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MECHANICAL PROPERTIES AND CORROSION BEHAVIORS OF AGED Ti-4Mo-4Cr-X (X = Sn, V, Zr) ALLOYS 
FOR METALLIC BIOMATERIALS

The purpose of this study was to investigate the mechanical properties of beta type aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) 
quaternary alloy for use as a cardiovascular stent. Titanium (Ti) alloys were fabricated using a vacuum arc remelting furnace 
process. To homogenize the specimens of each composition and remove the micro segregation, all cast specimens were subjected 
to homogenization at 850℃ for 4 h, which was 100℃ higher than the β-transus temperature of 750℃. The tensile strength and 
elongation of the aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) alloys were increased as compared to the homogenized alloys. In addition, 
many α/β interface boundaries formed after aging treatment at 450°C, which acted as inhibitors of strain and caused an increase 
in tensile strength. The elongation of Ti-4Mo-4Cr-X alloys consisting of α + β phases after aging treatment was improved by 
greater than 30%. Results of a potentiodynamic polarization test showed that the lowest current density of Ti-4Mo-4Cr-4Sn with 
1.05 × 10–8 A/cm2 was obtained. The present Ti-4Mo-4Cr-X alloys showed better corrosion characteristics as compared to the 316L 
stainless steel and L605 (Co-Cr alloy) cardiovascular stent alloys. 
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1. Introduction

Research on the development of titanium (Ti)-based stent 
materials for blood vessels has been rarely conducted. Ti-based 
alloys for bare-metal stents are extremely attractive because of 
their high strength, low elastic modulus, excellent corrosion re-
sistance, and superior biocompatibility [1]. An ideal bare metal 
stent has a low profile, good expandability ratio, sufficient radial 
hoop strength, negligible recoil, and sufficient flexibility [2].

Ti alloys are designed by alloying quantities of α- and 
β-stabilizing elements. Thus, the fractions of α and β phases are 
determined by the alloying elements [3]. Beta-phase stabilizers 
including Mo, Cr, Nb, Mn, Co, and Fe have been studied for 
biomedical applications. The molybdenum equiva    lence (Moeq) 
in the range of 12-15 wt.% has been reported as an optimal 
combination of strength and toughness [4]. 

Ti alloy performance is strongly dependent on the controlled 
thermomechanical treatment [5]. Further plastic deformation, 
including texture evolution, and aging treatment result in grain 
refinement and second-phase precipitation, which are required 
for the strength-ductility trade-off [6]. This study investigated 
the mechanical properties and corrosion behaviors in Ringer’s 

solution of a beta-type aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) 
quaternary alloy for use as a cardiovascular stent.

2. Experimental

Ingots of Ti-4Mo-4Cr-X (X = 2, 3, 4 wt.% V, 2, 3, 4 wt.% Sn, 
and 2, 3, 4 wt.% Zr) quaternary alloys were fabricated through 
a vacuum arc remelting (VAR, ACE VACUUM, AVA-1500, 
Korea). Commercially pure Ti chips (ASTM CP Grade II), Mo 
bars (99.8 wt.%), Cr chips (99.9 wt.%), V sheets (99.9 wt.%), 
Sn balls (99.9 wt.%), and Zr sheets (99.9 wt.%) were arc melted 
in a water-cooled copper hearth with a tungsten electrode. The 
ingots were remelted four times under an argon atmosphere and 
hot forged with a thickness reduction of 35% to ensure chemical 
homogeneity. All cast ingots were then homogenized at 850℃ 
for 4 h, which was 100℃ higher than the β-transus temperature 
of 750℃. In addition, aging treatment was conducted at 450℃ 
for 16 h. 

The phase constitutions of the alloys were examined by 
X-ray diffraction (XRD, PANalytical, X’ Pert pro, Netherland) 
analysis using Cu-Kα radiation over 2θ range from 30-90° at 
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an accelerating voltage of 40 kV, a current of 250 mA, and 
a scanning speed of 2°/min. Tensile specimens were manufac-
tured in accordance with the ASTM E8 standard. A tensile test 
was conducted using a universal material tester (Shimadzu: 
AG-100KNIC) at a load of 20,000 N under a tensile load of 
10 mm/min. The fractography after the tensile test was exam-
ined using a scanning electron microscope (S-4700, HITACHI, 
Japan). Electrochemical experiments were performed on a flat 
cell corrosion tester (PARSTAT 2273, USA) at a temperature of 
37±1℃. A three-electrode cell was used for potentiodynamic po-
larization tests, where the reference electrode was a silver–silver 
chloride electrode, the counter electrode was made of a platinum 
plate, and the specimen was the working electrode. All experi-
ments were conducted at a constant scan rate of 0.25 mV/s, initi-
ated at −250 mV below the open-circuit potential. The working 
electrolyte was Ringer’s physical solution.

3. Results and discussion

Fig. 1 shows the XRD patterns of the aged (a) Ti-4Mo-4Cr-
xV (x = 2, 3, 4) alloys, (b) Ti-4Mo-4Cr-xSn (x = 2, 3, 4) alloys, 
and (c) Ti-4Mo-4Cr-xZr (x = 2, 3, 4) alloys. The Ti-4Mo-4Cr-(2, 
3, 4) V alloys showed that β-phase peaks formed in the (110), 
(200) and (211) planes. It was also observed that α-phase peaks 
formed in the (100), (002), (102) and (110) planes in the alloys 
containing 2 wt.% and 3 wt.% V. The Ti-4Mo-4Cr-4V alloy 
nearly showed stable β-phase peaks because of a higher value 
of Moeq (12.2). The beta phase stability in Ti-4Mo-4Cr-xV 
(x = 2, 3, 4) alloys also increased with increasing V content. 
By contrast, the α-phase peaks of aged Ti-4Mo-4Cr-xZr (x = 2, 
3, 4) alloys were found to be higher than those of homogenized 
specimens, suggesting that precipitation of α phases increased 
with aging treatment. The precipitation of α phases could be 
attributed to the existence of α′′ phases at the grain boundaries, 
which acted as precursor nucleation sites for the stable α phases.

Fig. 2 shows the stress-strain curves after tensile testing 
of Ti-4Mo-4Cr-X (X = V, Sn, Zr), which were homogenized at 
850℃ for 4 h and subsequently aging treated at 450℃ for 16 h. 
As shown in Fig. 2, the tensile strength of the aged Ti-4Mo-4Cr-X 
(X = V, Sn) alloys increased with increasing V or Sn content. 
The maximum tensile strength for the Ti-4Mo-4Cr-4Sn alloy 
was approximately 1554 MPa with an elongation of 38%. The 
tensile strength of Ti-4Mo-4Cr-xZr (x = 2, 3, 4) alloys decreased 
with an increasing amount of Zr. The high tensile strength and 
elongation for all aged specimens can attribute to many α phases 
formed after the aging treatment, which act as inhibitors of 
dislocation motion in interface boundaries between the β and α 
phases. The co-existence of α phases could also induce a slightly 
improved elongation in the aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) 
alloys. The highest value of elongation multiplied tensile strength 
(MPa × %) was 5.9 × 104 for the Ti-4Mo-4Cr-4Sn alloy, which 
was increased up to 22% after aging processing. As known Ti-Sn 
equilibrium phase diagram, the Sn containing alloy system has 
some intermetallic phases such as Ti3Sn or Ti2Sn, which cause 

high tensile strength. Consequently, the aged Ti-4Mo-4Cr-4Sn 
alloy could be considered as an alloy candidate for the strength-
ductility trade-off.

Fig. 3 shows SEM fractography of the aged (a) Ti-4Mo-
4Cr-3V, (b) Ti-4Mo-4Cr-3Sn and (c) Ti-4Mo-4Cr-3Zr alloys 
after the tensile test. All aged Ti-4Mo-4Cr-3X (X = V, Sn, 
Zr) alloys after the tensile test showed a ductile fracture with 

Fig. 1. XRD patterns of (a) Ti-4Mo-4Cr-xV (x = 2, 3, 4) alloys, 
(b) Ti-4Mo-4Cr-xSn (x = 2, 3, 4) alloys, and (c) Ti-4Mo-4Cr-xZr (x = 2, 
3, 4) alloys, which were homogenized at 850℃ for 4 h and subsequent 
aging treated at 450℃ for 16 h
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the Ti-4Mo-4Cr-xZr (x = 2, 3, 4) alloys. However, in comparison 
with those of the available cardiovascular stent materials such 
as 316L stainless steel and L605 alloy, the corrosion resistance 
of the beta-type aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) quaternary 
alloys appeared to be superior.

4. Conclusion

In this study, the mechanical properties and corrosion be-
haviors in Ringer’s solution of a beta-type aged Ti-4Mo-4Cr-X 
(X = V, Sn, Zr) quaternary alloy were investigated. The following 
results were derived from this study.
1. 4th alloying elements, V as a β-phase stabilizing element 

and Sn or Zr as a α-phase stabilizing element, significantly 
affected the degree to which the volume of each phase 
could exist in quaternary Ti-4Mo-4Cr-X (X = V, Sn, Zr) 
alloys. The formation of the α phase after aging treatment 
contributed to an increase in the tensile strength and elonga-
tion of the alloy because the interface boundaries between 
the β and α phases can act as inhibitors of dislocation 
motion. 

Fig. 2. Stress-strain curves after tensile tests of (a) Ti-4Mo-4Cr-xV (x = 2, 3, 4) alloys, (b) Ti-4Mo-4Cr-xSn (x = 2, 3, 4) alloys, and (
c) Ti-4Mo-4Cr-xZr (x = 2, 3, 4) alloys, which were homogenized at 850℃ for 4 h and subsequent aging treated at 450℃ for 16 h

an elongation greater than 30% (31-39%). In Fig. 3, many 
fine dimple structures of less than 10 mm were observed in 
the alloy. 

Fig. 4 shows the potentiodynamic polarization curves of 
the Ti-4Mo-4Cr-X (X = V, Sn, Zr) alloys as a function of the 
addition of an alloying element. Corrosion behaviors relating to 
biocompatibility are the main factors in a cardiovascular stent. In 
general, Ecorr and icorr represent the corrosion potential and cor-
rosion current density, respectively. The lowest current density 
(1.05 × 10–8 A/cm2) was observed in the Ti-4Mo-4Cr-4Sn alloy, 
whereas the specimen with the Ti-4Mo-4Cr-2Zr alloy showed 
the highest corrosion current density of 2.33 × 10–7 A/cm2. As 
shown in the polarization graph, a passive layer on all the speci-
mens was formed at a slow rate. The values of Ecorr and icorr for 
Ti-4Mo-4Cr-X (X= V or Sn) were found to be in the range of 
–0.032 and –0.317 V and the order of 10–8 A/cm2, respectively. 
Basically, the addition of Mo and Cr elements to Ti alloys results 
in an improved corrosion resistance because of the formation 
of a passive films of TiO2 and MoO3 [7] and the formation of 
a chromium oxide-rich surface film in a fluoride-containing 
saline solution [8]. The Ti-4Mo-4Cr-X (X= V or Sn) alloys also 
showed an improved corrosion resistance with the exception of 
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Fig. 3. SEM fractography of the aging treated Ti-4Mo-4Cr-X alloys after tensile tests: (a) Ti-4Mo-4Cr-3V, (b) Ti-4Mo-4Cr-3Sn and (c) Ti-4Mo-
4Cr-3Zr

2. The tensile strength and elongation of the aged Ti-4Mo-
4Cr-X (X = V, Sn, Zr) alloys increased as compared to the 
homogenized Ti-4Mo-4Cr-X (X = V, Sn, Zr) alloys. The 
aged Ti-4Mo-4Cr-4Sn alloy can be considered a Ti-alloy 
candidate for the strength-ductility trade-off.

3. Result of a polarization potential test revealed that the 
lowest current density of Ti-4Mo-4Cr-4Sn with 1.05 × 10-8 

A/cm2 was obtained. The studied Ti-4Mo-4Cr-X (X = V, 
Sn, Zr) alloys showed better corrosion characteristics as 

compared to the available cardiovascular stent materials 
such as 316L stainless steel and L605 (Co–Cr) alloy.
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TABLE 1
Ecorr and icorr values obtained at potentiodynamic polarization curves of Fig. 4 

Ti-4Mo-4Cr-xV (wt.%) Ti-4Mo-4Cr-xSn (wt.%) Ti-4Mo-4Cr-xZr (wt.%)
2 3 4 2 3 4 2 3 4

Ecorr(Vssc) –0.053 –0.039 –0.032 –0.196 –0.264 –0.317 –0.002 –0.170 –0.044
Icorr(A/cm2) 2.79 × 10–8 5.33 × 10–8 8.75 × 10–8 4.64 × 10–8 1.62 × 10–8 1.05 × 10–8 2.33 × 10–7 2.74 × 10-8 1.04 × 10–7

Control 316L Stainless Steel L605 Alloy (Co-20Cr-15W-10Ni) (wt.%)
Ecorr(Vssc) –0.564 –0.751

Icorr(A/cm2) 1.30 × 10–7 2.29 × 10–5

(b)(a)

(c)

Fig. 4. Potentiodynamic polarization curves of (a) Ti-4Mo-4Cr-xV (x = 2, 3, 4) alloys, (b) Ti-4Mo-4Cr-xSn (x = 2, 3, 4) alloys, and (c) Ti-4Mo-
4Cr-xZr (x = 2, 3, 4) alloys
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