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ABSTRACT 

 

Science means here mathematics and those empirical disciplines which avail 

themselves of mathematical models. The pragmatic approach is conceived in Karl 

R. Popper’s The Logic of Scientific Discovery (p. 276) sense: a logical appraisal of 

the success of a theory amounts to the appraisal of its corroboration. This kind of 

appraisal is exemplified in section 6 by a case study—on how Isaac Newton justified 

his theory of gravitation. The computational approach in problem-solving processes 

consists in considering them in terms of computability: either as being performed 

according to a model of computation in a narrower sense, e.g., the Turing machine, 

or in a wider perspective—of machines associated with a non-mechanical device 

called “oracle” by Alan Turing (1939). Oracle can be interpreted as computer-

theoretic representation of intuition or invention. Computational approach in an-

other sense means considering problem-solving processes in terms of logical gates, 

supposed to be a physical basis for solving problems with a reasoning. 

Pragmatic rationalism about science, seen at the background of classical ration-

alism (Descartes, Gottfried Leibniz etc.), claims that any scientific idea, either in 

empirical theories or in mathematics, should be checked through applications to 

problem-solving processes. Both the versions claim the existence of abstract objects, 

available to intellectual intuition. The difference concerns the dynamics of science: 

(i) the classical rationalism regards science as a stationary system that does not need 

improvements after having reached an optimal state, while (ii) the pragmatical ver-

sion conceives science as evolving dynamically due to fertile interactions between 

creative intuitions, or inventions, with mechanical procedures. 

The dynamics of science is featured with various models, like Derek J. de Solla 

Price’s exponential and Thomas Kuhn’s paradigm model (the most familiar instanc-

es). This essay suggests considering Turing’s idea of oracle as a complementary 

model to explain most adequately, in terms of exceptional inventiveness, the dynam-

ics of mathematics and mathematizable empirical sciences. 

Keywords: algorithm, behavioral (vs declarative) knowledge, computability, cor-

roboration, innate knowledge, intuition, invention, logic gates, oracle, pragmatic (vs 

classical) rationalism, problem-solving, reasoning, symbolic logic, Turing machine. 
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1. WHAT DOES IT MEAN “COMPUTATIONAL”  

AND WHAT “PRAGMATIC”? 

 

1.1.  
This essay is meant to sketch some fundamentals of the computational 

worldview—as one being best suited to the realities of the era of computeri-

zation.1 Such a modern worldview gets realized in a possibly best way by 

what I call computational and pragmatic rationalism. This is the conten-

tion of the present essay. 

 Let us start from realizing that we happen to live in a new civilizational 

period—the era of computerization. Each era, in spite of diversity of opin-

ions, ideologies, programs, etc. is featured with a characteristic Zeitgeist, 

and it finds expression in some dominating worldview. This can be said 

about the Middle Ages, Renaissance, Enlightenment, the industrial era, and 

so on. Such a Zeitgeist depends from the current state of knowledge, social 

and economic conditions, common opinions and endeavours. 

 At all the listed points the time of ours has brought far-reaching changes, 

even revolutionary, which require an effort to form a worldview for new 

times, ready to answer its unprecedented challenges. The choice of the  

term computational worldview is motivated by the obvious reason that 

“computation” and “computability” are key concepts in the era of computer-

ization. 

 However, there a single and unique system of assertions to deserve this 

naming does not exist. The name “computational worldview” encompasses  

a fairly diversified class of views. They have in common a concept of compu-

tation, but may differ considerably with regard to the preferred model of 

computation, relations between different models, and so on. 

 In that class of computing-oriented worldviews there is one which de-

serves to be called modern rationalism. An inspiring sketch of topical ration-

alism is found by Kurt Gödel. Well suited for developing Gödel’s approach is 

the model of computation devised by Alan Turing (1939). It was meant by 

Turing as a sequel to the computing model known as the Universal Turing 

Machine (for short UTM), defined in the fundamental study (1936). It is this 

enhancement what I am to to discuss here, jointly with Gödel’s ideas. 

 Such an attempt to synthesize Gödel’s and Turing’s contributions—as far 

as I know—is rather innovatory, not likely to be found in the current litera-

ture. As being fairly new, this project may be debatable. Such a debate 

should check if the suggested here synthesis is well-founded. 

————————— 
1 See (Stacewicz 2016). Stacewicz’s term “informational worldview” is equivalent with the adopted 

in this paper “computational worldview.” Numerous proposals and comments on this issue take 
place at the academic forum CAFE ALEPH – Polemics and Chats about Computational Worldview. 
The set-theoretical term “Aleph” alludes to Turing’s (1936) proof concerning uncountable numbers 
which deals with a relation between Aleph-zero and Aleph-one. See also (Stacewicz 2019).  
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To explain the role of the word “modern,” we need to consider it at the 

historical background of classical rationalism, typically represented by Plato 

and the great thinkers of the 17th century, mainly Descartes and Gottfried 

Leibniz. The both branches have in common the claim about the existence of 

abstract objects (sets, numbers, etc.), available to intellectual intuition. 

However, in the modern approach the concept of intuition is split into two 

distinct abilities. One of them I am to call “inventive,” and the other “innate” 

or “inborn.” 

 The inventive intuition does not appear in any system of classical ration-

alism, while the innate is the subject of intense reflection on the knowledge  

a priori assumed to be an inborn ability. Reflections concerning the exist-

ence and infallibility of "a priori" form an important chapter in the doctrine 

of traditional rationalism. 

 On the other hand, according to the modern rationalism the inventive 

intuition plays a key role in the progress of science—conceived as the in-

crease of power to solve ever more problems and ever harder ones. In this 

context, solvable means capable of being solved with mechanical (algorith-

mic) computation. Here we see again a deep reason to apply the term “com-

putational” to the modern rationalism. 

The distinction between two varieties of intuition, the attributing of dis-

tinct functions to each of them, and connecting this differentiation with two 

historical types of rationalism, is yet another novelty contributed with this 

essay, and one that invites a critical discussion.  

 

1.2. 
A next innovation that may seem controversial consists in noticing a rela-

tionship between these two features attributed to modern rationalism. To 

wit: being computational and being pragmatic. 

The latter term refers to the epistemological doctrine of pragmatism as 

stated, mainly, by Charles Sanders Peirce and Henry James. Pragmatism 

decidedly opposes the claim characteristic of classical rationalism: that there 

are judgments beyond any doubt, endowed with the virtue of absolute infal-

libility. Such are—according to that claim—evident principle given a priori to 

the mind, and those which are entailed by such principles. As stressed by the 

17th century rationalists, such are axioms of mathematical theories and their 

consequences. This view, an integral part of classical rationalism, is called 

infallibilism. 

Obviously, the view denying infallibilism merits the name of fallibilism. 

It was Peirce who has laid the foundations of fallibilism when observed that 

that there was no need of infallible principles of a general nature, addressed 

to the whole mankind. For, it in the nature of any inquiry, that is, of a pro-

cess of problem solving, that as a researcher I have no chance, no possibility, 

to start from premises not being my own. Thus, even if there were principles 
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regarded by other people as infallible, but not convincing for myself, I would 

be entirely unable to take of them any advantage or assistance. Thus there is 

no need of any universal infallibilist creed. What is necessary to properly fix 

one’s own belief, is by Peirce expressed in his seminal article where he states 

the following:  
 

“It is a very common idea that a demonstration must rest on some ultimate 

and absolutely indubitable propositions. These, according to one school, are 

first principles of a general nature; according to another, are first sensations. 

But, in point of fact, an inquiry to have that completely satisfactory result 

called demonstration, has only to start from with propositions perfectly free 

from any actual doubt. If the premises are not in fact doubted at all, they can-

not be more satisfactory than they are” (Peirce 1877, 6). 

 

This is a typically pragmatic argument from impracticability, that is, the 

impossibility of doing something effectively. Peirce addresses every re-

searcher with the following message: do not bother whether the premises 

used in your demonstration belong to some infallible principles. Even if they 

were so, but were doubted by you personally, it would be practically absurd 

to make any use of them, when you possess certainties of your own, entirely 

sufficient to be used as premises. 

In confrontation with indisputable empirical facts, or with new well-

founded achievements in mathematics, such personal certainties have to 

recede, and be replaced by credible new data. Then the researcher, if get 

convinced about a new reliable result, does revise his premises to gain new 

chances of cognitive success. Again, in such a strategy, no need arises to 

resort to some principles supposed to be infallible.  

 

1.3. 
Infallibilism happens to be associated with the epistemological analytic-

synthetic dichotomy, where infallible propositions are at the analytic side, 

and fallible on the synthetic. Unfortunately, the conceptual situation is en-

tangled for the unclear status of analytic propositions, e.g., their relation to  

a priori judgments, especially in the face of Kant’s conception of synthetic  

a priori statements. These, according to Kant, are factual (synthetic) and, at 

the same time, universally and necessarily true, hence infallible, as exempli-

fied with the basic propositions of geometry. The issue of real definitions 

still contributes to the puzzle, since as real they ought to be synthetic, while 

as definitions—analytic. As a special case of real definitions may be seen 

axioms in their role of characterizing the senses of primitive concepts of  

a theory. 

Anyway, when being aware of such complications, we can bypass them 

with assumption that in the standard (i.e., non-pragmatist) epistemologies 

some propositions are regarded as infallible, and they are dichotomously 
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separated from those being fallible. Only the existence of such a dichotomy 

is what matters in the present discussion, independently of how the ele-

ments of dichotomy are conceived. 

As for pragmatism, it denies the dichotomy of fallible and infallible items 

of knowledge, the former represented by empirical sciences, the latter—by 

logic and mathematics. Instead of the dichotomy, the rationalistic pragma-

tism, championed by Kurt Gödel and Willard Van Orman Quine (1953), sug-

gests to see the set of scientific theories as ordered according to the degrees 

of fallibility. Thus the least fallibility amounts to the highest reliability being 

attainable, but not necessarily requires an entire lack of fallibility. 

For example, let us compare as to the degree of reliability: set theory, 

number theory and logic. Set theory is below the two remaining, e.g., for its 

problem with antinomies, and for involving such controversial items as the 

axiom of choice and the continuum hypothesis. 

Giuseppe Peano’s arithmetic advantage over set theory can be explained 

in a typically pragmatist way—its successful countless applications in the 

practice since thousands of years, without ever committing a smallest error. 

However, among various PA variants there appears a gradation. For in-

stance, some mathematicians have a greater trust in the reliability of the 

first-order axiom of induction, than in the cases its higher orders. 

Such a gradation has not only a due theoretical justification, but also  

a methodological advantage, over dichotomy. Even if the scale of degrees of 

reliability does not yield a linear order, then a partial order will do to make 

reasonable choices between propositions or whole theories. If, for instance, 

a nominalist refuses to accept the second-order axiom of induction, then he 

is free to rely on the first-order version as supposed by him—according to 

his philosophical belief—to have a higher degree of reliability. 

In the presence of such a ladder of reliability degrees, there arises the 

question: which discipline or theory may enjoy the highest attainable relia-

bility? This is to mean: which of them is the closest to the top, namely, to the 

ultimate (i.e. absolute) reliability which amounts to infallibility? The candi-

date most likely to win is the first-order classical logic of predicates. Such 

highest precedence is to mean that in the case of contradiction between  

a logical law and any other statement, it is the latter which should be reject-

ed as false. 

How such a dominance could be explained? What about attributing  

logic the feature of being innate? If it proves to be innate, then how is this 

feature related to being a priori? These issues are to be discussed in the next 

section. 
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2. HAS SYMBOLIC LOGIC THE HIGHEST RELIABILITY DUE  

TO IMPLEMENTATION OF LOGIC GATES IN BRAIN CIRCUITS?  

 

2.1. 
There was mentioned (1.1) the importance of intuition which is featured 

by creative inventiveness in solving problems, but not always privileged 

with high reliability, that is, not unlikely to fail is a process of problem solv-

ing. Now it is in order to focus on another kind: not inventive intuition but 

having, instead, the advantage of highest reliability. 

The argument to be offered in what follows is to the effect that there  

exists a kind of intuition even if not infallible, then closest to infallibility. 

However not so much spiritual (as Plato or Descartes believed) but rooted in 

some inborn structures in animal brains. And that logic, even as sophisticat-

ed as modern symbolic logic is rooted in those biological traits that we ac-

quired, first as part of our primate heritage, and further developed as we 

evolved. 

An important route of evolution leads from instinctive protological  

behavior up to the hights of symbolic logic and computer science. I take 

advantage of the term “protological,” as defined in Lexico UK Dictionary: 

relating to an early, basic, or undeveloped form of logic. 

This handy concept is what we need in the present discussion. It makes 

possible to consider degrees of logical competence, and use this term to de-

note its lowest degrees in which no verbal expression and even no awareness 

is involved. Then we can trace the evolutionary chain of links which leads 

from the lowest to the highest level. 

When observing a problem-solving behavior of an animal in their search 

for food, fights with rivals, escaping dangers, etc., we perceive the strategy 

which looks as guided by logical rules, in particular: generalization, instanti-

ation, detachment, transposition. 

What a conclusion should be drawn by a logician making such observa-

tions? Suppose, he is aware that his own strategies in the problem-solving 

behavior would be like those adopted by animals. Both in the cases of in-

stinctive or automated thoughtless problem-solving, as in the cases of solv-

ing the same problem thoughtfully and with awareness of inference rules, 

the logician finds the same logical rules. 

If the problem, for instance, to find a method to reach an object which in 

the moment is beyond the reach is given to a chimp, to a logician, and to  

a computer, their process of problem-solving reveals the same logical sche-

ma. A report concerning reasonings of non-human animals is given by Mar-

ciszewski (1994/2012, chap. 7) who comments on the famous Köhler’s re-

search in the intelligent behavior of a chimpanzee named Sultan. 

In order to solve the problem of reaching a fruit being in the moment be-

yond the actual reach, Sultan behaves is such a way as if knew the logical 
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rules: of forming conjunction, of instantiation and of detachment. In the 

mentioned book the author attempts to simulate Sultan’s reasoning with the 

use of computer. The intention was to check the correctness of this reason-

ing (with the checker called Mizar-MSE), and to learn whether there is  

a parallelism between the supposed pieces of behavioral logic and of sym-

bolic logic implemented in the computer.  

 

2.2. 
The experiment of simulating on computer chimp’s problem-solving  

suggests a conjecture to explain the likeness of logical schemas in the rea-

sonings of humans, animals and machines. The familiar von Neumann’s 

architecture contains logic gates implementing Boolean functions, and those 

provide symbolic logic with firm algebraic foundations. Owing to them, 

computers can compute and reason in an infallible way. 

Independently of von Neumann’s computer architecture, where logic gates 

are basic element of computing and reasoning machines, analogous structures 

were detected in the central nervous system by the logician Walter Pitts and 

the neurologist Warren McCulloch. This surprising result was published in 

the article bearing the much speaking title: A Logical Calculus of Ideas Im-

manent in Nervous Activity (1943). In computers logic gates are connected 

with wires, in brains they are nerve cells connected with axons. 

This result has revealed that the operations of reasoning and calculating 

are ruled by the laws of Boolean algebra, on an equal footing in humans and 

in machines. The logic based on this algebra provides means to formalize 

any computing or reasoning, and once something can be formalized it can 

be mechanized, either with electronic or with biological machines. 

An intriguing question with which philosophers would wish to address 

biologists and cognitive scientists, is concerned with computing and reason-

ings performed by non-human animals: are their brains equipped with logic 

gates too? 

If the answer were in the affirmative (as it seems to be in some research 

reports), then philosophers would be ready to claim that logic is omnipres-

ent in the live nature. On this basis the pragmatist argument could be coined 

that the nature provided a lot of its creatures with logic as excellent means 

to fight for survival. Their successful applications in that fight would con-

vincingly confirm the validity of Boolean rules of reasoning, independently 

of their intellectual evidence. Having had so countless empirical confirma-

tions, logic could pride oneself on winning much more scores than other 

science in the endeavour to possibly highest reliability. 

Such a key role of logic gates in the animal world could be also used as  

a case for nativism—a significant constituent of rationalistic philosophies. 

The competence owed to logic gates, inherited after parents and a chain of 

ancestors, would testify the innateness of logical skill. 
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The above remarks are a kind of thought experiment to account for the 

existence of logical knowledge in the naturalistic vein as recommended, e.g., 

by Jan Woleński (2016). He tries to bridge logic and cognitive science from  

a naturalistic point of view, to oppose classical rationalism—criticized firstly 

by Peirce. 

When conjecturing the existence of logic gates in the brains of non-

human animals, I do this with the intention of checking its mettle. Let us do 

our best to support this bias toward naturalistic epistemology, and look to 

what degree is it feasible. In such an inquiry it will be in order to confront 

the naturalistic approach to nativism with its opposite, represented by clas-

sical rationalism in several versions, each rooted in a different metaphysical 

vision. 

There is Plato’s answer taking advantage of the legend of the soul’s preex-

istence and remembering (anamnesis) the knowledge attained in that phase. 

There is Augustinus’ claim in terms of divine illumination. And that of Des-

cartes who instead of divine illumination speaks of lumen natural—the light 

somehow endowed by Nature to human minds. Descartes extensively and 

systematically featured the role of what he called intuitus. 

As for Leibniz, his Monadology presents monads conceived as prepro-

grammed living entities—divina automata, or divinae machinae (his own 

words) with a suitably equipped memory. It is Leibniz who merits attention 

as a forerunner of nativism worth to be remembered in the era of computer-

ization. There is a thought-provoking analogy between his point and the 

definition of the adjective preprogrammed in current dictionaries. This 

definition, when referred to living creatures, runs as follows: prepro-

grammed = genetically biased towards a particular behaviour. Thus nativ-

ism, when associated with the idea of automaton or machine, manifests  

itself as a likely component of computational rationalism. 

If there is a bias toward a conditioned genetically behaviour, then it be-

longs to the innate traits. Combining genetics and the theory of automata, 

somehow on the Leibnizian pattern, Chomski revolutionized the current 

linguistics and philosophy of language, pioneering thereby the modern ra-

tionalism. His concept of linguistic competence denotes the ideal language 

system that enables speakers to produce and understand an infinite num-

ber of sentences in their language, and to distinguish grammatical sentences 

from ungrammatical sentences. The infinity should be understood here as 

an countably infinite set.  

 

2.3. 
Analogously to Chomski’s concept of linguistic competence there ap-

peared in cognitive psychology, and philosophy of mind, the notion of logi-

cal competence to name cognitive mechanism that enables to complete logi-

cal tasks. For instance, Paula Quinon writes in her paper Logical Compe-
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tence: “Systems of core cognition correspond to what is called competences. 

[...] Systems of core cognition are present in infants and also shared with 

many non-human animals. This means they are pretty deeply inserted in the 

brain structure (Quinon, no date of publication).” 

The phrase “logical competence” is convenient for an analogy with 

Chomski’s notion of linguistic competence, and agrees with defining it in 

dictionaries as ability to do something efficiently. The stress put on biologi-

cal foundations of logical competence and their innativeness (as inborn to 

infants and animals) does seem justified in the light of current knowledge 

about brain structures. 

However, there is a significant disparity between linguistic and logical 

competences. The former is a feature of human minds alone, while the lat-

ter—as remarked in the above comment—is possessed also by non-human 

animals. 

Some people doubt whether non-human animals, even so intelligent as 

cats, dogs, chimps etc. are capable of having a logical competence. The 

doubt may arise when no distinction is made between behavioral 

knowledge (often called procedural) and declarative knowledge. In  

a more idiomatic form, popularized by Gilbert Ryle (1949), the counterparts 

of these technical terms are, respectively, “knowing how” and “knowing 

that.” 

The distinction is nicely mirrored in the domain of logic with regard to 

humans. Every human being avails himself with behavioral logic while pro-

fessional logicians and their audiences know additionally its declarative 

counterpart such as symbolic logic. Though the latter is beyond any reach of 

non-human animals, are there really any reasons to refuse them behavioral 

logic? Even everyday observations, as well as professional experimental in-

quiries, hint at the animal abilities of solving problems in such a way as if 

they knew inference rules of detachment, transposition, instantiation, etc. 

(compare the story of Sultan told in 2.1). 

Human beings share such a behavioral logic with chimps as if a kind of 

protological anticipation. At the same time, however, they are privileged 

with an enormous advantage—that of being language-speaking creatures. 

Owing to that, they could make an astonishing evolutionary leap—to trans-

form their behavioral logic into declarative logic, symbolic and formal, and 

thus enter a decisive route of civilizational development. 

The first system of formal logic, that of Aristotle, in its long historical de-

velopment has led to Boolean algebra which contributed to the rise of 

Gottlob Frege’s axiomatic system of logic. That, in turn, together with Ber-

trand Russell’s and Giuseppe Peano’s achievements, led to David Hilbert’s 

program. It stimulated the astonishing Gödel’s and Turing’s discoveries, 

paving the way to the theory of computability and the rise of computer sci-

ence. 
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Such an immense civilizational epic wouldn’t happen if the mankind did 

not inherit after its animal ancestors the innate behavioral logic which was 

to become the source and truth warrant for declarative formal logic. The 

maximal reliability of such a warrant stems from the fact that behavioral 

logic has found an unimaginable number of confirmations, having been so 

successfully applied by animals in their fight for survival during the millions 

years of evolution. This is the best possible pragmatic check of the highest 

reliability of logical intuitions displayed in an unconscious logical behaviour 

of animals. 

 

 

3. HILBERT’S PROBLEM OF THE DECIDABILITY OF LOGIC, 

TURING’S FORMAL MODEL OF THE DYNAMICS OF SCIENCE  

 

3.1. 
The most consequential problem about mathematical intuition put Hil-

bert (1928) under the name Entscheidungsproblem. Immediately it is con-

cerned with the power of algorithms apt to be expressed in predicate logic, 

but indirectly it has far-reaching consequences for the concept of intuition. 

Before discussing the issue more extensively, it will be in order to sketch the 

core of argument. 

This is the problem of algorithmic decidability of formalized predicate 

logic: does there exist a mechanical procedure to decide about any of its 

formulas whether it is a logical tautology or is not. When in their 1928 text-

book Hilbert and Ackermann stated the question, such procedures were 

already invented for propositional calculus, but not for predicate logic. The 

authors emphasized that the problem is of fundamental significance, and 

seemed to expect its positive solution in a not distant future. 

The solution appeared after few years, due to several authors who inde-

pendently in the same year 1936 published their results. The most seminal 

were the results of Turing whose the basic part appeared in (1936) and the 

sequel in (1939). The former has brought the most influential model of 

computing known as the Universal Turing Machine, mentioned in 1.1. As 

commonly known it is in no need to be here reported. 

The study of 1939 (also announced in 1.1) will be now discussed from the 

angle of its relevance to the issue of scientific dynamics which entered  

a dramatically new phase through Turing’s discovery of algorithmic unde-

cidability of symbolic logic and analyzing its epistemological consequences 

in the study on ordinal logics. Its full title reads: Systems of Logic Based on 

Ordinals (1939), and the main idea is the following:  
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To grasp this main idea, one should focus on considering an infinite or-

dered sequence of logical systems ever stronger, that is, having ever greater 

problem-solving ability. To get more to the heart of the matter, the above 

fundamental statement should be read in the light of the following passage 

in section 4: 
 

“Let us suppose that we are supplied with some unspecified means of solving 

number theoretic problems; a kind of oracle as it were. We will not go any fur-

ther into the nature of this oracle than to say that it cannot be a machine; with 

the help of this oracle we could form a new kind of machine (call them  

o-machines), having as one of its fundamental processes that of solving a giv-

en number theoretic problems.” 
 

Through this suggestive picture of oracle Turing introduces the revolu-

tionary idea of relative computability to highlight the busy road of the pro-

gress of mathematics (that supports significantly the progress of the rest of 

knowledge). Since in formalized systems, including Turing machines, com-

puting is the universal method of problem solving, the relativeness of com-

putability entails relativeness of solvability. 

Before there appeared these surprising results, no scientist imagined 

such a gradation of solvability. Optimists like Hilbert believed in the maxim 

in der Mathematik gibt es kein “ignorabimus,” while those less optimistic 

divided the set of problem into disjoint and closed classes: solvable and non-

solvable. 

Thus, for long time the potentiality of such dynamic migration of unsolv-

able problems to the class of solvable was weakly felt by a majority of schol-

ars. The growth of such awareness can be observed among computer scien-

tists, as suggestively expressed Salomon Feferman’s (1992) article entitled: 

Turing˙s Oracle: From Absolute to Relative Computability and Back. More 

details about the impact of the idea oracle Feferman gives (2006). Martin 

Davis (2006) states that Turing’s use of a computing oracle has proven to be 

highly influential in theoretical computer science, e.g., in the polynomial 

time hierarchy.  

While mathematicians and computer scientists more and more appreci-

ate the idea of oracle, as Feferman reports in the cited article (2016), philos-

The well-known theorem of Gödel shows that 
every system of logic is in a certain sense in-
complete, but at the same time it indicates 
means whereby from a system L of logic a more 
complete system L’ may be obtained. By repeat-
ing the process we get a sequence L, L1 = L’, L2 = 
L’1, L3 = L’2,... of logics each more complete than 
the preceding.  
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ophers try to interpret this new mathematical idiom in terms of epistemolo-

gy, epistemology, psychology, philosophy of mathematics. 

How far have we progressed in these domains owing to the notion of ora-

cle? Does such a vision represent a realistic model of dynamics of science? 

May there exist, in the real world, physical or mental entities to form such 

an infinite sequence of ever more potent problem-solvers? 

In the literature dominates interpretation to the effect that oracle is an 

idealized model of mathematical intuition. This approach is shared by such 

experts as Roger Penrose and Andrew Hodges (see (Copeland 2008) re-

ferred to in footnote 2). 

There is an impressive evidence given by Max H. Newman who in 

a biographical memoir on Turing, identifies the oracle with mathematical 

intuition. Newman was Turing’s collaborator, and had to know his inten-

tions—to the effect that the oracle enables to see the truth of a formally un-

provable Gödel statement; in this task human intuition does succeed.2 

Turing (1939) also connected achievements of mathematical intuition 

with the progression of ordinal logics, when making the following comment: 
 

“Owing to the impossibility of finding a formal logic which will wholly 

eliminate the necessity of using intuition we naturally turn to ‘non-

constructive’ systems of logic which not at all the steps are mechanical, some 

being intuitive. An example of a non-constructive logic is afforded any ordinal 

logic. When we have an ordinal logic we are in a position to prove number 

theoretic theorems by the intuitive steps.”  

 

3.2. 
It would be welcome to get acquainted with concrete instances of the en-

visioned by Turing progression of ever stronger problem-solvers. From this 

point of view, there seem to be relevant Gödel’s consideration of the infinite 

ordered sequence of logics of ever higher orders. The higher is the order of  

a system, the greater its deductive power—exactly in the sense defined by 

Turing: a system marked by a natural number, say n denoting the order of  

a logic, is able to solve every problem solvable by those bearing a number 

lesser than n, and additionally some problems that cannot by solved by any 

of its antecessors.  

Moreover, such a new system has the very desirable merit not having 

been mentioned by Turing. The increase of the deductive power results in  

a significant shortening of problem-solving procedures. Here is Gödel’s own 

statement. It has been demonstrated, not by Gödel himself, but by other 

authors some years later. It was S. R. Buss (1994) who produced a detailed 

————————— 
2 See: https://www.ics.uci.edu/ welling/teaching/271fall09/Copeland—TheMathematicalObjec 

tion.pdf—Jack Copeland (2008) created a very useful and interesting collection of statements on 
intuition and creativity made by Turing, Gödel, Post and Penrose, entitled The Mathematical Objec-
tion: Turing, Gödel, and Penrose on the Mind. 
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proof, while George Boolos offered a nice exemplification in his seminal 

study A Curious Inference (1987). A philosophical comment on Boolos’ in-

ference is found in (Marciszewski 2006), while its computer implementation 

of this inference is due to Benzmüller and Brown (2007). 

The latter research demonstrates enormous advantages of higher-order 

logic (or a corresponding system of set theory) with regard to the length of 

proof. They powerfully demonstrate what Gödel (1936) says about shorten-

ing of proofs “by an extraordinary amount” in the following statement. 

 

 

As to the power of the higher-order logic, a striking exemplification can 

be found in case of arithmetic. Consider arithmetic formulated in the lan-

guage of second-order logic. The belonging to that order makes it possible to 

quantify not only over natural numbers (as individuals) but also over sets of 

natural numbers. Since real numbers can be represented as infinite sets of 

natural numbers, and since second-order arithmetic allows quantification 

over such sets, the theory of real numbers can be formalized in second-order 

arithmetic; see (Sieg 2013, 291). Such a close assimilation to the theory as 

powerful as mathematical analysis is a remarkable achievement of the sec-

ond-order logic. 

How is related the Gödel’s claim to the idea of oracle? Certainly, the for-

malized systems of logic of ever higher orders can be regarded as machines, 

since formalization, practically, equals mechanization, as suggestively ex-

pressed by Gregory Chaitin (2006): “Gödel’s 1931 work on incompleteness, 

Turing’s 1936 work on uncomputability, and my own work on the role of 

information, randomness and complexity have shown increasingly emphati-

cally that the role that Hilbert envisioned for formalism in mathematics is 

best served by computer programming languages, which are in fact formal-

isms that can be mechanically interpreted (Chaitin 2006).”  

The above account is an attempt to exemplify the general Turing’s sche-

ma with concrete cases. How far such concretizations are relevant to the 

issue of mathematical intuition as a source of potent algorithms, it is the 

issue open to a further penetrative discussion. 

 

 

Thus, passing to the logic of the next higher 

order has the effect, not only of making provable 

certain propositions that were not provable be-

fore, but also of making it possible to shorten, 

by an extraordinary amount, infinitely many of 
the proofs already available. 
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4. MODERN RATIONALISM AS AN OPTIMISTIC, AS WELL  

AS REALISTIC, VISION OF THE DYNAMICS OF SCIENCE 

 

4.1. 
Does science progress? Those who have grown in the cultural environ-

ment of the 20th and the present century may be surprised that somebody 

puts such a question. It seems as pointless, as if somebody asked, for in-

stance, whether a triangle should contain three angles. For we conceive the 

scientific progress as belonging to the very nature of science like the triangu-

larity to the essence of a triangle. 

A different concept of science was characteristic, in particular, of the 

Middle Ages. Then the whole work of scholars was devoted to the preserva-

tion, transmission and commenting the body of knowledge inherited from 

antiquity. The long process toward our current awareness was due to many 

intertwined factors. 

The one especially relevant to the present discussion it is the growing 

demand for new, ever more efficient and more numerous methods of calcu-

lation. This pression, typical for civilizational development, was coming 

from astronomy, engineering, navigation, economy, etc. In the 20th century 

it culminated inside mathematical logic in the idea of great reform of math-

ematics. How there has come to this brainchild, is a story to be told in this 

discussion. 

Why logic played a major role? The road from a prescientific, solely intui-

tive, mathematical theory, as practiced, say, in the ancient Egypt, Babylon, 

etc. up to its doing in a mechanized way, as in our era of computers, leads 

through two preparatory phases: axiomatization, and then formalization in 

a language in which we could express the whole of mathematics. 

Such a language, envisioned by Leibniz, has been accomplished first by 

Frege (1879), and then by Russell, Peano, Hilbert, Gerhard Gentzen, and 

Polish logicians. This is the language of predicate logic, capable of express-

ing—with the help of suitable definitions and substitutions for variables—

every mathematical proposition. Half century after Frege, owing to the ge-

nius of Turing (1936), we have got the message that the predicate logic is 

capable of being implemented in a machine to prove theorems and compute 

mathematical functions. 

However, Turing’s achievement which fulfilled the hope in the possibility 

of mechanizing calculations and reasonings, at the same time brought entirely 

unexpected result about serious limitations of computing machines. Using 

Cantor’s diagonal method, Turing proved the existence of uncomputable func-

tions. When asked about the value of such a function, the machine does not 

bring any result, and cannot halt the procedure, making infinite loops. 

This amounts to the undecidability of predicate logic–the issue men-

tioned above (2.2) in connection with the problem of ascertaining logical 
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truths. Every process of computing the value of a function can be interpret-

ed as the proof of an arithmetical theorem. If the value of a function cannot 

be computed, this means that the corresponding theorem cannot be proved. 

The existence of unprovable theorems amounts to undecidability of logic.  

 

4.2. 
However, Gödel believed in human reason’s ability to make a concept 

more and more precise, up to the point in which it can be characterized by 

axioms of a theory. The fact of its being formalized ensures an algorithmic 

procedure to solve problems which were unsolvable before axiomatization 

and formalization. Such a process can be nicely exemplified by the history of 

making the concept of set ever clearer—from a vague idea up to the stage of 

formalization, e.g., with Zermelo-Fraenkel set theory. 

Tu sum up, Hilbert’s claim that [H] there is an algorithm to computa-

tionally solve every mathematical problem, has been replaced by Gödel’s 

claim that, owing to intellectual intuition, [G] for each mathematical prob-

lem there can be found an algorithm to solve it. This difference becomes 

more conspicuous when expressed with logical formulas; in the following, 

the variable a runs over the set of algorithms, while p – set of problems.  

[H] ∃a∀p(aSp)  

Computational Non-Pragmatic Rationalism – CNPR  

[G] ∀p∃a(aSp)  

Computational Pragmatic Rationalism – CPR  

Formula G expresses just a part of CPR. It hints at the difference with H 

which consists in the order of quantifiers. For the full characterization of 

CPR, it should be added that the algorithm a to solve problem p is not al-

ways at hand (as is in the case of CNPR), but has to be found in a process 

which starts from an act of intuition. Thus the existential quantifier in G 

means something like potential existence. That such a potentiality is real, is 

an optimistic feature of CPR. Gödel advocated CPR as an “optimistic ration-

alism” (his own phrase). This optimistic attitude is penetratively analyzed by 

Stacewicz (2019, sec. 5). 

Such an optimism involves the conjecture about the reliability of mathe-

matical intuitions. However, there are philosophers and even circles of phi-

losophers, as the Vienna Circle, that do not admit any trace of intuition as  

a factor in what they call “scientific philosophy.” They reject intuition as mis-

leading and needless. Nowadays such opinions remain influential not so 

much among mathematicians, as among some representatives of humanities.  

 

4.3. 
The inquiry into the said issue leads to acknowledging the indispensabil-

ity of mathematical intuition on par footing with the indispensability of al-

gorithms, in the drive of science toward ever higher solvability. This drive is 
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admirably efficient, as we see in the history of science and in our everyday 

lives. And its efficiency speeds up every year, in particular, in natural scienc-

es and technology. Why there is so? 

The first step towards the answer is to realize that nowadays both, sci-

ence and technology, enjoy a solid and extensive mathematical basis, one 

that didn’t exist, neither was thinkable in any earlier time. Owing to such an 

excellence, it can bring ever more numerous and more surprising results. 

Let me hint as the two astonishing and spectacular cases. 
Among them there was in 2015 the detection of gravitational waves which 

round hundreds years earlier were predicted by Einstein on the purely mathe-

matical ground as equations of general relativity, but up to the year 2015 con-
jecture fact could not be approached experimentally for the lack of suitably 

sensitive instruments. 

In turn, Einstein’s theory would not arise in 1915, if there did not exist  

a perfectly suited for such a purpose non-Euclidean elliptic geometry, creat-

ed in 1866 by Riemann for pure theoretical reasons, without any inkling 

about revolutionary empirical applications to come in a future. 

The case is exceptionally intriguing for its nexus with the issues of geo-

metrical intuition. Let us consider the following remark in WolframMath-

World:3 
 

“In three dimensions, there are three classes of constant curvature geome-

tries. All are based on the first four of Euclid’s postulates, but each uses its 

own version of the parallel postulate. The ‘flat’ geometry of everyday intuition 

is called Euclidean geometry (or parabolic geometry), and the non-Euclidean 

geometries are called hyperbolic geometry (or Lobachevsky-Bolyai-Gauss ge-

ometry) and elliptic geometry (or Riemannian geometry). Spherical geometry 

is a non-Euclidean two-dimensional geometry. It was not until 1868 that Bel-

trami proved that non-Euclidean geometries were as logically consistent as 

Euclidean geometry.” 

 

Without any polemical comment, I would just encourage those who dis-

like talking of intuitions that them try to replace the phrase “everyday intui-

tion” by any other, being more “scientific” according to their standards of 

scientific exactness. 

Anyway, let us take for granted the existence of everyday geometrical in-

tuition, akin (presumably) to some rudiments of procedural (imperative) 

knowledge possessed by other mammals. Higher animals seem to enjoy  

a similar orientation in space, though they did not study Euclid. It looks as if 

were an inborn rudiments of geometry in animals. 

This is not to mean that non-Euclidean geometries contradict the every-

day geometrical intuition—presumed in Euclid’s work. At the bottom of 

————————— 
3 See: http://mathworld.wolfram.com/Non-EuclideanGeometry.html 
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non-Euclidean approaches there are other intuitions, connected with astro-

nomical observations, as exemplified with the case of Ptolemy. He was 

aware that the area of a triangular region on the sphere is precisely the 

amount by which its angle sum exceeds 180 degrees.4 

Thus geometrical intuitions stemming from an astronomical experience 

differ from those of everyday experience, but there does not occur between 

them any contradiction (see the passage of MathWorld cited above). Any-

way, to start a cognitive process, we have to rely on some primordial in-

sights.  
 

4.4. 
Having had devoted a bit of attention to geometrical intuition, it is in or-

der to mention the issue of intuition in arithmetic—as much as needed to 

highlight a pragmatic approach to the problem. 

As we can observe in primitive tribes and in children, arithmetic starts 

from perceiving small sets of physical things. A child perceives differences of 

set size (number of elements) in some cases and size identity (equinume-

rosity) in other ones. The latter is necessary to form the notion of (cardinal) 

number. The other factor, not less necessary is person’s capability of ab-

stracting. 

This capability should be acknowledged as an inborn ability, indispensa-

ble for learning a native language through the procedure of ostensive defini-

tions. The role of abstraction in the procedure of ostensive defining is too 

extensive theme to be considered in this essay. A fairly exhaustive treatment 

is found in the book by Marciszewski (1994, chap. 8) in the chapter entitled 

“The ostensive procedure as a paradigm of definition.” 

After gaining the notion of natural number, people are able to imagine 

the successor of any number, and successor of that successor, and so on, 

potentially up to the infinity. It is a remarkable and even mysterious feature 

of humans, one that made them able to climb higher and higher the ladder 

of mathematical abstraction. 

Quite different is an approach to arithmetic which has been popular be-

cause of having a famous author—Immanuel Kant. He regarded arithmetic 

as the knowledge based on the pure intuition of time. This way of thinking is 

presently continued in the philosophy of mathematics termed intuitionism. 

However, this doctrine does not seem to accord with what we know about 

cultural evolution of mankind: the process which starts from sensory obser-

vations of small sets, not having yet the concept of zero. Then due to  

a long evolution the awareness of humans (at least some of them) reaches 

the heights of set theory, and logic with arithmetic logic of arbitrarily high 

order, and so on. 

————————— 
4 See: http://www.math.brown.edu/ banchoff/Beyond3d/chapter9/section03.html 
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These impressive achievements are not confined to pure theory. As  

a rule, such intellectual insights lead to a well-confirmed empirical theories 

by devising a calculus suitable for the domain in question, in order to com-

pute functions which render empirical laws—natural, social, mental, etc. 

Such was the case of Isaac Newton, Albert Einstein, Werner Heisenberg, 

Erwin Schrödinger, von Neumann etc. For instance, to establish an algo-

rithm of rational decision making (for economics, praxiology, etc.), we need 

the calculus of probability, while physics resorts to geometrical models, dif-

ferential calculus, etc. 

Let us sum up the role of intuition in the algorithm-oriented progress of 

science with Chaitin’s suggestive statement to run as follows:  
 

“There is no limit to what mathematicians can achieve by using their intuition 

and creativity instead of depending only on rules of logic. Any important 

mathematical question could eventually be settled, if necessary by adding 

new fundamental principles to math, that is, new axioms or postulates. This 

implies that the concept of mathematical truth becomes something dynamic 

that evolves, as opposed to the traditional view that mathematical truth is 

static and eternal” (Chaitin 2006). 

 

 

5. EXTENSIONAL VS INTENSIONAL EQUIVALENCE  

OF MODELS OF COMPUTATION FROM THE ANGLE  

OF SCIENCE DYNAMICS  

 

This distinction is to the point in the debate about the strong AI project 

and its influence on the understanding of the dynamics of science. It allows 

to briefly express the strong AI claim by saying that the human brain is ex-

tensionally equivalent to the Universal Turing Machine, without being 

equivalent intensionally. 

As for alternative computation models, as cellular automata, artificial 

neural nets, analog computers, etc., they—according to the Strong AI doc-

trine—should be reducible to UTM. Reducing means here: to regard those 

alternatives as extensionally equivalent with UTM (as the paradigmatic 

case). 

To briefly explain the distinction, I avail myself with its concise formula-

tion by Paweł Stacewicz who sums up a more detailed text by Hajo Greif 

Invention, Intension and the Extension of the Computational Analogy post-

ed on “Cafe Aleph”—an academic forum to discuss philosophy of computer 

science:5 
 

“Two models of computation are extensionally equivalent if they have the 

same class of solvable problems (regardless of how these problems are 

————————— 
5 Both texts are available when addressed: http://marciszewski.eu/?p=10558 
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solved). Thus: the Universal Turing Machine (UTM) model is equivalent to 

both the recursive functions model and the quantum computation model. In 

contrast, the UTM model is not extensionally equivalent to the analog-

continuous model of computation (described by means of real recursive  

functions). The latter, theoretically speaking, allows to solve the TM halting 

problem (unsolvable under the UTM model). It is therefore extensionally 

stronger” (Stacewicz, see footnote 5).  
 

To extend the list of main extensional equivalences with UTM, let us 

complete it with Church’s lambda-calculus and Post’s systems. The same 

cases are also examples of intensional non-equivalence—the term needed to 

account for the fact that some models, though extensionally equivalent  

obtain the same results in a different way. The Strong AI doctrine holds that 

the human brain is extensionally equivalent to UTM, but admits that it may 

be not equivalent intensionally. 

Let us employ the phrase “scientific robot” to name any Turing machine 

programmed to do science. According to the Strong AI doctrine, such robots 

can be produced when the complexity of electronic agents will match that of 

human brains. Some Strong AI adherents, for instance Ray Kurzweil, hold 

that the ability to produce such agents should appear soon, near 2050. 

Suppose that after 2050 the task of doing science should be performed by 

scientific robots. Thus their producers have to solve the problem of equip-

ping them with the trait of inventiveness. This would be a crucial issue for 

predicting the future dynamics of science. If the project does succeed, then 

the dynamics of science will be like that having been hitherto. If it happens 

to fail, then the Strong AI project proves utopian, and the task of dynamical-

ly forwarding science would remain with humans, since there is no progress 

of knowledge without creative invention. 

The distinction we here discuss, though useful in comparing models of 

computation, demands a more precise explication. It turned out so, for in-

stance, when there occurred a problem with publishing Turing’s (1936) 

study. The editor was not sure whether the study was duly original, or it 

repeated—only with a different terminology—Alonzo Church’s result stated 

in terms of lambda-calculus. 

This meant the doubt whether their results are equivalent not only exten-

sionally (what later proved evident) but intensionally as well; were the latter 

the case, this would mean lack of originality. Only after Turing submitted 

additionally a proof of intensional non-equivalence, the study on computa-

tional numbers could accepted for publication. 

Let it be added that the very term “extensional”—whose understanding  

is needed to grasp the meaning of “extensional equivalence of computation 

models”—is pretty familiar to logicians. The historical origin of this concept 

goes back to Frege and his famous comparison of the phrases “morning  

star” and “evening star”—equivalent extensionally and different intensional-
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ly. Persons less familiar with the issue, may consult relevant reference 

works.6 

The opposition discussed above provides the opportunity to render con-

cisely this essay’s main point that is as follows. If there existed extensional 

equivalence between UTM and the mind/brain as a model of computation, 

and the science would be done by scientific robots, then the dynamics of 

science would disappear. This would be unavoidable for the lack of curiosity, 

imagination and inventiveness as being the privilege of humans alone. This 

point is developed in the two next sections. 

 

 

6. WOULD THERE BE ANY DYNAMICS OF SCIENCE,  

IF THE SCIENCE WERE BEING DONE BY MACHINES?  

NEWTON’S GRAVITATION AS A CASE STUDY  
 

6.1. 
The title of this essay promises considering the progressive dynamics of 

science which more and more furthers its frontiers. In the preceding sec-

tions only the dynamical evolution of mathematics was handled, hence now 

it is in order to pay attention to empirical sciences. 

The former so extensive treatment of mathematics is dictated by the fact 

that it was metamathematics in which one worked out the conceptual appa-

ratus to deal with progress in terms of the efficiency of problem-solving 

methods. In turn, this speedup of solvability was explained with reference 

to the logico-mathematical notion of computability. The latter does not be-

long to the standard vocabulary of the methodology of empirical science 

where solvability is addressed with some related concepts: induction, prob-

ability, confirmation, corroboration, etc. 

Nevertheless, the issue of computability is firmly present in the deep 

structure of empirical theories. Mainly in physics, but also in some social 

sciences, as economics. Hence it is not unlikely that these two methodolo-

gies get closer to each other, and create a common conceptual framework to 

analyze the dynamics of science in general. 

It is not possible to propose such a framework here; this would require 

separate extensive studies. Instead, I propose a thought experiment. It 

should give just a first glance at Turing’s (1939) idea of oracle as a mathe-

matical model of inventive problem-solving. 

Let us imagine that an ingenious engineer of strong AI produces a scien-

tific robot (as defined in section 5) to simulate with UTM the historical Isaac 

Newton, to wit Newton’s mechanical avatar, so to say. Let the proper name 

of that artefact be "T-Newton" to indicate its Turingian (1936) nature. 

————————— 
6 For instance, the article Extension by Marciszewski in: Dictionary ..., W. Marciszewski (ed.), 

1981 (2013). Available through books.google.pl after filling the search box with the term Extension. 
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When programming T-Newton’s brain, the designer must decide about 

the period of life in which acts such an artificial agent: should T-Newton be 

like young Newton, or more mature, or otherwise? Assume that the designer 

chooses Isaac Newton (1643–1727) in the age of twenty two, having the fol-

lowing properties: (1) already got to perfectly know mathematics, physics 

and astronomy as were available then to men of learning, but (2) he did not 

discover yet the universal law of gravitation. Shortly after, the twenty-three-

year-old Newton made his famous legendary observation of falling apple. 

Let’s capture that moment. 

In a flash of intellectual enlightenment young Newton understood that 

the same force of gravity that pulled the apple to Earth kept the moon in 

orbit. Would it be likely in the case of T-Newton? 

In order to try a response to this question, the AI-constructor would have 

endowed T-Newton’s memory with identical content as that possessed by 

the real, twenty three years old, Newton. There must have been arithmetics, 

geometry and algebra, all of them highly in that time advanced, and besides 

the rules of logic necessary to prove theorems. 

However, that is not all. Something more should be taken into considera-

tion in order to appreciate the degree of Newton’s inventive genius in com-

parison with T-Newton’s abilities. A story to shed light at this issue is told 

below.  

 

6.2. 
The story should deliver a relevant example for debating on the inventive 

potential of Turing machine, personified in our tale by T-Newton. Let us 

assume that T-Newton’s memory includes the principle of impossibility of 

any action at a distance. It says the following. 

 

 

The abbreviation NAD stands for the most concise Latin version: Nulla 

Actio in Distans. How obvious, certain and convincing seemed this principle 

to the most eminent thinkers, testifies the list of its adherents: Thomas 

Aquinas, Descartes, Leibniz, Broad, Michael Faraday, James Clerk Maxwell, 

Hendrik Lorentz, Heinrich Hertz, Albert Einstein. 

Among them it was Leibniz who not only sticked firmly to NAD, but ve-

hemently attacked and even ridiculed Newton’s theory of gravitation for its 

giving up that inviolable and sacred principle. Leibniz’s harsh satire bears 

the following title: Antibarbarus Physicus pro Philosophia Reali contra 

NAD: It is not possible for anybody to affect the 

other: (1) at any distance, (2) without requiring 

any portion of time, and (3) without any medi-
um to carry the interaction. 
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renovationes qualitatum scholasticarum.7 This means. “Anti-barbaric Phys-

icist in defense of realistic knowledge against the revival of occult qualities.” 

English lexicons define “barbaric” as “marked by crudeness or lack of so-

phistication,” and this is what meant Leibniz when accused the Newtonian 

gravitation of being as crude, that is, lacking of sophistication, like naive 

explanation of Nature by the medieval schoolmen. In the Middle Ages this 

was a common expedient: properties lacking a known rational explanation—

for example, magnetism—were considered occult qualities. 

In the times close to those of Leibniz (1646–1716), it was Descartes 

(1596–1650) who claimed to eliminate occult qualities in favor of mechanis-

tic explanation. This was exactly what also Leibniz defended as realistic 

knowledge (philosophia realis), and blamed the idea of gravitation as “chi-

merical.” 

To see how much such a criticism was due to the Zeitgeist of the 17th 

century, let us notice its presence even in, so to say, “pop culture” of that 

time. It was Molier (1622–1673), comedy writer, who derided medician s of 

Sorbonne who biological phenomena, difficult for them to understand, 

treated in terms of occult forces: a scholastic doctor asked why opium makes 

one sleepy, replays: “for there is in it the force to make one sleepy”; instead 

of a scientific explanation—a linguistic trick. 

While mechanism was endorsed then by progressive thinkers as the new 

paradigm to pave the way to the flourishing of science, Newton—now re-

garded the founder of mechanism in physics, seemed to betray that para-

digm with his idea of gravitation. How to understand such a stance?8 

Before answering this question, it is worth while to account for concep-

tion of mechanism worded by Leibniz. He devised the list of concepts of 

natural science which he regarded primary and fundamental, and apt to 

define remaining concepts of natural sciences. There he enumerated: num-

ber, measure, mass, shape, movement, and the relation of contiguity (max-

imal proximity) between bodies. 

Significant is Leibniz’s claim that whatever happens in the physical uni-

verse, should be made conceivable in terms of contiguity and movement. 

This is why he could not believe in the reality of the gravitational force as 

moving bodies without their being in the relation of contiguity. 

Leibniz did not deny a physical reality to such forces as those of mag-

netism, elasticity, etc. However he denied their being primary, i.e. funda-

mental. Instead, he allowed to use them as derived concepts, defined in 

terms of such primitive ones as movements and shapes—the sources of 

those secondary phenomena. His crucial statement is: “Permissum est ag-

noscere vires magneticas, elasticas aliaque sed ea lege ut intelligamus eas 

————————— 
7 In: Die Philosophische Schriften von Gottfried Wilhelm Leibniz, von E. J. Gerhardt (ed.), vol. 

VII, Georg Olms, Hildesheim 1961, pp. 337–343, passim. 
8 As for Newton mechanism, see (Schiemann 2008, 36–38). 
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non esse primitivas sed ex motibus figurisque ortas” (see in: Gerhard 1961, 

338). 

This was a kind of reductionism which Leibniz agreed to apply to gravita-

tion. In the case of such reduction, there was no need to assume that a body 

affects another one (1) at any distance (2) without requiring any portion of 

time, and (3) without requiring any medium to carry the interaction—as 

assumed by Newton.9 

 

6.3. 
Let me repeat the question taken as the title of the present section: 

Would there be any dynamics of science, if the science were being done by 

machines? The answer should be in the negative: if the science were being 

done by machines, then there would be no dynamics. 

 

 

The law of gravitation is like a new axiom added to the existing body of 

knowledge. Newton decided to do so in spite of seeing arguments for NAD. 

It is an interesting question whether T-Newton, programmed by his design-

er, would be able, after a reflection, to make such a choice—between prag-

matism and fundamentalism—on his own. Fortunately for the future of sci-

ence, he proved to prefer the pragmatist option. 

We cannot learn his motivation, but leaving apart any psychological  

consideration, and judging just from a methodological point of view, we 

should appreciate his choice for the high level of corroboration characteriz-

ing his theory. I take the term “corroboration” in the sense defined by  

Karl Popper in his opus magnum—The Logic of Scientific Discovery (1959, 

chap. X). 

However, Leibniz’s belief in NAD has been supported by the most recent 

results in physics. Item 2 of NAD (see text box in 6.2) is to the effect that any 

physical interaction requires a portion of time was predicted by the Ein-

steinian theory of gravitation, but up to recently it remained beyond any 

experimental support. Only in 2015 the Laser Interferometer Gravitational-

————————— 
9 Compare the wording of NAD in the text box at the beginning of this section (6.2).  

It should be so, provided two assumptions: (A) 

“machine” means the universal Turing machine 

without oracle; (B) the dynamics of science does 

not consist in deriving new consequences from 

the axioms already existing, but in the inventing 

new axioms—such that some problems not be-

ing solvable on the basis of the former axioms 

become solvable after adding new ones. 
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wave Observatory (LIGO) has detected gravitational waves which, according 

to Einstein’s theory of gravitation are ripples in space and time. Hence grav-

itation proves to be a spatio-temporal phenomenon, as postulated by Leib-

niz; the speed of gravitational waves equals that of light.10 

 

6.4. 
The opinion that T-Newton, for the lack of invention, would not be able 

to make discoveries, and so contribute to the dynamics of science, might be 

objected with the following argument. The recent progress in programming 

makes it possible to build up systems with the capacity for adaptation, pro-

vided with mechanisms to allow them to decide what to do according to 

their objectives. Would it be enough to endow T-Newton with such a capaci-

ty that he effectively simulates the brain of historical Newton in all phases of 

his development? 

Such T-Newton would then belong to the category called autonomous 

agents. They can react to events in their environment, to take the initiative 

according to their goals, to interact with other agents, to learn from past 

experiences to achieve current goals, to have propositional attitudes (belief, 

intention, desire etc.).11 

The crucial question is to the effect: does a list like that above include 

agent’s capacity to act against algorithmic instructions present in his pro-

gram? Is it possible that the capacity to disobey the implemented program 

be acquired through self-programming, that is, a kind of learning? These 

questions arise from what we know about Newton’s hesitations about NAD. 

Somehow he shared Leibniz’s belief in the validity of that principle. 

We know from biographical sources that Leibniz’s intuition was not for-

eign to Newton. He had no reason to give it up before discovering the law of 

gravitation which refers to space (distance) but does not involve any men-

tion of time—as demanded by NAD when rewritten as the following rule of 

research. 

 

R-NAD can be easily applied by a machine in a syntactic manner charac-

teristic of algorithmic instructions. For example, the sentence “the gravita-

tional force does not need any portion of time in order to affect a body”—

contradicting item 2 in NAD—should be prohibited in any physical theory 
————————— 

10 To learn more on this subject, see the page “LIGO detects gravitational waves for third time” by 
Massachusetts Institute of Technology. 

11 See J. M. Corchado et al. (eds.), Web Engineering: International Conference, 2003. Proceed-
ings, Springer Science & Business Media, 2003, Chap. “Agent-Based Web Engineering.” 

R-NAD: Do not attach to a system of asser-
tions any sentence that does not meet the 
conditions 1-3 listed in NAD. 
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(contradiction is a syntactic relation ascertainable with comparing strings of 

symbols). 

Assume that the brain of historical Newton is a Turing machine (without 

any oracle!), as claimed in the strong AI approach. Assume that R-NAD is  

an algorithmic instruction implemented by a programmer to steer this  

machine’s (Newton’s brain) performances. Is it possible for a Turing ma-

chine not to obey R-NAD? It is the Key Question—KQ for short—in our case 

study.  

 

6.5. 
When taking for granted the assumptions stated above, together with the 

instruction R-NAD (in the text box in, §6.4), KQ should be answered in the 

negative. Such a disobedience is not likely to happen in the world of ma-

chines. 

What, in fact, did happen to real Newton? As we can learn from his intel-

lectual biography, he did not reject either NAD or R-NAD. So what hap-

pened? The closest to truth is the answer that he suspended his stance  

toward NAD. Would this be possible for T-Newton? Obviously not; this is 

forbidden to a machine to deny the validity of an algorithmic instruction. 

But what about the state of suspension? 

This is a question to be addressed to experts in software engineering. 

However, from a philosophical point of view, in the domain of human rela-

tions such a suspension would be an act of disobedience. Imagine a clergy-

man in a religious community who does not reject its dogmas, but neither 

rejects them nor affirms them as valid, and remains in the mental state of 

suspension, or hesitation. This implies that he is not true to his obligations 

as a clergyman. 

Let us regard this situation as analogical to that in which a machine stops 

to fulfill a specific instruction of its program, remaining able to realize  

the other ones; and—assuming furthermore—this disobedience proves  

much advantageous for handling problems to be solved. Should we (A) still 

remain convinced that we deal with a machine, or rather should we (B) 

come to the conclusion that the system in question is a certain non-

mechanical entity? 

It is B, the latter option, that is being argued for in the present essay, on 

the basis of the following historical evidence. 

As mentioned above in 6.4, that objections like those of Leibniz were 

considered by Newton too. Before formulating his law of universal gravita-

tion, he shared NAD as conviction, common to empirical scientists and phi-

losophers. After attaining at the idea of gravitation he did not reject NAD, 

but rather took the position of suspending it, i.e., not taking it into account. 

Let this option be called strategy of neutrality. Now KQ (as raised at the 

end of 6.4) can be rewrite as follows.  
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KQ*: Is it possible for a Turing machine to adopt the strategy of indif-

ference with respect to R-NAD written into the machine’s program?  

Such an indifference (neither accepting nor rejecting) was the policy of 

historical Newton with respect to the idea of gravitation. Could it be adopted 

by the artificial T-Newton? To solve this problem, one has to find Newton’s 

motivation, and then think whether such a motivation be attainable for T-

Newton? 

Newton’s motive can be summed up with the phrase: success of corrobo-

ration. The notion of cognitive success as considered in epistemology goes 

back to Peirce’s pragmatism, enhanced by Kazimierz Ajdukiewicz (p. 9 ff). It 

is fittingly employed in William Harper’s 1998 essay Isaac Newton on Em-

pirical Success and Scientific Method. The kind of the success in question is 

named here corroboration, following Popper (1959, chap. X) who as first 

introduced this notion to the methodology of empirical sciences. 

Everybody is familiar with the Popperian concept of falsification: an at-

tempt at falsifying a hypothesis is a search for counterexamples, while its 

failure increases the degree of corroboration of that hypothesis. On the other 

hand, if falsification does succeed, this means the lack of corroboration. 

However, the fact that a theory has withstood all rigorous tests for a long 

period of time does not mean a definitive corroboration. It just evidences 

that so far the theory of question has received such a degree of corrobora-

tion that it can be retained as hitherto the best available theory. Yet this does 

not imply its being safeguarded against a possible refutation in a future. 

The more general is a hypothesis h and the more precise (i.e., free of 

vagueness) are concepts involved in it, the more it has empirically testable 

consequences, that is, ones exposed to the risk of proving false. If a conse-

quence proves false, this falsifies its premise h, according to the logical law 

of transposition:  

((h⇒ e)⊥ ¬ e)⇒ ¬ h  

where h represents the hypothesis under test, and e reports an experi-

ence intended to test h.  

Newton’s gravity hypothesis turned out to have an enormous reach. It 

gave birth to an immense set of consequences in the scale of the whole uni-

verse—something impossible to imagine from the beginnings of science up 

to the 17th century. 

This meant an enormously high degree of falsifiability, and thereby test-

ability. For, in such a multitude of empirical consequences, each of them is 

exposed to the risk of getting falsified with experiments, or other empirical 

observations performing the task of honest severe tests. Since in all the ap-

plied tests the gravitation hypothesis proves its mettle, it ought to be recog-

nized as having an exceptionally high degree of corroboration. 

Thus it becomes evident how to understand Harper’s [1998] phrase 

“Newton’s empirical success.” It means an enormously high degree of cor-
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roboration. Newton himself so accounts his achievement (quoted after Har-

per 1998). 

 
 

The phrase “it is enough” seems to indicate that he did not see any need 

to justify his attitude of indifference with respect to NAD. This pragmatic 

attitude neutralized fundamentalist scruples with which he “privately” (so to 

say) might have felt. Nevertheless finally he has been certain that what really 

matters it is the power of his theory to account for all the motions of bodies.  

 

6.6. 
Newton’s coming to such a success can be explained in the terms of com-

putability and pragmatism—listed in the title of this essay as main factors 

to drive the dynamic progress of science. Pragmatism may be briefly ren-

dered with the Chinese proverb: “Black cat or white cat: if it can catch mice, 

it’s a good cat.” The effect of catching is by Newton featured with the as-

sessment that the theory of gravitation “abundantly serves to account for all 

the motions of celestial bodies.” 

The Newton case features how astonishing may be efficiency of pragma-

tist strategy to drive the progress of science. Imagine that Newton would 

have decided to scrupulously conform to NAD. Then he should have aban-

doned creating and publishing the theory of gravitation as incompatible 

with the principle whose inviolability was unanimously in that time 

acknowledged. Such a capitulation would have halted the splendid devel-

opment of physics in which without Newton would have been no Einstein. 

This historical lesson reveals the enormous advantage of pragmatic strategy 

over the policy of fundamentalism. 

However, with a paradoxical turn of history there happened that the 

principle NAD revived with Einstein’s general relativity as dealing with the 

cosmological scale of magnitude. While in our mundane scale the light wave 

does not seem to need any time to travel any distance, it may take millions 

of years at interstellar distances. 

The same applies to gravitational waves. Their existence was inferred by 

Einstein a hundred years ago from the equations of his theory of relativity, 

while experimental confirmation of this prediction occurred for the first 

time in 2015. The speed of this undulation proves to be like that of light 

waves. This discovery confirms item 2 in the NAD statement (text box in 

“It is enough that gravity does really exist and 
acts according to the laws I have explained, 
and that it abundantly serves to account for all 
the motions of celestial bodies” 
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section 6.2), and possibly item 3 (id depends on how we understand "medi-

um"), and so it resembles Leibniz’s stance. 

Einstein’s theory would not have been arisen if not preceded by that of 

Newton. Thus in the 21st century we would have neither Newtonian nor 

Einsteinian understanding of the universe, both being a fruit of Newton’s 

pragmatism. 

In turn, let us consider the computational rationalism from the nowadays 

perspective and compare it with Newton’s stance. Newton was a rationalist 

at least in that restricted sense that in his research he did not endorse such a 

radical empiricism as that suggestively articulated in the 20th century with 

the Vienna Circle. His practice displays a tint of Popper’s critical rationalism 

since it is far from applying any logic of induction as postulated by the 20th 

century empiricists, esp. Hans Reichenbach. 

Instead, Newton practiced something like the Popperian hypothetico-

deductive realism. He does not try to justify a hypothesis by inferring it as  

a logical consequence from sensory observations (as demanded by inductive 

logic). He uses just deductive logic to derive observational consequences; if 

they do not disprove the hypothesis in question, it becomes to some degree 

corroborated. 

Where do the hypotheses come from if they are not inferred from obser-

vational statements? The answer is brief: they arise from scientific inven-

tiveness. It may consist in an intellectual intuition, as claimed by Gödel, or 

in a play of imagination, as stressed by Einstein. What does matter, is not 

their mental origin, but testability and the increase of corroboration after 

successively passing appropriate tests. 

Thus we come to a point related to the title of the present section: would 

there be any progress of science, if the science were being done by ma-

chines? The answer might be in the affirmative, if the dynamics of science 

were due to the inductive strategy. T-Newton, as a specimen of Turing ma-

chine not being supported by an oracle, would obtain observations from, 

say, a camera. Then it would transform the obtained pictures into observa-

tional reports, and from them conclude a hypothesis using an algorithm of 

inductive logic. 

However, one has to take into account that a logic of induction such as 

would be needed by T-Newton, serving the purpose of establishing universal 

laws of the universe, did not arise yet. Just a creative invention, able to pro-

duce testable hypotheses is the key factor to drive the dynamics of science. 

And the attribute of invention remains so far a privilege of humans alone, 

not of machines. 

In turn, it is in order to combine the study of Newton’s case, paradigmat-

ic for empirical science, with what has been formerly (sections 1–4) said 

about dynamics of mathematical inquiries. Thus we recognize the same key 

factor characteristic of scientific dynamism in both areas. This decisive fac-
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tor is represented by hypercomputational model defined by Turing (1939), 

to wit ORACLE—defined in section 3.1., the text box and then the indented 

quotation. 

Turing is here dense in content but sparing in words. Anyway it is for him 

beyond any doubt that the oracle: (1) cannot be a machine; (2) with its help 

we can form a new kind of machine (o-machine), having as one of its  

fundamental processes that of solving a given number theoretic problems; 

(3) its answers are mostly, though not always, reliable solutions. 

The so defined oracle is the key factor of the scientific dynamics. It is 

what overcomes the hitherto existing limits of knowledge, pushing its fron-

tiers further and further. In mathematics this model gets realized with in-

venting new concepts and new axioms, while in empirical sciences—

inventing new concepts and new hypotheses. Such a perspective on the evo-

lution of science is worthy to be called computational and pragmatic. 

Computational—in a broader sense. Not in the sense of reducing the 

model of science to the universal Turing machine (UTM) as a canonical par-

adigm of research procedures. This approach consists in dividing the class of 

problem-solving processes into those for which simple UTM is a sufficient 

device, and those which require an adequate sequence of oracle-machines. 

Both categories involve in their definitions the notion of computability. 

If we look at the world as an immense system of problem-solving pro-

cesses, for instance in the vein of A. N. Whitehead’s processualism, and as-

sume the above computation oriented classification of processes, then such 

a vision deserves to be called computational worldview. 

The justification of the term “pragmatic” is given above to characterize 

Newton’s approach, with commenting the maxim: “black cat or white cat: if 

it can catch mice, it’s a good cat.” Newton’s case makes us aware that the 

pragmatic approach, even at the cost of disregarding what seems a funda-

mental intuition, may be awarded with obtaining a highly informative and 

highly corroborated theory. 

Let me conclude with a tale about the fulfillment of the dream of strong 

AI adherents. They dream about the mechanical T-Newton that would be 

indistinguishable from the living Newton, as to the scientific achievements, 

and as to the way he came to them. In order to perfectly simulate real New-

ton, his mechanical avatar T-Newton should have had the following history.  

A) Besides all the mathematical, physical and astronomical knowledge 

possessed by Newton in the age of 23, T-Newton should have believed in 

NAD and should have had in his memory the instruction R-NAD within the 

program implemented by the designer.  

B) After having seen the legendary falling apple, he should have experi-

enced a flash of enlightenment that there does exist the force of gravitation 

which acts—in any distance and without needing any time and any medium 

—between arbitrary bodies in the universe.  
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C) Having been aware of the inconsistency between R-NAD and this new-

ly invented idea, he should have suspended the former, and so acted against 

the intention of his programmer; otherwise he would not have become the 

discoverer of gravitation.  

Now any adherent of the strong AI project has to decide whether such an 

inobedience does accord with the definition of purely automatic (i.e., with-

out oracles) Turing machine. He is not obliged to project T-Newton accord-

ing to UTM model, but then he ought to reveal what other kind of machine 

would satisfy his intention: in such a way that an artificial Newton discovers 

the force of gravitation. 

 

 

7. A FURTHER OUTLOOK:  

THREE MODELS OF THE DYNAMICS OF SCIENCE  

 
7.1. 

“Curiosity is more important than knowledge.” — said Albert Einstein. 

More important for what? The answer proposed in this essay reads: for the 

progressive and accelerating dynamics of scientific knowledge.  

Why more important than knowledge? Human curiosity brings about in-

ventiveness—the main source of the accelerating dynamics of science.  

Non-human animals have a knowledge, partly instinctive, partly acquired 

with experience, necessary to survive and to satisfy some biological needs. 

However, with chimps, cats, dogs, etc., such a knowledge does not result in 

the curiosity, and the elicited with it inventiveness, while from such attrib-

utes alone there could be born Platon’s philosophy, Euclid’s geometry, Co-

pernicus’ astronomy, Frege’s logic. 

Such a singularity resulted in the surprising dynamics of science. This 

phenomenon has become the subject of an intense study in the past century, 

and has forerunners already in the 19th century, but a flamboyant develop-

ment started up in sixties of the 20th century in two separate directions. 

One of them has been initiated by de Solla Price (1963) the other one—by 

Thomas Kuhn (1962). There were quite a number of other penetrative stud-

ies on modelling the progress of science, carefully analyzed by Paweł Polak 

in his 2004 book entitled Dynamika nauki [Dynamics of Science]. 

That book influenced the present essay considerably by supplying  

a clear and comprehensive overview of scientific dynamics models. I take an 

essential advantage of this survey. It perfectly serves as a contrastive back-

ground which makes it easier to point to one more model. This one has not 

been discussed hitherto under the title “dynamics of science,” for its having 

been classified under the label of the logico-mathematical theory of com-

putability. However, for anyone who happens to be interested both in the 

issues of computability and in the historical development of science, the 
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nexus between them is evident. The present author’s intention is to make 

this evident for a wider audience as well. 

Professor Polak discusses no less than fifteen models, but for the present 

comparative task it will suffice to consider just two of them—those men-

tioned above, one due to de Solla Price, the other to Kuhn. Such a selection 

is justified by their pioneering role (see above) and by the fact that they  

enjoy incomparably more attention and influence than the remaining  

approaches. 

The following abbreviations should make the discourse shorter and more 

transparent:  

exp-model — de Solla Price’s exponential model. 

par-model — Kuhn’s paradigm model.  

orc-model — Turing’s oracle model.  

They are to be defined, and compared with each other, in the next sub-

sections.  

 

7.2. Models of the dynamics of sciences:  
exp-model compared orc-model 

  

The exponential model is applied to characterize the speed of growth of  

a population, that is, the set of individuals, items, or data from which a sta-

tistical sample can be taken. When speaking of science, we have to do with 

the sets of scientists, publications, theories, academic journals and institu-

tions. It was de Solla Price (1963) who considered the dynamics of such 

populations from the half of the 17th century up to the half of 20th century, 

and for that period has found instructive generalizations. 

In each of these populations the dramatic exponential growth occurred. 

To wit, systems that exhibit exponential growth have a constant doubling 

time. The quantity increases slowly at first, and then very rapidly. The rate 

of growth becomes faster as time passes. Thus the size of science measured 

with number of scientists, or number of publications, doubles every 10 to 15 

years. As a result, science has been constantly exploding, increasing its size 

at a rate faster than the increase of total humans able to conduct it. 

However, de Solla Price assumes that the exponential growth rate may be 

starting to diminish. This is to mean that that the growth may proceed until 

it reaches a maximum size and then ceasing to grow. If science had contin-

ued to grow at an exponential rate in 1962, then by now there would be 

more scientists than people. Thus the exponential growth rate previously 

observed must break down at a point in the future, and this breakdown may 

be associated with an upper bound to the size of science reached in the peri-

od of the flamboyant expansion. 

This de Solla Price’s exp-model is the subject of a sophisticated statistical 

theory, having plenty of fertile applications in sociology, information scienc-
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es, politics, etc. That fact should not be obscured by the paucity of the ac-

count given above. This account is restricted to what is indispensable to 

compare exp-model with Turing’s orc-model in a most crucial point. 

It is the point of a further outlook. In orc-model it is shaped with Turing’s 

(1939) idea of oracle. In the present text, this idea is found at the very front 

of the key concepts’ list (as having ca. 30 occurrences in the present text). In 

the section 3.1 there are mentioned the authoritative Turing’s utterances 

concerning the nature and role of this device in problem-solving processes 

(see the text box, and then the paragraph distinguished with indenting). 

There are two facets of comparison between exp-model and orc-model: 

how to understand and measure the size of science, and how to predict its 

future development. In either respect these models are complementary. The 

exp-model is concerned with what can be termed external size while orc-

model—internal size. The former is measured through various quantities, as 

listed above; let us focus on the quantity of publications in a given point of 

time (let it be the year of publication). 

The latter is to be seen as the function of two variables: (1) how big is the 

increase of the number of problems having been solved by a new publica-

tion, (2) how much difficult, and how much important, are the offered solu-

tions (this is a very sketchy featuring, but it will do in the present discus-

sion). 

Let us look at some most dramatic instances, those of Newton, Einstein 

and Frege. Newton’s Principia appeared in 1687. The external size of the 

physical science increased thereby by one item only; not more than in the 

case of, say, a typical doctoral dissertations published in the same year. As 

for the increase of internal size, Newton’s work should be assessed with the 

possibly highest index. The same ought to be said about Einstein’s 1915 

work on general relativity (the geometric theory of gravitation), and in field 

of logic about Frege’s Begriffsschrift (1879). In each case the increase by  

one in the external size has resulted in the immense increase of the internal 

size. 

Correspondingly, we should distinguish between the external dynamics 

of science that consists in a considerable increase of external size, and the 

science’s internal dynamics—considerable increase of internal size. 

Such a striking difference between these two notions concerning the size 

of science sheds light on the issue of their further outlook. When the growth 

of external size has to slow or even stop for exhausting necessary physical 

resources, such limitations do not appear in the case of internal size when 

considered in terms of orc-model; theoretically there is thinkable an unend-

ing progress into infinity. To explain such a disparity, we have to inspect  

a bit deeper into the nature of orc-model.  

 



 The Computational and Pragmatic Approach to the Dynamics of Science 63 

7.3. Models of the dynamics of sciences:  
par-model compared with orc-model 

  

Kuhn’s par-model (1962) has won a wide acceptance in academic circles. 

In order to estimate the mettle of his theory, we should consider it separate-

ly for mathematics and for empirical sciences. As for the former, par-model 

is directly contradicted by orc-model which does not envisage any scientific 

revolution—for Kuhn the basic notion in considering paradigm shifts. 

The latter notion denotes—with Kuhn—a fundamental change in the 

basic concepts and practices of a scientific discipline. The paradigm shift 

characterizes scientific revolution, contrasted with the activity of normal 

science, that is, scientific work done within a prevailing framework or para-

digm. Paradigm shifts arise when the dominant paradigm under which 

normal science operates is rendered incompatible with new phenomena, 

facilitating the adoption of a new paradigm. 

Let us try to adopt this characterization to what we know about the  

history of mathematics. As the first and absolutely dominant at any time 

paradigm we should acknowledge Euclid’s Elements. It is a perfect oppor-

tunity to put some questions which may prove troublesome for Kuhn’s  

adherents. 

Did a shift of this paradigm happen at any time? If one tried to imagine 

such an event, at most two facts in the history could be considered. (1) This 

might be modern axiomatizations: of geometry, like that by Hilbert, and  

of arithmetic, like that by Peano. (2) It might be as well the rise of  

non-Euclidean geometries. Let us suppose that these are questions open  

to discussion. As its participant, in both cases I would answer in the nega-

tive.  

— Hilbert did not oppose Euclid’s paradigm of axiomatization, but just 

perfected it with the help of modern logic. Should this be regarded as a sci-

entific revolution?  

— Non-Euclidean geometries (e.g., hyperbolic) can be interpreted within 

Euclidean geometry. Should this be regarded as a scientific revolution?  

— Peano’s axiomatization did not change any theorem of arithmetic, it 

just added a new method of proving theorems. Should this be regarded as  

a scientific revolution?  

— Frege’s mathematical logic evolved—via Leibniz’s design of logic, and 

Boolean algebra—from the traditional Aristotelian logic which has been then 

absorbed by modern logic as its small chapter. Should this be regarded as  

a scientific revolution?  

I cannot answer in the affirmative to any of the above and similar ques-

tions. If anybody can, her/his voice will be welcome. Kuhn’s idea of scientific 

revolutions was intended itself as a revolutionary manifest against the cu-

mulative vision of science. However, in confrontation with historical facts, 
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the latter proves its mettle, while the revolutionary appears as utopian.  

Cumulativeness means that upper storeys of science are put over the lower 

and lower ones, up to foundations. 

Raine and Heller (1981) rightly notice that in the historical development 

a newer theory happens to involve an older one on the pattern of a more 

advanced generalization. This was the case of Einstein’s theory of gravita-

tion which encompassed the Newtonian as a special case—a useful approxi-

mation in certain conditions. Is there any reason to regard such a transfor-

mation as a revolutionary overturn? Let us note that such a thrilling ap-

proach (as in the sensational press) makes us unable to trace evolutionary 

processes in order to understand mechanisms which cause the passing from 

one stage to another. 

However, the appreciation of the rule of cumulativeness (as with Raine 

and Heller (1981)) does not suffice to grasp the explanatory power of Tu-

ring’s orc-model. We need a bit more detailed insight into the evolutionary 

pattern of science dynamics. 

There is the English term "mavericity" coined from the name of Maver-

ick, a legendary Texas pioneer who applied very unusual methods in breed-

ing his cattle. Hence mavericity denotes a quality to generate unusual,  

uncommon, interconnections between ideas or to do something unexpected 

(cp. Runge 2014, 280). 

The highest internal dynamics of science (cp. Section 7.2)—that exempli-

fied with Newton’s and Einstein’s gravitation, quantum theory, Frege’s logic, 

Gödel’s incompleteness theorem, Turing machine—does result from an en-

counter of new ideas is marked with a high degree of mavericity. 

Newton’s theory of gravitation stems from the encounter of (1) Kepler’s 

planetary model, (2) invented by Newton Calculus, (3) Newton’s flash of 

understanding the nexus between falling fruits and planetary movements to 

satisfy Kepler’s model. 

Einstein’s theory of gravitation would not arise without the encounter of 

his principle of equivalence (of gravitational and inertial mass) and Rie-

mannian elliptic geometry.  

 

7.4. On how the computer science has emerged from  
the encounter of several surprisingly inventive ideas 

  

When availing myself with the term “inventive” as a highly significant key 

notion in the present context, I was wondering what adjective might render 

the highest possible degree of this trait: exceptional, uncommon, unusual? 

“Surprising” seemed the best. Namely, for its connection with the theory of 

probability and information in which “surprise” happens to be used to idio-

matically hint at a great novelty of message, that is, a great amount of in-

formation. 
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In slangish American, as mentioned above, there is a word close in its 

meaning to “surprising inventiveness.” It is: mavericity (cp. 7.3). Such  

a single word is more handy in a frequent use, hence I allow myself to use it 

as a convenient abbreviation. 

Mavericity is a specific feature of creative humans, the ability to do some-

thing unexpected, by no means attainable for any kind of automata. When 

an agent or device has been programmed, i.e. acting according to an algo-

rithm, it cannot do anything unexpected. When can, it is not mechanical, 

and this is exactly what Turing says about any oracle—as being an agent 

capable of solving mavericitly some problems whose solution cannot be ex-

pected from any machine. 

Turing’s featuring of oracle is done in abstract mathematical terms. As 

mentioned above (3.1, footnote 2) there is a convincing interpretation of 

oracle in a mentalistic way—a mathematical intuition. However, the sharing 

of that interpretation does not exclude proposing still another one. What  

I am to suggest deserves to be called a historical interpretation of oracle, and 

should provide an oracle-oriented model of scientific dynamics. 

Historical mavericity appears when (2) there is a number of ideas,  

each having been developed without any connection with other ones, and 

(3) there comes the moment when they encounter dynamically, combine 

with other and affect mutual gravitation. From such tectonic events happen 

to emerge new unexpected whole. The result of such an emergence is worth 

to be termed oracle in a historical sense—as much as it brings significant 

solutions of some problems, having been had no chance of solution without 

such a dramatic encounter. 

As historical examples it has been mentioned in 7.3 the encounters of 

Newton’s and Einstein’s theories of gravitation with needed by them geome-

tries. As a more complex case of encounter in which quite a number of par-

ticipants appears, we can take the long process leading to the emergence of 

computer science. The process has the physical and the logico-mathematical 

side. Leaving apart the former, in the latter we notice at least seven stories. 

Their list would include the following items:  

Aristotelian logic 

Leibniz’s project of conceptual writing 

Algebraic ideas: Viete, Peacock, Boole 

Frege: conceptual writing, axiomatized logic 

Cantor’s diagonal method of proof 

Gödel’s arithmetic coding of the language of logic 

Universal Turing Machine 

A story about the processes of connecting and mutual support of these 

ideas would take an extensive treatise. Let it be only noted that it was Frege 

who combined Leibniz’s ideas of a perfect “characteristica universalis” and 

“calculus ratiocinator,” with basing his logical calculus on the Boolean alge-
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bra which, in turn, emerged from combining Aristotelian logic with algebra-

ic achievements, going back to François Viète, George Peacock etc. The con-

struction of Turing machine involved Cantor’s method of diagonal proof and 

Gödel’s coding. 

Even such a drastically sketchy account allows to see that no single item 

at the above list, if taken apart, could solve the problem of “how to construct 

computer,” while their sophisticated combination with each other and with 

relevant idea of physics resulted in so potent computing machines. 

Thus we obtain an exemplification of the powerful and unstoppable dy-

namics of science, reflected by the model of oracle, and being due to the 

power of surprising inventiveness (mavericity) of human beings. 
 
 

 
REFERENCES 

 
K. Ajdukiewicz, The Problem of Foundations, in: The Foundations of Statements and Deci-

sions. Proceedings of the International Colloquium on Methodology of Sciences held in 
Warsaw, K.Ajdukiewicz (ed.), 18–23 September 1961, PWN [Polish Scientific Publishers] 
1965. 

C. E. Benzmüller, C. E. Brown, The Curious Inference of Boolos in Mizar and OMEGA,  
in: From Insight to Proof. Festschrift in Honour of Andrzej Trybulec, R. Matuszewski,  
A. Zalewska (eds.), a special volume of: Studies in Logic, Grammar and Rhetoric, 10 (23), 
2007. 

G. Boolos, A Curious Inference, Journal of Philosophical Logic, 16 (1), 1987. 
S. R. Buss, On Godel’s Theorems on Lengths of Proofs I: Number of Lines and Speedup for 

Arithmetics, J. Symbolic Logic, 59 (3), 1994. 
G. Chaitin, Meta Math!: The Quest for Omega, Vintage 2006. 
____ , Chaitin Interview for Simply Gödel Website, 9 February 2008. 
J. M. Corchado et al., Agent-Based Web Engineering, in: Web Engineering: International 

Conference, Proceedings Springer Science & Business Media, J. M. Corchado et al. (eds.), 
Springer 2003. 

M. Davis, Computability, Computation and the Real World, in: Imagination and Rigor, Set-
timo Termini (ed.), Springer 2006. 

S. Feferman, Turing’s Thesis, Notices of AMS, 53 (10), 2006. 
A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akade-

mie der Wissenschaften zu Berlin 1915, pp. 844–847. 
S. Feferman, Turing˙s “Oracle”: From Absolute to Relative computability and Back, in: The 

Space of Mathematics: Philosophical, Epistemological, and Historical, J. Echeverria, 
A. Ibarra, T. Mormann (eds.), De Gruyter 1992. 

G. Frege, Begriffsschrift. Eine der arithmetischen nachgebildete Formelsprache des reinen 
Denkens, Halle 1879. 

K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter 
Systeme, I, Monatshefte für Mathematik und Physik, 38 (1), 1931. 

____ , Über die Länge von Beweisen, Ergebnisse eines mathematischen Kolloquiums, 7, 1936. 
W. Harper, Isaac Newton on Empirical Success and Scientofic Method, in: The Cosmos of 

Science: Essays of Exploration, University of Pittsburgh Press 1998. 
D. Hilbert, W. Ackermann, Grundzüge der theoretischen Logik, Berlin, Springer, Berlin 1928. 
G. W. Leibniz, Antibarbarus Physicus pro Philosophia Reali contra renovationes qualitatum 

scholasticarum, in: Die Philosophische Schriften von Gottfried Wilhelm Leibniz, VII vol. 
E. J. Gerhard (ed.), Georg OLms, Hildesheim 1961. 

T. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press 1963. 
W. Marciszewski (ed.), Dictionary of Logic as Applied in the Study of Language. Concepts, 

Methods, Theories, Nijhoff 1981, Springer 2013. 



 The Computational and Pragmatic Approach to the Dynamics of Science 67 

____ , Logik from a Rhetorical Point of View, de Gruyter 1994 (reprint 2012, available with 
google.books.pl). 

W. Marciszewski, R. Murawski, Mechanizayion of Reasoninng in a Historical Perspective , 
Rodopi, Amsterdam 1995. 

W. Marciszewski, The Gödelian Speed-up and Other Strategies to Address Decidability and 
Tractability, Studies in Logic, Grammar and Rhetoric, 9 (22), 2006. 

C. S. Peirce, The Fixation of Belief, The Popular Science Monthly, vol. XII, November 1877, 
W. Pitts, W. McCulloch, A Logical Calculus of Ideas Immanent in Nervous Activity, Bulletin 

of Mathematical Biophysics, 5, 1943, pp. 115–133. 
P. Polak, Dynamika nauki, Obi/Biblos 2004. 
K. Popper, The Logic of Scientific Discovery, Basic Books, New York 1959. 
W. V. O. Quine, From a Logical Point of View, Harvard University Press, Cambridge (Mass.) 

1953. 
P. Quinon, Logical Competence, no publication date; http://www.paulaquinon.com/research/ 

logical-competence 
D. J. Raine, M. Heller, The Science of Space-Time, Pachart Publishig House 1981. 
W. Runge, Technology Entrepreneurship: A Treatise on Entrepreneurs and Entrepreneur-

ship for and in Technology Ventures, KIT Scientific Publishing 2014. 
G. Ryle, The Concept of Mind, Barnes and Noble, New York 1949. 
W. Sieg, Hilbert’s Programs and Beyond, Oxford University Press 2013. 
D. de Solla Price, Little Science, Big Science, Columbia University 1963. 
G. Schiemann, Hermann von Helmholtz˙s Mechanism: The Loss of Certainty: A Study on the 

Transition from Classical to Modern Philosophy of Nature , Springer Science & Business 
Media, 2008, 36–38. 

P. Stacewicz, Informational Worldview. Scientific Foundations, and Philosophical Perspec-
tives, Studies in Logic, Grammar and Rhetoric, 48 (61), 2016. 

____ , The Informational Worldview and Conceptual Apparatus, in: Interdisciplinary Inves-
tigations into the Lvov-Warsaw School, A. Drabarek, J. Woleński, M. Radzki (eds.), Pal-
grave-Macmillan, 2019. 

A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 
Proceedings of the London Mathematical Society, 42 (1), 1936. 

A. Turing, Systems of Logic Based on Ordinals, Proceedings of the London Mathematical 
Society, series 2, 45 (1), 1939. 

J. Woleński, Logic in the Light of Cognitive Science, Studies in Logic, Grammar and Rhetoric, 
48 (61), 2016. 

 

 
 

ABOUT THE AUTHOR – professor of humanities in the domain of logic, formerly at 
Warsaw University.  The present research affiliation: the International Center for Formal 
Ontology, affiliated at Warsaw University of Technology. The present research activity: 
philosophy of informatics.  Home page: calculemus.org. 

Email: witmar@calculemus.org 


