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Abstract. Improving application efficiency is crucial for both the economic and environmental aspects of plant protection. Mathematical models 
can help in understanding the relationships between spray application parameters and efficiency, and reducing the negative impact on the envi-
ronment. The effect of nozzle type, spray pressure, driving speed and spray angle on spray coverage on an artificial plant was studied. Artificial 
intelligence techniques were used for modeling and the optimization of application process efficiency. The experiments showed a significant 
effect of droplet size on the percent area coverage of the sprayed surfaces. A high value of the vertical transverse approach surface coverage 
results from coarse droplets, high driving speed, and nozzles angled forward. Increasing the vertical transverse leaving surface coverage, as 
well as the coverage of the sum of all sprayed surfaces, requires fine droplets, low driving speed, and nozzles angled backwards. The maximum 
coverage of the upper level surface is obtained with coarse droplets, low driving speed, and a spray angle perpendicular to the direction of 
movement. The choice of appropriate nozzle type and spray pressure is an important aspect of chemical crop protection. Higher upper level 
surface coverage is obtained when single flat fan nozzles are used, while twin nozzles produce better coverage of vertical surfaces. Adequate 
neural models and evolutionary algorithms can be used for pesticide application process efficiency optimization.

Key words: spray nozzle, spraying efficiency, spray coverage, artificial neural network, genetic algorithm.
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on the nozzle type and working pressure) [9‒11] as well as the 
driving speed [12], boom height [13], spray angle [14], spray 
solution characteristics (additives, density, surface tension, and 
viscosity) [5, 15], weather conditions [16], and target canopy 
characteristics [17, 18] have been noted as significant influ-
ences on spray application efficiency.

Spray application efficiency assessment can be performed 
based on percent area coverage (PAC) of the sprayed surfaces. 
The results are obtained from image software analysis of col-
lectors, often made from water-sensitive paper [19‒21]. The 
measurements are performed in the laboratory or under field 
conditions, and collectors are placed on artificial or natural 
plants [12, 22, 23].

Mathematical models can be used to understand the rela-
tionships between environmental and technical parameters and 
spray application efficiency, as well as to reduce the negative 
effects of pesticide application. Both analytical predictive mod-
els and numerical models have been developed by researchers. 
The analytical models, with no physical basis, cannot cover 
a wide range of environmental and operating parameters, 
but are not computationally demanding. On the other hand, 
numerical models with a strong physical basis are accurate for 
a wide range of conditions, but require higher computing power. 
Much of the existing literature has focused on spray drift pre-
diction, and several mechanistic models have been proposed: 
the OML-SprayDrift model [24], a 3D fully mechanistic model 
[25], a 2-D diffusion–advection model [26], a Gaussian plume 
model [27], and BREAM (Bystander and Resident Exposure 
Assessment Model) [28]. When the investigated relationships 
are multi-dimensional and highly nonlinear, the use of arti-
ficial intelligence methods, such as artificial neural networks 
(ANNs), can produce sufficiently accurate models. It has been 

1. Introduction

The constantly growing demand for food is a critical factor in 
modern agricultural engineering. Therefore, chemical plant pro-
tection is important, since it is linked to increases in crop yield 
and labor productivity. However, it can also have a serious, neg-
ative impact on the environment. Therefore, improving appli-
cation efficiency is among the most important current issues 
with regard to plant protection. It is also one of the goals of 
the 128/2009/EC European Directive for a Sustainable Use of 
Pesticides [1]. Pesticide-related pollution is a serious environ-
mental problem caused by over-application, drift to unintended 
targets, and the contamination of surface and ground water [2]. 
The potential risks of pesticide use to the environment, as well 
as to animal and human health, have been emphasized by many 
researchers [3, 4]. In many countries, governments have made 
efforts to reduce the negative effects of pesticide application, 
e.g. by incorporating drift-reducing spray nozzles [5] or spray 
buffers and breaks [6].

Examining the literature in the spray application techniques 
field showed that several studies have been conducted in the 
last few years to evaluate the effect of various factors on the 
parameters that describe application process efficiency, such 
as spray drift, spray deposition, or coverage. The spray char-
acteristics of agricultural spray nozzles have been reported to 
affect the efficiency of the application process [7, 8]. Also, 
parameters such as droplet size distribution (which depends 
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well documented that ANNs have several applications in many 
scientific fields for solving regression and classification prob-
lems. Furthermore, an ANN model can be used as an objective 
function in the optimization process [29].

According to many growers, the present-day spray appli-
cation techniques are insufficient and need to be improved. 
According to [30, 31] there is still need for the improvement 
of spray application techniques, and for the development of 
methods for the determination of the optimal settings and noz-
zle choice for spray boom equipment. A great deal of research 
has already been carried out to investigate the effect of droplet 
size on spray coverage and application process efficiency, but 
relatively few studies have explored the effect of spray angle 
and driving speed.

The objectives of the present study are:
ii(i)  The development of ANN models of the relationships 

between percent area coverage of sprayed surfaces and 
nozzle type, spray pressure, driving speed, as well as 
spray angle.

i(ii)  The determination of the input variables’ importance in 
each of the neural models.

(iii)  The optimization of application process efficiency by 
the use of an evolutionary algorithm.

Many researchers emphasize that for a successful spraying 
process, the choosing of the appropriate nozzle is essential. 
However, market offers wide range of nozzle types. Therefore, 
we conducted experiments to increase the scope of information 
in this research field.

ANNs were used by [32] for yield modeling, by [33] for 
soil moisture modeling, and by [34] for rotor fault detection.

Finally, ANN techniques give more advantages than just 
a high precision mathematical model. There are several meth-
ods for the determination of the contribution of independent 
input variables in an ANN model. It gives information about 
the predictor variables’ importance [35‒37].

2. Materials and methods

2.1. Experimental set-up. All spray applications were carried 
out in controlled laboratory conditions to quantify the effects 
of nozzle type, spray pressure, driving speed, and spray angle 
on percent area coverage of four sprayed surfaces. During the 
research the temperature was 21°C, and the humidity was 55%. 
A special spray track machine presented in Fig. 1 was designed 
and constructed to control the boom height, spray angle, driv-
ing speed, and working pressure during multiple treatments. 
A spray boom was moved along a track guide with constant 
speed. Three artificial plants (= 3 replicates) were placed under 
a spray boom. Newtonian liquid (pure water) was used as the 
spray liquid.

Water sensitive papers were attached to four collector plant 
zones: the upper level surface, the vertical transverse leaving 
surface, the vertical transverse approach surface, and the bot-
tom level surface (Fig. 2).

The coverage of the bottom level surface was not taken into 
account in further analysis because this surface was not covered 

by liquid. Samplers as water sensitive papers were used in the 
research of [38]. Four nozzle types at three different applica-
tion pressures (200, 300, and 400 kPa) were selected for the 
test: single standard flat-fan (AXI 11002), single air-induction 
flat-fan (AVI 11002), twin standard flat-fan (DG TJ60 11002), 
and twin air-induction flat-fan (AVI TWIN 11002). The boom 
height was set at 0.5 m, and the nozzles were tested perpendic-
ularly to the direction of movement, angled forward (+20° and 
+10°), and backward (−20° and −10°), with driving speeds of 
1.1, 2.2, 3.3, and 4.4 m ¢ s–1.

The spray coverage was assessed with a Nikon MULTI-
ZOOM AZ 100 microscope and NIS Elements Br software 
for image analysis. Three 10£10 mm squares were randomly 
selected on water-sensitive paper from each collector.

The color of the area covered by the liquid changed from 
yellow to blue, and coverage was determined as the percentage 
of the area colored in blue. Each combination of nozzle and 
working pressure was classified according to droplet size using 

Fig. 1. Experimental set-up: 1 – artificial plant, 2 – spray boom, 
3 – metal track guide

Fig. 2. Artificial plant with collector plant zones: 1 – vertical transverse 
approach surface, 2 – vertical transverse leaving surface, 3 – upper 

level surface, 4 – bottom level surface
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ANSI/ASABE S572.1 reference nozzles [39]. The volumetric 
droplet size was determined by a laser diffraction instrument 
(Spraytec, Malvern Instruments). As a result of these experi-
ments, a data set of 720 vectors was obtained. The vector com-
ponents were as follows: three independent variables – droplet 
size (affected by nozzle type and spray pressure), driving speed, 
as well as the spray angle, and three dependent variables – the 
coverage of the upper level surface (PACul), the coverage of the 
vertical transverse approach surface (PACvta), and the coverage 
of the vertical transverse leaving surface (PACvtl). The statistics 
of the experimental data are presented in Table 1.

Table 1 
The statistics of experimental data

The parameter Minimum Maximum Mean Standard 
deviation

Droplet size [µm] 182 553 344 125.2

Driving speed £
m ¢ s–1

¤ 1.1 4.4 2.8 1.2

Spray angle [°] –20 20 0 14.1

PACvta [%] 0 28.5 9.6 5.9

PACvtl [%] 0 30.9 5.5 4.6

PACul [%] 26.1 87.3 54.7 16.4

PACvta [%] – the coverage of the vertical transverse approach surface;
PACvtl [%] – the coverage of the vertical transverse leaving surface;
PACul [%] – the coverage of the upper level surface.

2.2. Artificial neural network development. ANNs are con-
sidered an artificial intelligence technique. They consist of sim-
ple processing elements, called artificial neurons, which are 
arranged in layers. The most popular ANN architecture is Multi-
layer Perceptron (MLP), also known as a feedforward network, 
trained using one of the supervised learning algorithms. The 
theory of ANNs has been described in several papers [40, 41].

An MLP comprises two main layers: an input layer and 
an output layer, as well as additional (hidden) layers, placed 
between the input and output layers. The number of nodes 
in the input and output layers is determined by the number 
of input and output variables of the model, respectively. The 
number of neurons in the hidden layers significantly inf luences 
the model’s quality, and is set by a trial and error approach. 
The experimental data set containing 720 data vectors was 
randomly separated into training, test, and validation sets in 
a 70:15:15 ratio. The data were normalized into a range of 0 to 
1. Simulations were performed using Statistica 10 software. 
An MLP with a single hidden layer was used for the ANN 
architecture.

The number of neurons in the hidden layer was set to 
a range of 10 to 30. The transfer functions of the neurons were 
as follows: sigmoidal, hyperbolic tangent, and exponential. The 
initial weights and biases of the neurons were chosen randomly.

Three independent ANN models were developed, each with 
three nodes in the input layer (representing droplet size, driving 
speed, and spray angle) and with a single neuron in the out-

put layer, producing the predicted value of PACvta, PACvtl, or 
PACul. The ANN structure with one neuron in the output layer 
is presented in Fig. 3.

For each model, the 300 independent ANNs were trained. 
Models were generated with the use of Statistica neural network 
creator which automatically developed neural networks with 
various number of neurons in hidden layer, initial connection 
weight vectors, and transfer functions of the neurons. Then the 
best architecture was chosen for further analysis. Usually in 
MLP, the transfer function of a neuron in output layer is linear, 
however, if structure with nonlinear neuron was of better qual-
ity, it was considered as the best. Model quality assessment was 
based on the values of two indicators, the mean square error 
(MSE) and the coefficient of determination (R2).

2.3. Methods for quantifying variable importance. In gen-
eral, when ANNs are used for predictive modeling, they are 
treated as a “black box.” However, ANN models can be used to 
obtain additional information about investigated relationships, 
e.g. to determine the contribution of each independent input 
variable. Two methods to quantify the variables’ importance 
in the ANN model are used in this work: the sensitivity anal-
ysis implemented in Statistica 10 and the connection weights 
method [42]. For various reasons, it is difficult to select the 
optimal ANN model. Thus, when a single ANN architecture 
is used for extracting the contribution of variables, the results 
can be misleading [43]. To avoid this problem, in this work the 
results of the predictor variables’ contributions were calculated 
for groups of ANN models. From all 300 neural models, the 
group of forty ANNs with the highest R2 value and the lowest 
MSE value was selected. As the final result for each method, 
the arithmetical mean of the results produced by the forty ANNs 
was calculated.

2.4. Optimization procedure – evolutionary algorithm. The 
optimization of spraying conditions was conducted by using 
a Microsoft Excel 2010 environment.

Since the interaction between spraying conditions and spray 
quality is nonlinear and complex, the evolutionary algorithm 

Fig. 3. Structure of the MLP network
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implemented in Excel Solver can be used for the optimization 
procedure. In previous studies, Excel Solver has been success-
fully applied to solving optimization problems [44‒46].

The evolutionary algorithm implemented in Excel Solver 
is a hybrid of genetic and evolutionary algorithms and classi-
cal optimization methods, such as gradient-free direct search 
methods and classical gradient-based quasi-Newton methods 
(Premium Solver Platform, User Guide, 2010). It is a stochastic 
method, which requires the determination of various algorithm 
parameters, such as convergence, mutation rate, population 
size, random seed, and maximum time without improvement. 
In this research, the algorithm parameters were set as follows: 
convergence – 0.0001, mutation rate – 0.075, population size 
– 100, random seed – 0, maximum time without improvement 
– 30.

3. Results

3.1. Neural models development. Before developing ANN 
models, the Pearson’s correlation coefficients between the 
explanatory variables should be calculated. The development 
of an ANN model with linearly dependent predictor variables 
is a methodological mistake. Furthermore, methods involving 
an investigation of the relative contribution of an input variable 
can be ineffective when inputs are interdependent [47, 48]. The 
values of the Pearson’s correlation coefficients are presented in 
Table 2. The data presented in Table 2 show that the correlation 
coefficients between the input model parameters are very low, 
therefore they can be used for neural model development. For 
each dependent variable, the group of 300 ANN structures was 
trained with the data set. In each ANN structure the different 
number of neurons in the hidden layer, the different initial con-
nection weight vectors, and the different transfer functions of 
the neurons in the hidden and output layers were defined.

Table 2 
Correlation coefficients between explanatory variables (p < 0.05)

Droplet size Driving speed Spray angle

Droplet size 1.00 0.01 0.01

Driving speed 0.01 1.00 0.01

Spray angle 0.01 0.01 1.00

The parameters of the best ANN architectures are detailed in 
Table 3. The MSE values were calculated for normalized data.

As shown in Table 3, high values of R2 and low values of 
MSE were obtained for the training, test, and validation data 
sets. The values calculated for the validation data set are crucial 
in regard to the practical use of the model, and to show its gen-
eralization ability. High values, around 0.9, suggest that during 
the training process no overfitting effects occurred.

Figures 4‒6 depict the performance of the predicted val-
ues of the PAC of the upper level surface, vertical transverse 
approach surface, and vertical transverse leaving surface vs. the 
measured values in the validation set.

Table 3 
The parameters of ANNs used as neural models

Dependent 
variable

ANN 
structure

Coefficient of determination R2 Mean square error (MSE)

training data set test data set validation data set training data set test data set validation data set

PACvta 3-14-1 0.88 0.92 0.91 0.002 0.002 0.003

PACvtl 3-12-1 0.91 0.85 0.94 0.001 0.001 0.001

PACul 3-13-1 0.85 0.87 0.92 0.004 0.004 0.004

Fig. 4. Predicted values versus measured values of the coverage of the 
vertical transverse approach surface (validation data set)

Fig. 5. Predicted values versus measured values of the coverage of the 
vertical transverse leaving surface (validation data set)
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3.2. Input variables contribution determination. An analy-
sis of the independent input variables’ contributions was car-
ried out, based on the group of 40 ANNs chosen from the 
300 models that were developed during the training process. 
The selection criterion was an R2 value calculated for the val-
idation data set. The number of neurons in the hidden layer 
was set in the range of 10 to 22; the coefficient of determina-
tion values were between 0.89 and 0.91 in the case of the 
PACvta regression model, between 0.93 and 0.94 in the case of 
the PACvtl regression model, and between 0.91 and 0.92 in the 
case of the PACul regression model. The results of the relative 
importance of the input parameters for each model are pre-
sented in Figs. 7‒9.

As illustrated in Figs. 7‒9, the results calculated by both 
methods were comparable. The droplet size, which was affected 
by the type and pressure of nozzles, had the highest influence 
on all output parameters (the coverage of the upper level sur-
face, the coverage of the vertical transverse approach surface, 
and the coverage of the vertical transverse leaving surface). 
Significantly lower impacts were observed in the case of driv-
ing speed and spray angle.

3.3. Optimization. Based on neural models, the optimization 
process was performed with an evolutionary algorithm. The aim 
of the optimization was to calculate the values of independent 
variables that produced the maximum percent area coverage. 
During the optimization process, the range of independent vari-
ables was the same as that detailed in Table 1. The optimization 
process was performed in two different ways. Firstly, the three 
neural models presented in Table 3 were used. Using each of 
these models, only one output parameter could be optimized 
(PACul, PACvtl, or PACvta). Then, the new neural model was 
developed, which described the relationship between the three 
input parameters: droplet size, driving speed, and spray angle, 
and the three output parameters: PACul, PACvtl, and PACvta. The 
structure of the neural model was 3‒14‒3; the transfer functions 
of the neurons were sigmoidal. The coefficient of determina-
tion, R2, values obtained for the model were as follows: 0.923 
for the training, 0.923 for the test, and 0.917 for the validation 

Fig. 6. Predicted values versus measured values of the coverage of the 
upper level surface (validation data set)
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Fig. 7. Comparative of average variable relative importance in the 
vertical transverse approach surfaces model by methods
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Fig. 8. Comparative of average variable relative importance in the 
vertical transverse leaving surface model by methods
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Fig. 9. Comparative of average variable relative importance in the 
upper level surface model by methods
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data set. Using this model, the sum of percent area coverage 
of all the sprayed surfaces was optimized. The results of the 
optimization process are detailed in Table 4. Table 4 presents 
optimum values of droplet size, driving speed, and spray angle 
calculated by a genetic algorithm based on neural models devel-
oped for each sprayed surface or for the sum of all sprayed 
surfaces.

Also, Table 4 shows the values of the calculated percent 
area coverage based on neural models for optimum process 
parameters. When the PAC of the vertical transverse approach 
surface was optimized, it was found that the droplet size should 
be coarse (about 400 µm), the driving speed should be high 
(about 4 m ¢ s–1), and the spray angle should be 20°. A droplet 
size of around 400 µm could be produced by the twin air-induc-
tion flat-fan nozzle, AVI TWIN 11002, working at a pressure 
of 400 kPa. These input parameters gave low values of PACvtl 
and PACul. When the PAC of the vertical transverse leaving 
surface was optimized, it was found that the droplet size should 
be fine (about 200 µm), the driving speed should be low (about 
1 m ¢ s–1), and the spray angle should be –20°. A droplet size of 
around 200 µm could be produced by the twin standard flat-
fan nozzle, DG TJ60 11002, with a pressure of 400 kPa. When 
applying these input parameter values, PACvta gave a low value 
and PACul was high. A similar input value set was calculated 
for optimization of the sum of PAC for all sprayed surfaces. 
The result was that a low PACvta, a relatively high PACvtl, and 
a very high PACul were produced. The optimum PAC of the 
upper level surface required a droplet size of about 360 µm 
(which can be produced by the single air-induction flat-fan 
nozzle, AVI 11002, with a pressure of 400 kPa), a low driving 
speed (about 1 m ¢ s–1), and a spray angle perpendicular to the 
direction of movement. An optimum PACul value resulted in 
very low PACvta and PACvtl.

4. Discussion

4.1. Neural models development. In the case of mechanis-
tic models for drift prediction presented by other researchers, 
discrepancies between the model and experimental values 
are higher than those presented in Figs. 4‒6 for our models, 
as regards to percent area coverage prediction. This can be 
explained by the differences in the modeling method or the 
model’s characteristics (input and output parameters).

Less agreement between the predicted and experimental 
values was reported by [25, 26] for a 3D computational fluid 

dynamics model and a 2D diffusion-advection model, as well as 
by [27] for the RTDrift model. However, these models include 
more input parameters and take into account some environ-
mental parameters.

4.2. Input variables contribution determination. Our results 
are in agreement with [49], who reported the significant impact 
of nozzle type on the percent area coverage of soybean crops. 
Similarly, [20] found a significant (P < 0.001) relationship 
between coverage and nozzle type, as well as between cover-
age and pressure.

Generally, the droplet size has been noted as a very import-
ant parameter with regard to influencing spraying efficiency. 
The significant effect of initial droplet size on spray drift was 
underlined by [10]. [50] revealed that the spray drift and the 
pesticide residue of imidacloprid on wheat depended on the 
nozzle type. Good correlations between the droplet size and 
drift potential values were reported by [51]. [25] developed 
the 3D CFD model of drift depending on boom height, wind 
velocity, wind deviation, and injection velocity of the drop-
lets. The accuracy of the model was quite good for near drift 
(<5 m) but significantly decreased at greater distances. In the 
year 2009 [26] presented a 2D model which was a reduction of 
the 3-D CFD model and produced drift prediction depending 
on nozzle type, wind velocity and boom height with higher 
accuracy (R2 = 0.8). [27] presented the model of drift based on 
the Gaussian tilted plume model. Inputs of this model was the 
nozzle characteristics, nozzle position and operation parameters 
such as spray pressure, boom height, and wind speed.

4.3. Optimization. The results detailed in Table 4 are in agree-
ment with other scientific reports which highlighted that spray 
deposition is maximized when the target is perpendicular to 
the droplet trajectory [52, 53]. The very high value of PACul 
obtained for comparatively large droplets confirms the results 
reported by [54].

It can be concluded that the choice of appropriate nozzle 
type and spray pressure is an important aspect of protecting 
field and garden crops, as was previously pointed out by [55].

5. Conclusions

Artificial neural networks are a useful tool for the development 
of accurate mathematical models of the relationships between 
the percent area coverage of sprayed surfaces and droplet size 

Table 4 
Optimum parameters calculated for different sprayed surfaces

Optimized parameter Droplet size Driving speed Spray angle PACvta PACvtl PACul

PACvta 398 3.8 20 28 1 27

PACvtl 219 1.1 –20 2 30 80

PACul 362 1.1 0 3 5 87

PACvta + PACvtl + PACul 252 1.1 –20 5 18 81
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(affected by nozzle type and spray pressure), driving speed, as 
well as spray angle. Based on neural models, the relative impor-
tance of explanatory variables can be calculated. The droplet 
size has the highest influence on all output parameters: the PAC 
of the upper level surface, the vertical transverse approach sur-
face, and the vertical transverse leaving surface. A significantly 
lower impact was calculated for the driving speed and spray 
angle. An increase in the vertical transverse approach surface 
coverage can be obtained by high driving speed when the noz-
zles are angled forward. Conversely, an increase in the verti-
cal transverse leaving surface coverage requires a low driving 
speed and nozzles angled backward. The authors found that 
a higher PAC of the upper level surface is obtained for sin-
gle flat-fan nozzles, while twin nozzles cover vertical surfaces 
better, which is in agreement with previous studies. Improving 
pesticide application efficiency is crucial for both the economic 
and environmental aspects of crop protection. Therefore, the 
optimization of spray application parameters is of very high 
importance. Adequate neural models can be used for the opti-
mization process, based for example on an evolutionary algo-
rithm. This method can calculate a set of process parameters 
that produces maximum coverage, not only for one sprayed sur-
face, but also for the sum of all sprayed surfaces. This approach 
is of limited use where the spray process parameters are very 
different from those in the data set used for the ANN training. 
However, the methodology presented in this work can be used 
for the development of mathematical models describing spray 
application processes based on data from experiments under 
field conditions. These models can include the effect of vari-
ability in environmental parameters, and therefore can provide 
optimum spraying process parameters valuable in real-world 
applications. This study can provide guidance on the proper 
and optimal application of pesticides.
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