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Abstract

Various quantile regression approaches are implemented to analyze the
characteristics of Italian data on earnings in the tails. A changing coefficients
pattern across quantiles shows increasing returns to education along the wage
distribution. A quantile decomposition approach shows that higher education
grants higher return at all quantiles, thus implying additional, non-linear returns
to higher education throughout the entire pattern of the earning distribution.
Wage gender gap displays a decreasing pattern across quantiles, and it does
not disappear at the higher quantiles. The southern workers penalty decreases
across quantiles as well for highly educated workers.
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1 Introduction
There is a wide literature relating earnings to education and their positive correlation
is widely studied and well established (Card, 2001; Blundell et al., 2001; Meghir and
Palme, 2000). Higher levels of education usually translate into better employment
opportunities and higher earnings. This is an important incentive for individuals to
pursue education and training. In many countries, Italy included, gender wage gaps
in earnings persist regardless of age, level of education or field of study (OECD, 2019).
However, there is no educational gap in Italy: the number of women enrolled in college
is greater than the number of men, and there is no sign of segregation in disciplines
(Bettio and Villa, 1999). The 2015 OECD country note, for fifteen years old students,
states: In Italy, equity in education outcomes is above the OECD average, as 10%
of the variation in student performance in mathematics is attributed to differences
in students’ socioeconomic status (OECD, 2015). For the higher degrees, ISTAT
(Italian Statistical Institute) in year 2016 reports 131673 men versus 180118 women
with higher degrees, pooling together 3 years and 5 years higher degrees, i.e. Laurea
Triennale and Laurea Magistrale. Nevertheless, since women are underrepresented
in top-skilled jobs, this implies that women are generally overqualified for the work
positions they occupy. Aside from wage differences, the gender gap causes longer
job search, longer time to ascend the wage ladder (Sulis, 2007), higher thresholds for
promotion – all of which constitute women glass ceiling.
Estimates of returns and of gender wage gap in Italy vary significantly in the literature
and yield quite heterogeneous results according to the data set and the methodology.
On average, estimates of returns sizably differ according to the selected estimator –
ordinary least squares versus instrumental variables, while for the gender wage gap
some studies find an opposite sign in Italy – a premium for working women instead
of a penalty.
This study investigates the above issues for the Italian economy in year 2014, looking
at the behavior of a wage equation not only on average but also across quantiles.
We find evidence of increasing returns to education – returns that further increase
with the completed degree; of a never vanishing gender gap in earnings; of southern
regions penalty that becomes a premium for the highly educated workers at the very
top quantile. The different estimators implemented help to pinpoint these issues. A
wage equation is computed by ordinary least squares (OLS) and at various quantiles
by quantile regressions (Koenker, 2005). Estimating a single rate of return is not
appropriate if returns differ by education and/or wage level (Buchinsky, 1998; Dickson
and Harmon, 2011). An evaluation on average, like the one provided by OLS, is
not particularly informative in this case. Besides the quantile regressions estimator,
additional quantile regression-based estimators are here implemented to analyze the
data. These approaches, far from being a mere technicality, allow to uncover relevant
aspects of the model.
The initial step is to implement the simple quantile regression estimator at different
quantiles, analyzing the pattern of returns to education, of gender wage gap and
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of all the other coefficients of the equation at the various wage levels. Returns to
education increase with the quantile. This can be due to the amount of qualification
required: at low wages education might improve earnings only to a limited extent
in little payed, low qualified jobs. Vice versa highly rewarded jobs generally require
higher qualification, and education can make the difference. In addition, returns to
education build up slowly, since it takes some time to progress in a career. This
implies that returns to schooling grow with wage quantiles since they increase while
moving ahead in a career: education increases wages later more than earlier in life.
The direct proportionality between returns to schooling and quantiles could mirror
the unobservable ability to bring to fruition education: this ability is more effective
in talented workers. Gender wage gap and southern workers penalty decrease at the
higher quantiles.
In general, the presence of changing coefficients across quantiles signals heterogeneity
in the data, i.e. heteroskedastic errors, and one possible sources of heterogeneity is
the individual ability. Inequality may be due to many other elements: the major
of the degree, the quality of the institution offering the course, gender, ethnicity,
immigration, region of residence and so forth.
Focusing on ability, the quantile regression analysis is complemented by two
instrumental variable quantile regression estimators. There is a wide literature on
the link between education and the error term of the wage equation, link that causes
bias and inconsistency in the results (Card, 2001). The link may be caused by
omitted variables, and a typical example of omitted variables is individual ability:
talented workers turn out to be more educated and more productive; they may be
able to convert schooling into human capital more efficiently. However individual
talent cannot be measured and its effect on wages ends up in the error term,
thus causing endogeneity of education. The instrumental variables account for the
endogeneity of education. A generally accepted choice of instruments is related to
family background covariates, to parental education (Blundell et al., 2005). This
choice relies on the idea that parents background is correlated with their descendant
education but is uncorrelated with offspring earnings. The direction of the bias is
unclear: impatient workers have a high discount rate, since they evaluate the direct
and indirect costs of education more than the benefit of increased future earnings
(the indirect costs of education include foregone income during the school period);
vice versa for workers with a low discount rate (Harmon et al. 2003). In our findings
the quantile instrumental variable approach increases the reward to education at all
quantiles when compared to the initial simple quantile regressions. In the literature,
this is a known result when comparing OLS versus the standard instrumental variables
estimates. We find that it applies to the quantile regression framework as well:
quantile instrumental variables estimate of returns to education increase with respect
to the standard quantile regressions results at all quantiles. Endogeneity causes the
under-estimation of returns to education in both the least squares and the quantile
regression framework. The bias shows a disproportionate relevance of workers with

147 M. Furno
CEJEME 12: 145-169 (2020)



Marilena Furno

high discount rates on future earnings. This complements the previous analyses of
Italian data (see for instance Brunello et al., 2001).
Finally, following Card and DiNardo (2002) study on technological skill bias, schooling
is dichotomized into lower and higher degrees of education and workers are accordingly
split in two different groups. The wage differential between these two groups is
decomposed into difference in the covariates and discrepancy in the coefficients. A
disparity in the covariates of the two groups, workers with higher versus workers with
lower education, measures earning variations due to differences in the characteristics
of the two groups. For instance, age or region of residence may systematically
differ in the two groups and cause wage differentials. Vice versa, a difference in
the coefficients provides the sheer compensation to higher education. A quantile
decomposition approach compares these two groups of workers at various quantiles
to take apart the role of covariates and the role of coefficients at many quantiles.
The decomposition shows that the difference in earnings between the two groups of
workers is mostly due to the coefficients at all quantiles: wage differentials are mostly
due to differences in the returns to schooling. This shows that education premia not
only change across quantiles, but they also change according to the completed degree,
implying the presence of a non-linear pattern.
A related approach decomposes wage differentials meanwhile accounting for the
endogeneity of education, i.e. by including an instrumental variable so that the
coefficients effect – the higher education premium – is measured net of endogeneity.
These two approaches provide similar results, with the latter yielding a smaller
premium with respect to the former. The effect of the instrumental variable is to
smooth the pattern of returns across quantiles. In sum, instrumental variable at the
quantiles increases return to education with respect to the simple quantile regression
and the decomposition at the quantiles shows higher education premia related to
the completed degree, signaling non-linearity in returns to education. The gender
wage gap reduces across quantiles but does not disappear, while the southern workers
penalty becomes a premium at the 90th quantile for the highly educated ones.

2 Estimates of returns to education and gender
wage gap in Italy

Several empirical studies analyze the Survey of Household Income and Wealth
(SHIW), held by Banca d’Italia, to estimate returns to schooling and gender wage
gap in Italy (the English version of the questionnaire and the data set are available
from the Banca d’Italia website).
In the empirical analysis of SHIW data, a measure of returns to education and of
the gender wage gap is far from being univocal and at times the latter has been even
reversed. Cannari and D’Alessio (1998), using 1993 SHIW data, and choosing family
background variables as instruments, obtain an estimate of returns to education close
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to 7%. Colussi (1997) achieve an estimate of 6.6%, with the same data and similar
instrumental variables. Flabbi (1999) estimates the returns to schooling for women
and men separately (1991 SHIW data). The estimated coefficients implementing
instrumental variables turned out to be higher for men, 0.62 versus 0.56 for women,
while the OLS returns were 0.22 for women and 0.17 for men. Brunello and Miniaci
(1999), using 1993 and 1995 SHIW data, with instrumental variables (IV) related
to family background, compute an OLS estimate of male education returns equal to
4.8%, and an IV estimate of 5.7%. In our model, the IV estimates of returns to
education turn out to be higher than the simple OLS coefficients as well. We show
that this result holds also in the quantile estimated regressions, with simple quantile
regressions providing smaller premia that the IV quantile regressions estimates.
Comi and Lucifora (2001), in the same data set find higher returns for women even on
an IV basis, thus reversing the sign of the wage gap. Giustinelli (2004), using SHIW
data from 1990 to 2000, finds higher women’s returns as well. These results are at
odds with the general findings on gender wage gap in the literature. For instance,
the European Commission (2019) states that: “There are considerable differences
between EU countries. The gender pay gap ranges from less than 8% in Belgium,
Italy, Luxembourg, Poland and Romania to more than 20% in Czechia, Germany,
Estonia and United Kingdom.” Indeed, our results find a premium for male workers
in all the quantile regression estimators implemented, generally ranging from 8% to
12% at the lower quantiles and dropping to 5% or 7% at the top quantiles according
to the selected approach, while our standard IV estimated (average) male premium
is 6%, not too far from Colussi (1997) and Brunello and Miniaci (1999) results. The
8% and 20% European Commission benchmark rates are average (OLS based) rates.
We find a range of estimated gender pay gap depending upon the quantile estimator
implemented and upon the selected quantile.
Ciccone et al. (2006) in the SHIW waves 1987, 1995, 1998, 2000 find higher returns
for higher degrees, further increasing in the southern regions, and we further analyze
this issue. Our findings show increasing returns with the degrees as well, combined
with a southern region penalty that is sizable at the lower wages but that decreases
across quantiles. Zizza (2013), analyzing 1995 to 2008 SHIW data, estimates a raw
gender wage gap around 6%, that increases to 11%-12% in the extended version of
the model. We find a male premium in all the estimators implemented, higher at the
lower wages but decreasing across quantiles. Furno (2014), using 1989-2010 SHIW
data, provides evidence of a gender wage gap amplified by regional differences, with
southern regions offering less favorable conditions to women. The regional penalty
for the southern regions is confirmed in the following analysis.
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3 The quantile regression approach
The general linear regression model yi = xiβ+ei – where yi is the dependent variable,
xi is the row vector of explanatory variables, β the vector of regression coefficients
and ei is the i.i.d error term – can be estimated at different points of the conditional
distribution. In case of OLS, the equation is estimated at the conditional mean. If
the goal is to estimate the model in the tails, as in the quantile regression estimator,
an asymmetric weighting system is introduced to drive the estimated regression above
or below the conditional mean. The quantile regression objective function at the θ
quantile (Koenker, 2005) is given by∑
yi≤xiβ

(1− θ) |yi − xiβ|+
∑

yi≥xiβ

θ |yi − xiβ| =
∑
i

{θ − 1(yi ≤ xiβ)} |yi − xiβ| . (1)

For instance, to estimate the 75th quantile regression, i.e. the regression explaining the
3rd quartile of the dependent variable, the estimated equation will be characterized
by 75% of the residuals below the 3rd quartile, and 25% of the residuals above it.
It represents the regression passing through the third quartile of the conditional
distribution of the dependent variable, given the selected covariates. This result is
achieved by using asymmetric weights that assign the value θ = 0.75 to the larger
observations to attract the estimated equation upward, and 1 − θ = 0.25 to the
remaining data. If the conditional distribution of the dependent variable shows
constant variability in the sample, the regression coefficients do not change across
quantiles – with the sole exception of the intercept – and for any pair of quantiles
θj and θk it is β(θj) = β(θk). The intercept computes the chosen quantile of the
dependent variable when all the other coefficients are set to zero, like in the OLS
case where the intercept computes the sample mean of the dependent variable. When
the dispersion of the dependent variable conditional to the covariates is not constant
in the sample, the errors are heteroskedastic. This causes the regression coefficients
estimated at a given quantile, β(θ), to change from one quantile to another: looking at
two different quantiles θj and θk the estimated coefficients will differ, β(θj) 6= β(θk).
The implication is that the explanatory variables have a different impact on the
dependent variable, an impact that changes with the quantiles.

3.1 Instrumental variables at the quantiles
In quantile regression instrumental variables can be implemented following two
approaches. Amemiya (1982) discusses a two-stage median regression. In the first
step the endogenous explanatory variables are regressed on a set of instruments in
order to compute the fitted values of the regression. In the second stage these fitted
values replace the endogenous explanatory variable (IVQ from now on).
An alternative method is discussed in Chernozhukov and Hansen (2005, 2006, 2008)
(CH_IVQ from now on). The first step is to compute the fitted values of the
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regression just as in the previous IVQ estimator. Next a grid search on the
coefficient of the endogenous explanatory variable allows to compute the variable
diff = y − α(fitted values). The variable diff is regressed on the exogenous variables
and the instrument. A Wald test verifies the null that the instrumental variable
does not have any additional overlooked impact. The null implies that at the true
parameter the impact of the instrumental variable is zero. Failure to reject the null
validates the CH_IVQ estimates.

3.2 Decomposition at the quantiles
Finally, we are interested in checking if the model changes between subgroups of the
data. Consider two subsets – non-educated/educated, or past/present, or more in
general untreated/treated – indexed respectively by 0 and 1. Having estimated the
model in the two different subsets, 0 and 1, the changes from one group to the other,
ŷ0 − ŷ1, where ŷ0 and ŷ1 are the fitted values computed in group 0 and 1, can be
computed by

ŷ0 − ŷ1 = x0β̂0 − x1β̂1 (2)

with β̂0 and β̂1 being the estimated OLS coefficient. Next, by adding and subtracting
the term x1β̂0, which multiplies the group 1 covariates by the group 0 estimated
coefficients, the difference can be decomposed into

ŷ0− ŷ1 = x0β̂0−x1β̂1 = x0β̂0−x1β̂0 +x1β̂0−x1β̂1 = (x0−x1)β̂0 +x1

(
β̂0 − β̂1

)
(3)

which shows how the difference between two groups can be split into changes in the
covariates (x0 − x1) – i.e. changes in the independent variables from one group to
the other – and changes in the coefficients (β̂0 − β̂1) – that are not explained by the
variables since they are caused by a change in the model coefficients. In the above
decomposition, the term x1β̂0 is the counterfactual: it measures the hypothetical
value of y1 in case the regression coefficients do not change from group 0 to group 1.
It is usually estimated on average using the OLS estimates of β0 multiplied by the
sample means of the covariates in group 1, Ex1β̂0. By replacing the fitted values in
each subset ŷ with their sample averages, the Oaxaca-Blinder decomposition at the
mean is given by

Ey0 − Ey1 = (Ex0 − Ex1) β̂0 + Ex1

(
β̂0 − β̂1

)
. (4)

The average difference of the dependent variable in the two groups is decomposed into
the average difference in covariates times the group zero OLS estimated coefficients,
plus the difference in coefficients as computed by the OLS/average regressions in each
group and multiplied by Ex1.
In the quantile regression decomposition, the above model is computed at different
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quantiles θ to identify changes in the covariates and in the coefficients at the center
and in the tails of the distribution.

ŷ0(θ)− ŷ1(θ) = x0β̂0(θ)− x1β̂1(θ) = (5)
= x0β̂0(θ)− x1β̂0(θ) + x1β̂0(θ)− x1β̂1(θ) =

= (x0 − x1)β̂0(θ) + x1

(
β̂0(θ)− β̂1(θ)

)
.

Chernozhukov et al. (2013) discuss the conditions required for valid first stage
quantile regression estimates to compute the counterfactuals x1β̂0(θ). They show
that bootstrap is a valid approach to estimate standard errors and to make inferences
about the counterfactuals; this allows us to assess the statistical relevance of the
quantile regression decomposition. Quantile regression decomposition confirms, at
each quantile, whether a discrepancy between actual and counterfactual values is
statistically relevant, and if such a discrepancy is stable or changes across quantiles.
In a sample divided into groups 0 and 1, the quantile decomposition approach can be
summarized as follows:

i) m = 100 values are drawn from a uniform distribution (0, 1); for each draw
from this distribution the corresponding quantile regression is computed
at the quantile θj for that particular draw, j = 1, ...,m; 100 vectors of
estimated coefficients β0(θj) are provided by minimizing the quantile regression
objective function

∑
n0
{θj − 1(y0i ≤ x0iβ)} |y0i − x0iβ| in group 0; 100

estimated coefficients β1(θj) are separately computed in group 1, by minimizing∑
n1
{θj − 1(y1i ≤ x1iβ)} |y1i − x1iβ| (Machado and Mata, 2005);

ii) m = 100 random samples with replacement, each of size n, are drawn from the
group 0 subset, yielding m random samples of x0, from now on x̂0, to compute
the distribution of the variable ŷ0/0 = x̂0β̂0(θj) via the empirical distribution
function of ŷ0/0, F̂0/0(y) =

∑
j(θj − θj−1)1(ŷ0/0 ≤ y), where θj and θj−1 are

two adjacent quantiles; m = 100 random samples with replacement are drawn
from group 1 covariates, from now on x̂1, to compute ŷ1/1 = x̂1β̂1(θj) and its
empirical distribution F̂1/1(y) (Melly, 2006);

iii) the counterfactual can be computed by ŷ0/1 = x̂1β̂0(θj) and its empirical
distribution function by F̂0/1(y) =

∑
j(θj − θj−1)1(ŷ0/1 ≤ y);

iv) the difference in the covariates F̂0/0(y) − F̂0/1(y), and the difference in the
coefficients F̂0/1(y)− F̂1/1(y), can now be estimated at various quantiles;

v) a bootstrap approach allows to compute standard errors and to implement
inference.
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To compute the decomposition at several quantiles, the comparison between y0 and
y1 becomes a comparison between their unconditional distributions:

F̂0/0(y)− F̂1/1(y) =
[
F̂0/0(y)− F̂0/1(y)

]
+
[
F̂0/1(y)− F̂1/1(y)

]
. (6)

The results of the quantile regression decomposition, obtained by analyzing the
difference between observed and counterfactual distributions at various quantiles,
cannot be revealed by a standard average decomposition analysis. For instance,
quantile regression decomposition may reveal the case of discrepancies at low quantiles
attributable to the covariates, i.e. explained by changes in the covariates, while at the
median and top quantiles a divergence is linked to the coefficients, i.e. is not explained
by the regression model. In general, the source of discrepancy in the covariates and/or
the coefficients may differ across quantiles. It may be the case that an increasing effect
of the covariates across quantiles counterbalances a decreasing coefficients effect, thus
providing a stable overall discrepancy. Alternatively, the two effects may cancel one
another at some/all quantiles. In sum, the source of discrepancy in the covariates
and/or the coefficients may differ across quantiles.

4 Data set and model
The SHIW survey in year 2014 covers 8156 households. It provides detailed
information on demographic variables, income, consumption, wealth. It covers a
representative sample of the Italian resident population. Sampling is carried out in
two stages: the first covers the selection of municipalities, the second the selection of
households.
In what follows people younger than 20 or older than 60 are excluded from the sample.
The purpose is to analyze individuals that have completed their education and that
are not yet retired. This reduces the sample to 9313 individuals. Next, a measure
of the hourly wage is computed by the ratio between annual earnings and annual
worked hours, and there are 5160 workers earning a wage and 4682 of them have an
age comprised between 20 and 60. Finally, those with an hourly wage below 4 euros
are excluded from the analysis, and this leads to our sample of size 4267.
The standard Mincer (1974) equation, where the log of wage is function of experience
and education, is expanded to include additional explanatory variables – gender,
family characteristics, region of residence. The dependent variable is the logarithm of
hourly wage in euros, net of taxes and social security contributions. The explanatory
variables age and age squared are used to proxy experience; education takes values
from 0 to 21 to indicate years of achieved education (respectively: no education,
elementary, junior high, vocational school, high school, 3-years university degree, 5-
years university degree, doctorate); a regional dummy assumes unit value for 1155
workers living in the South, and reflects the inertia of the southern economy; a dummy
for marital status with unit value for 2624 married or cohabiting workers; a dummy
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for children assuming zero value for 2647 childless workers out of 4267; a dummy
for gender assuming unit value for 2350 male workers. Italy presents a wide gap in
women work participation, and the lower share of employed women can be ascribed
to the subset of women with lower education. In this data set the numbers of working
women are 1917 out of 4267, 1289 educated to at least high school degree and 424
with at most the junior high degree, against respectively 1228 and 867 in the working
men subset. This may be because less educated, formally unemployed women may be
engaged in precarious jobs such as call center or babysitting, that are excluded from
the analysis. These variables mostly consider worker’s characteristics as opposed to
variables for job quality or business cycle, often considered by some extended versions
of the Mincer equation. Table 1 provides the summary statistics of the variables
in the entire sample, at the bottom of the table, and in the subset of observations
selected for the analysis, in the top section of the table. In the entire sample the wage
distribution shows a longer left tail, a larger number of women, of children and of
people living in the South. The semi-logarithmic model is defined as

wage = α education+ δ1 kids+ δ2 male+ δ3 married+ δ4 south+ δ5 age+ δ6 age
2.

(7)
Equation (7) is computed by OLS and by quantile regression. OLS yields an equation
passing through the conditional mean, while the quantile regressions compute the
line passing through different points of the conditional distribution. This allows to
compute the impact of the regressors at different wage levels such as at highest, the
lowest as well as the median wage.
Table 2 reports the OLS and the quantile regression estimates of (7). The estimated
quantiles are the 10th, the 25th, the median, the 75th and the 90th. Returns to
education increase with the quantiles ranging from 2.9% to 5.5%: for workers earning
low wages, i.e. at the 10th quantile, there is a stable 2.9% increase for each year
of schooling, while at the higher wages, the 90th quantile, each additional year of
education grants a 5.5% premium. The impact of experience as mirrored by age and
age2 decreases across quantiles, while the southern regions penalty is less damaging
at the higher quantiles and becomes non-significantly different from zero at the 90th
quantile. The gender wage gap shows an inverse u-shaped pattern reaching the peak
at the first quartile.
The presence of changing coefficients across quantiles signals heterogeneity in the
earning profiles (Blundell et al. 2001). The OLS estimates assume intermediate
values, not far from the median regression results.
There is a wide literature focusing on the presence of an endogenous explanatory
variable in equation (7). The focus is on the correlation between individual ability
with both wages and education. Four additional variables are introduced to explain
the endogenous right-hand side variable, and workers education becomes function of
mother and father education of the household head, together with mother and father
education of the household spouse. The idea behind is that parents’ education is
correlated to young people education but uncorrelated with offspring earnings.
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Table 1: Summary statistics of the variables

mean s.d. median skewness n
in the selected sample

wage 2.192 0.372 2.158 1.01 4267
age 44.261 9.799 46 −0.51 4267
education 12.159 3.686 13 0.21 4267
kids 0.1727 0.378 0 1.73 4267
married 0.6149 0.486 1 −0.47 4267
men 0.5507 0.497 1 −0.20 4267
south 0.2706 0.444 0 1.03 4267

in the entire sample
wage 2.079 0.552 2.13 −1.07 5160
age 48.292 23.27 51 −0.248 19400
education 9.138 4.89 8 0.021 19400
kids 0.279 0.448 0 0.983 19400
married 0.499 0.500 0 0.001 19400
men 0.479 0.499 0 0.082 19400
south 0.367 0.482 0 0.551 19400

Table 2: Simple OLS and quantile regression estimates

0.10 0.25 0.50 0.75 0.90 OLS
wage wage wage wage wage wage

education 0.0299
(11)

0.0341
(21)

0.0385
(30)

0.0451
(25)

0.0549
(23)

0.039
(28)

kids −0.075
(−2.15)

−0.106
(−4.51)

−0.077
(−4.74)

−0.068
(−3.87)

−0.0808
(−2.63)

−0.085
(−4.82)

male 0.0882
(6.02)

0.112
(11)

0.095
(9.94)

0.085
(7.24)

0.0723
(3.15)

0.077
(7.51)

married 0.055
(2.27)

0.0477
(2.77)

0.0534
(5.51)

0.0956
(5.79)

0.1034
(4.69)

0.075
(6.12)

south −0.122
(−5.23)

−0.104
(−7.95)

−0.094
(−7.72)

−0.0541
(−3.36)

0.0274
(1.04)

−0.050
(−4.50)

age 0.0180
(2.27)

0.011
(1.63)

0.0119
(2.86)

0.0064
(1.43)

0.0084
(1.84)

0.011
(2.56)

age2 -0.00011
(−1.30)

-0.00003
(−0.41)

-0.00003
(−0.71)

0.00003
(0.68)

0.00002
(0.42)

-0.00003
(−0.60)

constant 0.872
(5.16)

1.105
(7.23)

1.203
(12)

1.368
(15)

1.364
(12)

1.20
(12)

Note: Student-t values in parenthesis, in italics are the non-statistically significant estimates. Sample of
size n = 4267.

Next, the Amemiya (1982) two-stage median regression approach is implemented.
In the first stage workers education is computed as a function of parents’ education in

order to provide the variable fitted education = ̂̂
education. The second stage computes
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the equation

wage = γ
̂̂

education+ δ1 kids+ δ2 male+ δ3 married+ δ4 south+ δ5 age+ δ6 age
2.

(8)
Table 3 reports the results of equation (8) at the selected quantiles. Returns to
education as estimated by standard IV and by IVQ are larger than respectively
the OLS and the quantile regressions of Table 2. In IVQ returns sharply raise at
the top quantiles. Purging endogeneity by means of family background variables
sizably increases returns to education. The male premium is comparable with the
previous results at the lower quantile, it is about half the estimates of Table 2 at
the intermediate quantiles and becomes irrelevant at the top quantile, thus showing
a decreasing in place of an inverse u-shaped pattern. The southern regions penalty
is less severe and becomes a premium at the top quantiles. Experience as measured
by age and age2 is not statistically significant at most quantiles. In the standard IV
estimates experience and southern penalty are not statistically significant, while the
remaining estimated coefficients assume intermediate values, not far from the median
IVQ results.

Table 3: Instrumental variable results
0.10 0.25 0.50 0.75 0.90 IV
wage wage wage wage wage wage

̂̂
education 0.502

(7.01)
0.0465
(6.79)

0.0548
(8.91)

0.0786
(11.4)

0.1061
(7.64)

0.0623
(11)

kids −0.1273
(−1.82)

−0.1585
(−3.89)

−0.1071
(−4.00)

−0.0967
(−3.64)

−0.1398
(−2.80)

−0.1297
(−4.04)

male 0.0860
(3.51)

0.0818
(5.02)

0.0484
(2.81)

0.0450
(3.37)

0.0197
(0.57)

0.0458
(3.54)

married 0.1087
(1.89)

0.0611
(2.04)

0.0804
(3.87)

0.1051
(4.56)

0.1136
(2.28)

0.0842
(3.11)

south −0.0740
(−2.72)

−0.0798
(−5.15)

−0.0379
(−2.82)

0.0494
(2.99)

0.1150
(2.37)

0.0078
(0.53)

age 0.00449
(0.43)

0.0016
(0.24)

0.0009
(0.20)

-0.0041
(−0.63)

0.0264
(−2.79)

0.00069
(0.11)

age2 0.00004
(0.41)

0.00007
(0.92)

0.00010
(1.91)

0.00021
(2.71)

0.00054
(4.63)

0.00012
(1.77)

constant 0.8468
(3.53)

1.1844
(7.19)

1.234
(8.45)

1.1219
(7.14)

1.326
(4.74)

1.135
(8.17)

Student-t values in parenthesis, in italics are the non-statistically significant estimates. Sample of size
n = 3182.

In the alternative CH_IVQ method the first step is to compute the variable ̂̂
education

just as in the previous IVQ estimator. Next a grid search on α that is the coefficient of
the endogenous explanatory variable in equation (7), allows to compute the variable
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diff = wage − α

(
̂̂

education

)
. The variable diff is regressed on the exogenous

variables and the instrument

diff = γ
̂̂

education+δ1 kids+δ2 male+δ3 married+δ4 south+δ5 age+δ6 age
2. (9)

A Wald test is implemented to verify the null that the instrumental variable does not
have any additional overlooked impact on log of wages. The failure to reject the null
H0 : γ = 0 in equation (9) validates the CH_IVQ estimates.
The Wald test is here implemented through an auxiliary regression, where the
residuals from the CH_IVQ estimated equation become the dependent variable and
̂̂

education is the explanatory variable. The term nR2 is compared to the critical value
of a χ2 with degrees of freedom given by the number of instrumental variables.

Table 4: Iterated instrumental variable results
0.10 0.25 0.50 0.75 0.90
wage wage wage wage wage

̂̂
education 0.0658

(7.01)
0.0497
(6.88)

0.0561
(8.36)

0.0620
(8.39)

0.0669
(7.07)

kids −0.1571
(−2.88)

−0.1534
(−3.66)

−0.1351
(−3.47)

−0.1246
(−2.91)

-0.0539
(−0.98)

male 0.1229
(5.59)

0.1245
(7.35)

0.1209
(7.70)

0.1069
(6.19)

0.701
(3.17)

married 0.0953
(2.08)

0.0375
(1.06)

0.0417
(1.27)

0.0520
(1.44)

0.1049
(2.27)

south -0.0813
(−0.25)

−0.1013
(−5.21)

−0.0855
(−4.74)

−0.0374
(1.88)

0.0375
(1.48)

age -0.0058
(−0.57)

0.0047
(0.61)

0.0049
(0.68)

-0.0071
(−0.89)

0.0135
(1.31)

age2 0.0001
(1.41)

0.00004
(0.49)

0.00005
(0.64)

0.00003
(0.37)

-0.00002
(−0.24)

constant 0.8342
(3.54)

1.068
(5.89)

1.135
(6.74)

1.174
(6.34)

1.132
(4.77)

Wald test 1.273 0.318 0.000 0.954 5.727

The estimated z values are in parenthesis, in italics are the non-statistically significant estimates. Sample
of size n = 3182. The Wald test considers the null H0 : γ = 0 in the auxiliary regression of residuals from

equation (2) as a function of ̂̂
education. The critical value of a χ2 with 1 degree of freedom is 3.84 at 5%,

and 6.635 at 1% significance level.

Table 4 provides the estimates of the CH_IVQ approach, and the last row of this
table reports the values of the estimated Wald tests (the routine to implement in
Stata this estimator, written by Kwak (2010), can be downloaded at: www.stata.
com/statalist/archive/2013-04/msg00023.html.). This test fails to reject the
null at all quantiles thus validating the CH_IVQ estimates. With respect to Table 3,
returns to education are slightly larger at and below the median while become smaller
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at the top quantiles; the male markup is larger and significant at all quantiles and
does not disappear; the southern workers penalty disappears at the 90th quantile while
only experience is not statistically significant. Figure 1 to 4 summarize the results
of the two IVQ estimators together with the simple quantile regressions estimates of
Table 2. These figures show the pattern of some coefficients, respectively returns to
education, gender wage gap and regional penalty, across quantiles. Figure 2 and 3
report, respectively, the male premium, positive but decreasing across quantiles, and
the woman penalty, that becomes less severe at the higher quantiles. Although the
pattern across quantiles is similar for the three estimators – quantile regression, IVQ
and CH_IVQ – the IVQ results are more extreme and turn out to be the largest or
the smallest of all, particularly at the higher quantiles.

Figure 1: Returns to education across quantiles
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Summarizing, with both IVQ and CH_IVQ estimators returns to education increase
across quantiles and are generally larger than in the simple quantile regression
estimates of Table 2. Therefore, the general finding that IV estimates of returns to
schooling are larger than the simple OLS estimates (Brunello et al. 2001) carries on to
the quantile regressions as well. With respect to the gender wage gap, IVQ signals a
decreasing pattern of the estimated male coefficient, disappearing at the 90th quantile.
Vice versa, CH_IVQ yields larger male premium coefficients, declining only at and
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above the 75th quantile but always statistically significant. The southern penalty
diminishes across quantiles everywhere, in tables 2 to 4, and becomes a premium at
the top quantiles in IVQ.

Figure 2: Male estimated coefficient across quantiles
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5 Decomposition results
Focusing on returns to education, this variable can be transformed into a dichotomous
one by gathering in one group workers with at most a vocational degree, up to 11
school years, while the other group collects workers with higher degrees – high school
and university. The corresponding dummy variable assumes respectively value di = 0
for workers having at most up to 11 years of schooling, nl = 1750, and di = 1 for
nh = 2517 workers with higher degrees. This allows to focus on returns of high school,
university and doctorate compared to vocational, junior high and elementary school
premium.
Consider the vector of regression coefficients in equation (7) as estimated in
the subset of workers with higher education, β′1 = [δ1, δ2, ..., δ6]1, wage1 their
earnings and x1 = [kids male married south age age2 constant]1 the (n, 7) matrix
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Figure 3: Women estimated coefficient across quantiles
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of the explanatory variables for group 1. Analogously, β′0 = [δ1, δ2, ..., δ6]0, is
the vector of regression coefficients estimated in group 0, wage0 their wages and
x0 = [kids male married south age age2 constant]0 the explanatory variables for the
group with lower education. The Oaxaca (1973) and Blinder (1973) decomposition
allows to write the difference between the two subsets as follows

wage1 − wage0 = x1β1 − x0β0 = (10)
= x1 (β1 − β0) + (x1 − x0)β0 =
= wage1 − wage0/1 + wage0/1 − wage0,

where in the second line x1β0 has been added and subtracted. The term wage1 = x1β1
and wage0 = x0β0 are the realizations of the dependent variable within each subset,
and the term wage0/1 = x1β0 is defined by the covariates in subset 1 evaluated at the
coefficients of subset 0, the unobserved counterfactual. Counterfactual distributions
are the result of a change in the covariates, or a change in their relationship with
the dependent variable, the regression coefficients. In terms of the wage distribution,
wage1 and wage0 are respectively the observed wages in groups 1 and 0, while wage0/1
is the group 1 covariate multiplied by the coefficient of group 0 and tells us what group
1 would earn if rewarded with group 0 coefficients. The first term in the third line of
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Figure 4: Southern penalty estimated coefficient across quantiles
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the decomposition measures the difference in wages due to changes in the regression
coefficients, wage1−wage0/1 = x1 (β1 − β0). The second term looks at the difference
in wages due to differences in the covariates, wage0/1 − wage0 = (x1 − x0)β0, for
instance differences in workers characteristics like gender, age or region, and provides
a measure of the composition effect. Often the interaction term (β1 − β0)(x1 − x0)
is added to pick up any further effect. These terms are generally computed at their
average values, yielding the Oaxaca-Blinder decomposition

wage1 − wage0 = x1 (β1 − β0) + (x1 − x0)β0, (11)

where wage and x are the sample averages and the vectors of parameters β1, β0
are replaced by their least squares estimates. The result is an average measure
of the wage differences between the two subsets. Table 5 gathers these estimates
and shows a statistically significant difference between the two overall averages,
wage0 − wage1 = −0.1776. This premium is linked to a significant average coefficients
effect of x1 (β0 − β1) = −0.1983, which is slightly offset by a small covariates effect.
However, the terms in a decomposition can take different values according to the
selected quantile of the log of wages distribution, center, lower and upper tails.
Therefore, the decomposition can be estimated not only on average but also in the
tails, by means of the quantile regression-based decomposition approach discussed in
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Table 5: Oaxaca-Blinder average decomposition, impact of higher versus lower degrees

average std. err

lower education 2.109 0.0095
higher education 2.286 0.0088
wage0 − wage1 −0.1776 0.0130
due to covariates 0.0447 0.0060
due to coefficients −0.1983 0.0131
interaction term −0.0241 0.0064

Machado and Mata (2005). In a quantile regression decomposition it is possible to
verify whether any discrepancy is statistically significant at each quantile and whether
such a discrepancy is stable or changes across quantiles.
The Machado and Mata (2005) approach computes m = 100 different quantile
regressions within each group defined as

wagei = δ1 kidsi+ δ2 malei+ δ3 marriedi+ δ4 southi+ δ5 agei+ δ6 age
2
i i = 0, 1

(12)
the estimated coefficients and the explanatory variables are separately bootstrapped
within each group, yielding ˆ̃β0(θ), ˆ̃β1(θ), X̃0 and X̃1. The quantile regression

decomposition can be computed considering the terms ̂̃wage0 = X̃0
ˆ̃β0(θ),

̂̃wage1 = X̃1
ˆ̃β1(θ), ̂̃wage0/1 = X̃1

ˆ̃β0(θ) to replace the average values in the Oaxaca-
Blinder decomposition

̂̃wage1 − ̂̃wage0 = X̃1

( ˆ̃β1(θ)− ˆ̃β0(θ)
)

+ (X̃1 − X̃0) ˆ̃β0(θ). (13)

This allows to implement the decomposition at various quantiles θ and yields results
on the behavior in the tails that cannot be detected by the standard Oaxaca-Blinder
average decomposition approach. The routine to implement this estimator in Stata,
written by S. Souabni (2013), can be downloaded at http://fmwww.bc.edu/repec/
bocode/m/mmsel.ado. Table 6 reports the results of the decomposition at the deciles.
They show a positive impact of higher education that is statistically significant
throughout, increases across quantiles and is due to a pure coefficient effect. The latter
represents the sheer premium to higher education, purged by any possible difference
in the covariates. Indeed, the covariates effect is very small in the table, although
statistically significant. Figure 5 depicts the pattern of the total difference between
groups, ̂̃wage1− ̂̃wage0, as decomposed by differences due to the covariates and to the
coefficients. The covariates effect is small and almost constant while the coefficients
effect is wider and steadily increasing across deciles.

These results can be compared with a different decomposition approach which
allows to consider the endogeneity of education. Using the quantile treatment effect
estimator (QTE) discussed by Frölich and Melly (2008, 2010), the coefficients effect
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Table 6: Decomposition of the impact of higher education across deciles,
̂̃wage1 − ̂̃wage0

quantile total effect std. err. effect of characteristics std. err. effect of coefficients std. err.
0.1 0.0649 0.011 −0.0980 0.012 0.1629 0.011
0.2 0.0794 0.010 −0.0952 0.010 0.1746 0.011
0.3 0.0873 0.008 −0.0908 0.009 0.1782 0.008
0.4 0.0961 0.008 −0.0876 0.008 0.1838 0.007
0.5 0.1161 0.007 −0.0856 0.008 0.2017 0.007
0.6 0.1455 0.008 −0.0813 0.008 0.2269 0.007
0.7 0.1769 0.008 −0.0812 0.009 0.2582 0.008
0.8 0.2179 0.009 −0.0852 0.011 0.3032 0.010
0.9 0.2986 0.015 −0.0985 0.018 0.3971 0.015

Number of workers in group 1 with higher education, nh = 1899; number of workers in group 0 having at
most a vocational degree, nl = 1283.

Figure 5: Covariates, coefficients and total effects across quantiles in the Machado
and Mata decomposition. The bottom line shows the covariates effect, the top one
the coefficients effect. The total effect line is in between.
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can be computed at many quantiles. This estimator considers a weighted linear
quantile regression of the dependent variable on a constant term and on the dummy
variable assuming unit value for higher education di∑

ρ(ei)wi =
∑

[ρ(wagei − a0 − a1di)wi] = min, (14)

wi = (2di − 1)
[

Zi − pi(x)
pi(x)(1− pi(x))

]
,

where
∑
ρ(ei) is the usual quantile regression objective function. The weights wi are

function of the dummy di, the instrumental variable Zi,
̂̂

education in our case, and the
propensity score pi(x). The latter is the probability of each worker to belong to the
group of higher/lower education, it is function of all the explanatory variables of the
model and is estimated by a logit model. The weighting system allows to even out the
covariates of the two groups, covariates of workers with higher versus lower education,
net of endogeneity. Any difference between the two groups is exclusively due to
the coefficients, and this estimator has the advantage of measuring their individual

impact. Table 7 reports the results of the comparison
̂̃
w̃age1 −

̂̃
w̃age0 as computed

by the IPW approach in (14). The routine to implement in Stata this estimator
can be found at: st0203 from http://www.stata-journal.com/software/sj10-3.
Higher education has a positive and significant coefficient effect at all quantiles, that
increases across quantiles.

Table 7: Coefficients effect at the quantiles

0.10 0.25 0.50 0.75 0.90
wi wagei wi wagei wi wagei wi wagei wi wagei

wi higher educ. 0.1073 0.1500 0.1786 0.1927 0.2971
wi kids −0.1148 −0.1380 −0.0652 −0.0403 −0.0383
wi male 0.0741 0.0987 0.0697 0.0469 0.0722
wi married 0.0788 0.0505 0.0679 0.1059 0.1950
wi south −0.1341 −0.1169 −0.1187 −0.0109 0.0224
wi age −0.0057 −0.0035 0.0058 −0.0012 −0.0227
wi age2 0.0001 0.0001 0.00007 0.0002 0.0004
wi constant 1.628 1.7575 1.674 1.913 2.383

The weights wi are function of the propensity scores pi(x) and of the instrumental variable zi = ̂̂
education.

Returns to higher education are quite large at all quantiles in both Table 6 and
7, much larger than in Table 4 or 5. The latter measure the overall premium to
education whereas tables 6 and 7 compute the premium of higher with respect to
lower education. The wide discrepancy in the comparison of the results in Table 4,
5 with those in Table 6, 7 can be related to non-linearities in returns, that are much
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larger than the overall premium for the higher school degrees at all quantiles. The last
two tables show an increasing impact of higher education across quantiles. However,
returns in Table 7 are smaller and present a smoother pattern than in Table 6. Thus,
accounting for endogeneity causes a smoother coefficients effect of higher education
across deciles.
This second approach has the advantage of pointing out the impact of each variable
within the decomposition. This tells us something about the individual pattern of
gender wage gap and regional penalty, and Table 7 shows a decreasing but non-
vanishing male premium across quantile, confirming the CH_IVQ results, and a
reduction in the southern workers penalty that becomes a premium at the top quantile.
In sum returns to education increase with the completed degree and grow across
quantiles. The decomposition shows that such increase is a sheer premium to higher
education which does not depend upon any other difference in the characteristics of
the two groups. It even offsets the southern penalty at the top quantile. However,
OECD (2019) statistics show that in Italy returns to higher education are below the
OECD average.

6 Conclusions
The analysis of a wage equation using Italian data has uncovered some characteristics
of the model which deeply affect the results:

1. heterogeneity, that causes changing coefficients across quantiles;

2. endogeneity, that once purged signals greater returns to education at all
quantiles, a decreasing pattern of gender wage gap and a milder regional penalty
across quantiles;

3. non-linearity, that reveals greater returns to higher with respect to lower degrees,
increasingly so along the wage distribution.

The data set has been analyzed at various quantiles with several quantile regressions
estimators. The changes in the estimated coefficients across quantiles show returns
to education increasing with quantiles, with a 3% raise at the lower wages that grows
above 5% at the higher earnings. This implies that education increases earnings later
more than earlier in a lifetime, since it takes time to progress in a career. The presence
of differing estimates across quantiles shows the limitations of OLS, which computes
only an average rate of return along the entire wage distribution.
The endogeneity is related to the correlation between error term and education, and
it is mostly driven by the non-observable individual talent/ability. The latter is
unobservable, but it has an impact on both returns to education and gender wage
gap. Ignoring endogeneity yields biased and inconsistent estimates, and the bias
can be negative or positive depending on the individual discount rate on future
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earnings. Two different quantile regression instrumental variable approaches are
implemented to solve endogeneity. The instrument is provided by grand-parents
education, since parents education is correlated with offspring education and is
uncorrelated with descendants’ earnings. In both the quantile regression instrumental
variables estimators implemented, returns to education are larger than in the simple
quantile regressions approach. This is a known result at the mean, but in our model it
holds also at the quantiles: returns to education estimated by instrumental variables
improve upon the simple regression results at all quantiles. Thus, endogeneity causes
the under-estimation of returns to education in both the least squares and the
quantile regression approaches. The bias in the simple regressions estimates shows
a disproportionate relevance in these methods of workers with high discount rates
on future earnings. The decreasing pattern of the male coefficient across quantiles,
measuring the gender wage gap, is confirmed by both quantile regressions instrumental
variable estimators.
Finally, the non-linearity can be analyzed by splitting the various school degrees
in two groups, lower and higher education. The comparison of the two different
sub-samples shows that returns increase as a function of the higher completed
degree. Indeed, by comparing the earning profiles of workers with lower versus higher
education, returns to education to higher degrees are larger and the gap rises across
quantiles. The results of a quantile regression-based decomposition show that the
difference in returns between higher and lower degrees is a sheer premium to higher
education, independent of any other difference in the characteristics of the two groups.
The increment in returns to higher versus lower degrees is much wider than the
premium to education computed by the previous quantile regressions approaches, thus
signaling non-linearities. The inclusion of the instrumental variable in the quantile
decomposition approach yields a smoother pattern of returns to higher education
across quantiles, but still endorses the completed degree as a source of heterogeneity.
In terms of policy implications, the results show the need of actions leading to a
wider inclusion of women in the regular job market in terms of both sheer number
of workers and their remuneration. The southern workers penalty is mostly due to a
lagging southern economy and calls for relevant and effective intervention, although
for highly educated workers at the top wages the southern economy provides better
opportunities, wider returns. Finally, returns to education with respect to higher
degrees is still below the OECD average value and in need of improvements. This can
partly explain the lower number of workers with university degree in Italy.
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