadania wielu tysięcy polimorfizmów
pojedynczego nukleotydu (ang. Single Nucleotide Polymorphism, SNP) i powiązaniu
ich (pojedynczych lub grupy SNPów) z przypadkami klinicznymi oraz możliwymi do
zmierzenia cechami. Kluczową kwestią jest zidentyfikowanie jak największej liczby
przyczynowych SNPów przy jednoczesnej minimalizacji fałszywych odkryć.

Program MOSGWA umożliwia detekcje SNPów poprzez wybór zmiennych z uży-
ciem kryterium mBIC2 – zmodyfikowanej wersji Bayesowkiego kryterium informa-
cyjnego Schwarza. MOSGWA stara się zminimalizować mBIC2 przy pomocy metody
selekcji Stepwise, podczas gdy EA-MOSGWA wykorzystuje w tym celu zmody-
fikowaną wersję algorytmu ewolucyjnego.

W artykule prezentujemy wyniki szeroko zakrojonych badań symulacyjnych, w
których możemy porównać wydajność EA-MOSGWA przy użyciu różnych ustawień
parametrów. Również bierzemy pod uwagę klasteryzację SNPów, aby złagodzić ko-
rekcje wielokrotnego testowania w metodzie mBIC2. Przedstawiamy także porównanie
wyników otrzymanych przez EA-MOSGWA z wynikami metody Stepsiwe używanej
w programie MOSGWA, aby pokazać że proponowana metoda ma dobre właściwości
minimalizacji kryterium mBIC2 oraz minimalizacji wskaźnika fałszywych detekcji.


