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due to precedence priority and resource constraints in order to optimize project-related
objective functions. This paper focuses on the multi-mode project scheduling problem con-
cerning resource constraints (MRCPSP). Resource allocation and leveling, renewable and
non-renewable resources, and time-cost trade-off are some essential characteristics which are
considered in the proposed multi-objective scheduling problem. In this paper, a novel hybrid
algorithm is proposed based on non-dominated sorting ant colony optimization and genetic
algorithm (NSACO-GA). It uses the genetic algorithm as a local search strategy in order to
improve the efficiency of the ant colony algorithm. The test problems are generated based on
the project scheduling problem library (PSPLIB) to compare the efficiency of the proposed
algorithm with the non-dominated sorting genetic algorithm (NSGA-II). The numerical re-
sult verifies the efficiency of the proposed hybrid algorithm in comparison to the NSGA-II
algorithm.
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Introduction

Although the resource constraint is one of the
main characteristics of real project scheduling prob-
lems, the basic form of project scheduling problems
has not considered resource availability constraints.
Problems without recourse limitation are called non-
resource constrained project scheduling problems.
The problems are known as resource-constrained
project scheduling problems (RCPSP) when the ca-
pacity of resources is limited [1–4]. Elmaghraby [5]
developed the RCPSP in which each activity can be

performed in the multiple modes. The multi-mode
resource-constrained project scheduling problem is
known as MRCPSP. The RCPSP has a broad ap-
plication such as scheduling of manufacturing sys-
tems, construction industry, and software develop-
ment [6]. The project scheduling problem attempts
to optimize a set of objective functions concerning
the various precedence constraints and resource con-
straints [7]. The previous studies classified scheduling
problems based on some categories such as a frame-
work of a project scheduling model including re-
sources, activities, objectives, and schedules [8]. Dur-
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ing the last decades, exact (small size) and approx-
imate methods (heuristics and metaheuristics) have
been used to solve MRCPSP [8]. Some of these meth-
ods are: branch and bound algorithm [9–11], branch
and cut algorithm [12], local constraint heuristic al-
gorithm [13], stochastic scheduling [14], genetic al-
gorithm (GA) [15–19], tabu search algorithm [20],
ant colony optimization (ACO) algorithm [21], par-
ticle swarm optimization (PSO) algorithm [22], and
hybrids metaheuristics [23, 24].

MRCPSP could be developed to the multi-
objective problems (MOMRCPS). In project
scheduling problem studies, some have focused on
time and cost parameters simultaneously [25–30].
These problems are known as time-cost trade-off
problems (TCTP). The first TCTP solution ap-
proach was based on exact methods [31]. Some of
these exact mathematical programming methods
are network flow computations, linear programming,
integer programming, mixed integer linear program-
ming, and network decomposition [8]. Exact methods
are applicable only for small size projects. Using ex-
act methods quickly becomes impossible as the size
of the problem increases. So, researches have at-
tempted to develop heuristic and exact approaches
to solve large size problems. Ant colony algorithm
has been applied as a TCTP solution methodolo-
gy [27, 32–34]. Sonmez and Bettemir [29] developed
a hybrid genetic-simulated annealing algorithm to
solve discrete TCTP. Some studies have considered
two objective functions (including time and cost) in
TCTP. Tavana et al. [35] considered quality as the
third objective function. The resource leveling prob-
lem (RLP) is one of the most important topics in
project management. This problem determines the
best assignment of resources by minimizing the fluc-
tuation of required resources over time. Researchers
proposed different solution methodologies to solve
the RLP based on the minimum squares optimiza-
tion, minimum moment, and entropy maximization
[36]. Nudtasomboon and Randhawa [37] considered
multiple objectives (time, cost, and resource leveling)
in the resource-constrained project scheduling prob-
lem. Hariga and Alsayegh [38] developed a multi-
resource RLP in order to minimize costs caused by
resource consumption fluctuations and splitting non-
critical activities. Considering interruption property
was the main novelty of their proposed model. Geng
et al. [39] presented a directed ant colony algorithm
(DACO) to solve non-linear resource leveling prob-
lems. Ponz-Tienda et al. [36] presented an adaptive
GA to slove RLP. The proposed algorithm used
Weibull distribution in order to evaluate the global
optimum as a termination condition.

Most project scheduling models consider only
one aspect of the problem, and few studies con-
sider different problems simultaneously. Ghoddousi
et al. [35] studied the simultaneous incorporation
of MRCPSP, discrete TCTP, and RLP. Recently,
parallel and hybrid metaheuristics have been pro-
posed to solve the project scheduling problems. In
this paper, a new hybrid genetic-ant colony algo-
rithm has been developed for multi-objective multi-
mode resource-constrained project scheduling prob-
lem (MOMRCPSP). Based on the literature review,
only a few studies [21, 40] have presented an ant
colony algorithm to solve MRCPS. In this paper,
ACO presented by Li and Zhang [21] has been
used to develop a multi-objective algorithm. A non-
dominated sorting version of ACO (NSACO) is ap-
plied to find Pareto-optimal solutions of the problem.
To the best of our knowledge, this study is the first
application of the hybrid NSACO-GA optimization
methodology in MOMRCPS. Finally, the efficiency
of the developed algorithm has been investigated in
comparison to the well-known NSGA-II algorithm.
The numerical results verify the efficiency of the pro-
posed algorithm based on diversification and conver-
gence criteria in multi-objective project scheduling
problems.

The remainder of this paper is organized as fol-
lows. In Sec. 2, the problem is described and formu-
lated. The solution methods are presented in Sec. 3.
Numerical examples appear in Sec. 4. Comparison
metrics are provided in Sec. 5. Results are discussed
in Sec. 6. Finally, Sec. 7 concludes the paper and
suggests directions for future research.

Model description

In the construction industry, contractors usually
manage and execute multiple activities by consider-
ing precedence relationships among the activities, in
which each activity can be performed in one of sever-
al modes. So, construction planning is a challenging
activity in the management and execution of con-
struction projects. Hereby, the resource-constrained
project scheduling model presented by Ghoddousi
et al. [17] is considered. To present this model, some
assumptions are given:

Consider a project which includes J activities.
The structure of the project is represented by a so-
called activity-on-node (AON) graph G (V,E), where
V and E indicate a set of activities and precedence
between activities, respectively. Let define the set of
project activities by J+ = {0, 1, ..., J+1} which node
0 and J + 1 are dummy start and terminal nodes of
the project, respectively. According to the assump-
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tions of MRCPSP, each activity j can be performed
in only one of Mj possible modes. Activity j in mode
m ∈Mj possesses a duration djm and a cost cjm. Ac-
tivity j executed in mode m requires rjmk units of
renewable resource type k and nrjml units of non-
renewable resource type l. Moreover, Rk and NRl
indicates the total availability limit of the renewable
resource k and non-renewable resource l, respective-
ly. Suppose ci, cp and Tc are indirect costs per period
in the project makespan, penalty cost in each peri-
od of delay and project deadline. It is assumed that
once the execution of activity j is started in mode
m, it has to be completed in mode m without inter-
ruption. Let r(t)k be the consumption of resource k
in period t, the average consumption of resource k is
defined as (1)

rk =
1

T

T∑
t=1

r
(t)
k . (1)

The variables of the model are as follows:

xjm =

{
1 if the activity j is performed in modem,
0 otherwise,

yJ =

{
1 fJ > Tc,
0 fJ ≤ Tc.

In which fj be the finish time of activity j. Obvious-
ly, the project duration is equal to the finish time of
end activity (fJ).

The proposed multi-objective mathematical
model of the MOMRCPS is as follows [17]:

Min fJ , (2)

Min
∑
j

∑
m∈Mj

xjmcjm + fJci + yJcp(fJ − Tc), (3)

Min

K∑
k=1

T∑
t=1

(
r
(t)
k − rk

)2
, (4)

s.t. ∑
m∈Mj

xjm = 1 j ∈ V, (5)

fj −
∑
m∈Mj

xjmdjm ≥ fi ∀(i.j) ∈ E, (6)

∑
j∈At

∑
m∈Mj

xjmrjmk ≤ Rk

∀k .At = {j | fj − dj < t ≤ fj} , (7)
J∑
j=1

∑
m∈Mi

xjmnrjml ≤ NRi ∀l. (8)

The objective function (2) minimizes the total
project duration. The objective function (3) mini-
mizes the project costs including costs of delay, di-
rect and indirect costs of the project. The objec-
tive function (4) minimizes the fluctuations in re-
source consumptions in a way that the differences
between the amount of required resource and mean
consumption of that resource get minimized. Con-
straint (5) enforces that each activity is allowed to
be done only in one mode. Constraint (6) defines the
precedence relationships between each pair of activi-
ties (i, j) which belongs to the set E. Constraints (7)
and (8) guarantee that the total consumed amounts
of non-renewable and renewable resources should not
exceed the maximum available amount of these re-
sources.

Solution methods

I) The proposed hybrid NSACO-GA
for MOMRCPSP

The ant colony optimization algorithm is a meta-
heuristic solution method presented by Dorigo [41]
in 1992. It states that a set of artificial ants col-
laborate in order to achieve an optimal solution in
discrete optimization problems. The better solution
arises from an interactive collaboration between ex-
isting ants [42]. Each ant releases a chemical sub-
stance called pheromone along its path. All mem-
bers of the ant colony feel these released pheromones
and follow the path with the most amount of re-
leased pheromone [42]. This algorithm consists of
three main processes: generating initial solutions by
ants, updating the amount of pheromone at each iter-
ation, and auxiliary operations [42]. In order to build
a new set of solutions, the ants in each colony eval-
uate the neighboring ants and determine the next
movement direction. This decision is based on the
pheromone of each path and heuristic information.
The pheromone updating is a process of changing
the quantity of pheromone in each path. The quanti-
ty of pheromone in each path could be increased due
to the pheromone releasing by ants. It also decreases
because of pheromone evaporation. Auxiliary oper-
ations are a set of processes done for implementing
operations which could not be performed by each
ant, lonely. Applying a local optimization method
or general data collection method for decision mak-
ing about other pheromones releasing- which directs
the solutions toward a locally optimal solution- are
among the auxiliary operations.

In this study, similar to Li and Zhang [21], two
pheromone levels, two types of the corresponding
probability, and heuristic information have been con-
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sidered in the proposed MRCPSP. GA has been ap-
plied to improve the efficiency of the local search. A
holistic schematic view of the proposed algorithm is
shown in Fig. 1. The proposed hybrid algorithm is
similar to the hybrid GA-ACO proposed by Akpinar
et al. [43] in the assembly line balance problem. The
letters l and c used in Fig. 1 refers to the number
of iteration of GA and ACO algorithms, respective-
ly. As it is obvious, the newly built solution by ants
and the best-known solutions up to each iteration
is considered as the initial solution of GA. Then, the
mutation and crossover operations are used to create
new solutions from GA population. New generated
population evaluated using a non-dominant sorting
method, and a predefined number of them are select-
ed for the next iteration of GA. When the termina-
tion condition of GA is satisfied, ACO updates the
quantity of pheromone at each path using the best
efficient solutions obtained by GA. Also, the best so-
lutions are updated in each iteration. The process
continues until maximum iterations or some other
stopping criteria are met. Then the solutions created
using NSACO-GA are decoded as feasible scheduling
solutions using the serial schedule generation scheme.

Based on the study done by Li and Zhang
[21], each ant faces with two decisions during each
step: (1) activity sequence (assigning i to activity j

(i, j)), then (2) mode assignment for activity exe-
cution (i, j, k). The terms τij and τijk represent the
pheromone related to these decisions. Similarly, ηij
and ηijk state two related heuristic information with
probability pij , pijk which is define as follows:

ηij = 1/(LSj − ESj + 1), ∀j ∈ Ei, (9)

ηijk = 1/tjkcjk, ∀k ∈Mij . (10)

Consider ESj and LSj as the earliest and lat-
est start time of activity j. The difference between
LSj and ESj determines the total float of activity j.
Based on ηij , the activity with lower total float has
higher priority in comparison to the others. The re-
lation between pheromone and heuristic information
could be defined as follows:

pij =


[τij ]

α
[ηij ]

β∑
h

[τih]
α

[ηih]
β

if h ∈ Ei,

0 ow,

(11)

pijk =


[τijk]

α
[ηijk]

β∑
m

[τijm]
α

[ηijm]
β

if m ∈Mij ,

0 ow,

(12)

where Ei refers to the set of activities which are al-
lowed to be done at the sequence i in the activity

Fig. 1. Flowchart of the proposed algorithm.
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list due to the precedence relations, also Mij indi-
cates all possible modes for activity j which is done
in sequence i. α and β state the relative importance
of pheromone and heuristic information for select-
ing the next activity to be done. Figure 3 illustrates
the structure of two chromosomes of the project
which is presented in Fig. 2. In each chromosome,
the first row shows the sequence of activities and the
second one shows the associated execution modes.
The feasibility of created solutions by each ant gets
checked regarding the nonrenewable resources con-
straints. The infeasible solutions are then repaired
based on the mode improvement method presented
by Peteghem and Vanhoucke [15]. For example, the
solution shown in Fig. 3a is an infeasible solution
because it needs 15 units of nonrenewable resources
that exceed the maximum available amount of non-
renewable resources (14). In Fig. 3b, the infeasible
solution changes to a feasible solution (as mentioned
above).

Fig. 2. Activity network of the project instance.

Fig. 3. The structure of two chromosomes.

II) The genetic algorithm

A novel algorithm that delivers the benefits of GA
and ACO is proposed to solve MOMRCPS. We con-
sider GA developed by Ghoddousi et al. [17]. Suppose
N as the number of initial solutions, pc as crossover
probability and pm as mutation probability. In the
proposed algorithm, the single point crossover has
been applied. The mutation has been done on both
the activity list and the set of assigned modes based
on Ghoddousi et al. [17]. In each iteration, solutions
are sorted and non-dominated solutions are more
likely to pass the next generations.

The non-dominant solutions which outcomes the
previous generation, updates as follows:

τij = (1− ρ)× τij + ∆τij , (13)

τijk = (1− ρ)× τijk + ∆, (14)

where ρ is the volatile coefficient of phenomena which
indicates the speed of phenomena volatilization. Al-
so, ∆τij and ∆τijk represent the amount of released
pheromone in (i, j) and (i, j, k), respectively. ∆τ rij
and ∆τ rijk indicate the pheromone amount released
at each step by ant r in (i, j) and (i, j, k), respectively
(15)–(18)

∆τij =

e∑
r=1

∆τ rij , (15)

∆τ rij =


Q

T r + Cr +Rr
(i.j) ∈ Ar,

0 ow,
(16)

∆τijk =

e∑
r=1

∆τ rijk, (17)

∆τ rijk =


Q

T r + Cr +Rr
(i.j.k) ∈Mr,

0 ow.
(18)

In which Q is a constant value and e indicates the
number of non-dominant solutions. The time, cost,
and resource fluctuations for ant r are illustrated by
T r, Cr, and Rr. Moreover, Ar and Mr represent the
list of activities and modes that belong to the solu-
tion type r.

Numerical examples

In this section, the efficiency of the metaheuristics
has been compared on the basis of a computational
experiment performed on three series of standard test
problems constructed by the ProGen project gen-
erator. We considered five problems from each size
(small, medium, and large). Table 1 summarizes the
features of the project with 10, 20, and 30 num-
ber of non-dummy activities. Each non-dummy ac-
tivity could be performed in three different modes
while each mode considers two renewable and two
non-renewable resources. Also, project costs includ-
ing the costs of performing activities under different
performing modes, indirect costs, and penalty costs
are presented.

The proposed algorithms have been coded in
MATLAB 2012. The algorithm parameters are tuned
based on experimental analysis. The suitable value
has been presented in Table 2.
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Table 1
Description of the test problems.

Problem
number

Project file
name at (PSPLIB)

Number
of activities

Size
of the problem

Number
of arcs

Number
of renewable

resources

Number
of nonrenewable

resources

Number
of modes

1 j1024 1.mm 10 Small 18 2 2 3

2 j1040 8.mm 10 Small 18 2 2 3

3 j1059 2.mm 10 Small 18 2 2 3

4 j1062 5.mm 10 Small 18 2 2 3

5 j1064 7.mm 10 Small 18 2 2 3

6 j309 6.mm 30 Medium 58 2 2 3

7 j3020 1.mm 30 Medium 58 2 2 3

8 j3025 4.mm 30 Medium 58 2 2 3

9 j3033 2.mm 30 Medium 58 2 2 3

10 j3057 10.mm 30 Medium 58 2 2 3

11 j5017 3.mm 50 Large 193 2 2 3

12 j5031 4.mm 50 Large 193 2 2 3

13 j5066 3.mm 50 Large 193 2 2 3

14 j5094 5.mm 50 Large 193 2 2 3

15 j50108 2.mm 50 Large 193 2 2 3

Table 2
The parameters of algorithms.

Test problems Test problems

NSGA-II Small Medium Large NSACO-GA Small Medium Large

Population size 150 300 400 Number of ants 100 200 250

Maximum iteration 100 200 300 Maximum iteration 25 30 30

Crossover rate 0.7 0.7 0.7 Initial pheromone level 10Q
/
J(t+ c+ r) 10Q

/
J(t+ c+ r) 10Q

/
J(t+ c+ r)

Mutation rate 0.5 0.5 0.5 Maximum iteration of GA 10 15 20

Q = 10, ρ = 0.05, α = 1, β = 0.01

Comparison metrics

The efficiency of the proposed algorithms has
been compared with each other in terms of the accu-
racy and diversification criteria. These criteria have
been presented by Tavana et al. [35] for evaluating
the multi-objective optimization methods. These cri-
teria are described as follows:
NNS: The number of non-dominant solutions

found by each algorithm (NSS) is a convenient cri-
terion for measuring the performance of the algo-
rithms.

Error rate (ER): To calculate this criterion, the
non-dominant solutions found by both algorithms
get merged. Then, the non-dominated solutions are
considered as the reference set (RS ). In this case,
RS could be defined as the set of best solutions. Note
that non-dominant solutions of each algorithm which
do not belong to RS are known as ER. Whatever the
ER be less, the algorithm would be more efficient.

Generational distance (GD): The generational
distance could be defined as the difference between

RS and non-dominant solutions obtained from each
algorithm. This criterion is calculated as follows:

di = min
p∈RS


√√√√ F∑
f=1

(
Zif − Z

p
f

)2, (19)

GD =

n∑
i=1

di/n. (20)

In which F refers to the number of objective func-
tions and n is the number of non-dominant solutions
obtained by each algorithm. The algorithm with the
lowest value of GD is the most efficient one.

Spacing metric (SM): This criterion assesses how
the uniform is the dispersion of the set of non-
dominant solutions for each algorithm. The algo-
rithm with a lower value of SM is more efficient.
This criterion is calculated as follow:

SM =

√√√√√ n∑
i=1

(GD − di)2

n− 1
. (21)
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Diversification metric (DM): This criterion is de-
fined to evaluate how the non-dominant solutions are
distributed. This criterion is calculated as follow:

DM =

√√√√ n∑
i=1

Max(xi − yi). (22)

In which (xi − yi) is the Euclidean distance between
the efficient solutions xi and yi. The higher DM value
indicates the better performance of the algorithm.

Results

In this section, the efficiency of the proposed hy-
brid algorithm has been assessed using the evaluation
criteria given in Table 3. As it is obvious, the num-
bers of efficient solutions produced by NSGA-II, in
some cases, are more than the numbers of efficient
solutions produced by the proposed NSACO-GA al-
gorithm. However, most of the solutions produced
by this method are dominated by the solutions pro-
duced by the proposed hybrid algorithm. In all the
test problems, the ER for the proposed NSACO-GA
is less than that of the NSGA-II algorithm. It could
be concluded that the proposed hybrid algorithm is
more convergent for the RS set. Moreover, the pro-
posed hybrid algorithm sets a lower GDmetric value.
Comparing the GD values of both algorithms reveals
that the solutions obtained by the NSACO-GA algo-
rithm are closer to the RS set. The numerical results

of the three criteria NNS, ER, and GD show a high-
er accuracy of the proposed NSACO-GA in compar-
ison to the NSGA-II. The spacing metric (SM) and
diversification metric (DM) values validate that the
proposed hybrid algorithm is more efficient in com-
parison to the NSGA-II. Figure 4 represents the set
of non-dominant solutions which is produced by both
NSACO-GA and NSGA-II algorithms in three ran-
dom examples. It is clear that the non-dominant so-
lutions produced by the proposed hybrid algorithm
are denser than those produced by the NSGA-II. The
diagram proposed by Nabipoor Afruzi et al. [44] has
been applied to CPU time analysis.

Figure 5 and Fig. 6 show the trend of non-
dominant efficient solutions which is obtained by
both algorithms for three mentioned examples in the
given computational time. The trend of the GD val-
ues for both algorithms is also given. Figure 5 reveals
that the numbers of non-dominant efficient solutions
which are obtained by the proposed hybrid algorithm
are more than those of the NSGA-II. In the same
computational time, the GD value of the proposed
algorithm is lower than the GD value of NSGA-II
which is showed in Fig. 6. These output results veri-
fy that the proposed hybrid algorithm produces more
efficient solutions and has a higher powerful search
ability at the same time. Based on the experimen-
tal results, the performance of the proposed hybrid
algorithm is significantly improved and its time com-
plexity is fairly equal compared to the GA and ACO.

Table 3
The computational results for the accuracy and diversity metrics.

Problem
number

Accuracy metrics Diversity metrics

NNS ER GD SM DM

NSGA-II NSACO-GA NSGA-II NSACO-GA NSGA-II NSACO-GA NSGA-II NSACO-GA NSGA-II NSACO-GA

1 34 30 0.941 0 559.068 0 24.758 0 755.15 692.059

2 13 17 0.692 0.059 320.319 0.586 46.756 0.147 367.72 397.434

3 28 39 0.714 0 344.936 0 18.119 0 704.93 831.568

4 17 28 0.882 0 736.778 0 184.19 0 459.10 416.867

5 26 38 0.615 0.053 346.74 8.617 69.348 1.417 611.23 695.685

6 30 36 0.889 0 892.125 0 98.591 0 1214.9 1136.7

7 14 30 0.929 0 3209 0 670.27 0 839.20 1011.3

8 22 33 0.818 0.061 1640.2 25.766 274.58 4.555 986.73 892.79

9 28 30 0.75 0 371.539 0 42.024 0 1506.8 595.95

10 27 45 0.741 0.133 1055.8 66.058 10.173 7.291 1145.9 1433.8

11 38 47 0.723 0.132 1494.2 147.725 38.357 24.286 2286.1 2081.6

12 23 24 0.75 0.174 2299.4 284.266 479.46 60.606 1859 964.7

13 66 62 0.712 0.242 1301.2 236.353 161.39 30.262 2081.1 2087.8

14 35 32 0.714 0 959.129 0 60.158 0 1632.5 970.89

15 32 52 0.594 0.192 629.411 289.902 56.54 87.774 1472 1621.9
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a) NSGA-II (Problem 4) b) NSACO-GA (Problem 4)

c) NSGA-II (Problem 10) d) NSACO-GA (Problem 10)

e) NSGA-II (Problem 15) f) NSACO-GA (Problem 15)

Fig. 4. The generated non-dominated solutions for each methods.

Fig. 5. A trend of non-dominated solutions for each method.
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Fig. 6. A trend of GD for each method.

Conclusion

This paper studied the multi-objective multi-
mode resource-constrained project scheduling prob-
lem (MOMRCPSP) with renewable and non-
renewable resources to achieve a better balance be-
tween time, cost, and resource fluctuations. A hy-
brid non-dominated sorting genetic-ant colony op-
timization algorithm has been developed to solve
the MOMRCPSP. Since the mentioned model is a
multi-objective, the optimal solutions are expressed
as Pareto solutions. Test problems (in three groups of
small, medium, and large scale) have been solved by
the hybrid NSACO-GA and the NSGA-II presented
by Ghoddousi et al. [17].

The set of criteria presented by Tavana et al. [35]
has been applied as the set of principles for com-
paring the mentioned algorithms. The set of efficient
solutions which are produced by proposed algorithms
has been compared with the reference set in response
to the convergence and distribution criteria. The nu-
merical results verify the higher efficiency of the pro-
posed hybrid algorithm compared to the NSGA-II
algorithm. The proposed hybrid algorithm has been
developed to solve a project scheduling problem, but
it is obvious that the other algorithms can be used
to solve this problem. Some future studies may focus
on developing the studied MOMRCPS considering
activity interruptions and activity setup times. Also,
some studies may focus on developing new strategies
which enhance the efficiency of the proposed algo-
rithm such as applying a more efficient parameter
tuning strategy or proposing a more desirable initial
solution generating procedure. The proposed mod-
el has been studied in a specific environment which
could be extended to the project scheduling problems
under uncertainty.
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