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1. Introduction

IEC 61850-based control is becoming increasingly important as
the power grid evolves [1]. As protection devices using digital
measurement data streams compliant with IEC 61850 standard-
9-2 appear, there arises a need to develop new power protec-
tion testers or adapt the existing solutions to support SV and
GOOSE messages in fast protection and control data exchange.
There are numerous commercial products available on the mar-
ket at the moment. They are built as a stand-alone IEC 61850
testing device or as an extension to existing analog-based con-
ventional testers, allowing for the synthesis of SV data stream
that simulates faulty conditions of a power system. Such testers
can also be implemented in Linux operating system as an appli-
cation executed under real time CPU scheduling policy on regu-
lar PC hardware. This is possible because SV, GOOSE and time
synchronization services (IEEE 1588 v2) are mapped onto an
Ethernet protocol, which means measurement signals (current,
voltages) as well as binary signals (e.g. Tripping) are meant
to be sent through a substation intranet Ethernet network (pro-
cess and station bus). The time synchronization method recom-
mended in IEC 61850 edition 2 is IEEE 1588 v2 (PTP) protocol
specified in IEC 61850-9-3 as the so-called power profile. All
new devices available from European vendors support PTP that
achieves sub-microsecond synchronization through a common
Ethernet link.

The motivation for the work is to build an open and cost-
effective platform for a power protection tester based solely
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on open source software, including Linux and libiec61850 li-
brary. This would facilitate testing IEC 61850 compliant de-
vices without having to deploy specialized hardware and resort-
ing to vendor-dependent solutions. Moreover, in contrast to de-
vices available on the market, the proposed tester is open source
software licensed under the GPL, which allows for unrestricted
development and adaptation to specific testing scenarios.

A few approaches to build IEC 61850 protection tester soft-
ware are suggested in the literature, but none of them proposed a
comprehensive solution. In publication [2] authors use a Merg-
ing Unit (MU) simulator running in RTOS, which replays sig-
nals from a COMTRADE file, generated earlier in a PSCAD
offline simulation. The MU simulator runs on a single machine
with multiple Network Interface Controllers (NIC), with nei-
ther time synchronization to an external signal nor GOOSE in-
put/output. A similar platform was developed in [3], with a dif-
ference that it can also work in an online mode and process real
time data output from a simulation program.

2. Related work

The paper describes the implementation of IEC 61850 power
protection tester [4] running as a RT application inside Linux
OS. In sections 3 and 4, Linux runtime environment and its la-
tency issues are discussed. Linux latency sources are identified
and related adjustments are proposed and evaluated. A similar
Linux RT scheduling latency test was carried out in [5]. The
worst case of latency reported reaches 18 µs and is claimed to
be measured in a non-latency optimized system.

A multithreaded operation algorithm for the tester, includ-
ing the SV publisher, time synchronization and GOOSE in-
put/output, is presented in section 5.
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Linux PTP time synchronization is discussed and tested in
section 6. Its performance is evaluated with two Linux RT sys-
tems controlling its electrical ports while being synchronized
with a PTP master clock. This ensures the implementation con-
formity with IEC 61850-5 time synchronization requirements.

IEC 61850 Linux SV and GOOSE services performance
evaluation in accordance with IEC 61850-5 is presented in
section 7. A similar evaluation was conducted in [6]. It was
made as a rough estimate which did not follow the IEC61850-5
guidelines. In this paper, background traffic tests were omit-
ted because of numerous sources already reporting process bus
performance under different load conditions [7–9]. Section 7
includes the comparison of a tester’s performance when test-
ing real world IED over-current function in combination with
a conventional testing setup consisting of the Omicron CMC
tester and MU.

3. Runtime environment

The most common way to build an IEC 61850 power protection
tester and similar devices is the embedded system implemen-
tation, because of a high degree of control over the hardware
it provides. Operating systems like Linux offer a level of ab-
straction in hardware and provide unified, shared access to un-
derlying resources. This simplifies the development, increases
the portability and works really well for regular applications
that do not have to meet any time constraints. Linux default
CPU scheduler distributes time slices evenly between all pro-
cesses that demand processing power and, additionally, any reg-
ular application (user space) can be preempted during its exe-
cution by system processes (kernel space) whenever necessary
(for example, to handle hardware interrupts from IO subsys-
tem). The problem arises when the user space process needs to
execute a periodic task at specific time intervals. In the case of
a power protection tester, a publisher thread sends SV packets
at 4 kHz rate (according to 61850-9-2, 80 samples per period,
data stream for 50 Hz system). Despite the fact that the Linux
kernel provides access to high resolution timers with 1 ns pre-
cision, there is no guarantee that user space process will acquire
CPU at a desired time and will hold it until scheduled tasks are
completed. This is where real time operating systems are useful.
Such systems guarantee a response time within a given time-
frame, usually a couple of microseconds. Linux, by its nature,
is not a real time system. However, the RT_PREEMPT patch
that converts Linux into a RTOS is developed in parallel to the
mainline kernel. The main objective of the real time patch is
to allow the user programs executed under real time scheduler
policies (SCHED_FIFO, SCHED_RR) to preempt kernel space
processes and reduce the time in which the kernel executes in
a non-interruptible state. This gives the possibility to run appli-
cations in real time by acquiring the whole processing time of
the CPU whenever needed with minimal latency. Real time ap-
plications with sufficient priority cannot be preempted even by
the system kernel itself.

Another advantage of using Linux in the implementation of
a power protection tester is the out of the box availability of

other services like secure shell or web server for remote control,
similar to those described in [10].

4. System latency

When implementing time critical services like SV or GOOSE,
inability of precise timing can turn the whole implementation
useless. The Linux RT_PREEMPT patch guarantees the sched-
uled processes to get CPU time in a strict timeframe. Ide-
ally, the SV publisher thread should get CPU time once every
250 µs (50 Hz system) in order to publish new samples. When
scheduled under real time policy, the SV publisher thread can
preempt kernel processes and cannot be preempted by those
with lower priority. In practice, latency in which CPU power
is assigned to the demanding thread is variable and can be af-
fected by multiple factors, for instance, in hardware service
interrupts, the kernel remaining in a non-interruptible state or
CPU switching to/from low CPU power state. The quantity
that describes the Linux kernel RT capability is worst-case la-
tency. It should not exceed the deadline for the RT applica-
tion.

Latency sources on x86 PC running Linux and related cor-
rections are presented below and evaluated at the end of this
section.

4.1. Logical CPUs Logical CPUs are a feature allowing the
operating system to address two logical CPUs for one physi-
cal core. For regular applications, this approach can increase
the processor throughput by allocation of unused resources. In
the RT environment the problem of shared resources is intro-
duced. Two physical threads scheduled by the operating system
for different logical CPUs compete to get processing time of
one physical unit. The downside of logical CPUs is increased
system latency, and therefore it should be disabled in latency
demanding RT environments.

4.2. Frequency scaling Frequency scaling allows the proces-
sor to conserve energy by temporarily reducing its frequency
when it is not fully utilized. This can lead to time-consuming
switching, which should be avoided. Frequency scaling can be
typically disabled at the hardware configuration level, at the
kernel compile time or in user space by changing the scaling
governor.

4.3. Real time throttling By default, to prevent system dead-
locks, real time processes can be executed for up to 0.95 of
CPU time. The remaining time is reserved for regular pro-
cesses executed under regular default policy. This behavior can
be changed to facilitate the exclusive use of the CPU by writ-
ing “−1” value to /proc/sys/kernel/sched_rt_runtime_us file lo-
cated in procfs.

4.4. Core isolation To get the lowest possible latencies it is
recommended to designate one of the cores from a multipro-
cessor system for a time critical task. Three things need to be
done to ensure proper core isolation:
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• the isolated core should be excluded from CPU scheduling
– no new user space processes should be scheduled on the
core,

• hardware interrupts should be handled on different cores,
• kernel threads should be kept away from the isolated core,
• time critical process should be manually run on the selected

core.
Core isolation from CPU scheduling can be done in a boot-

loader kernel command line by adding parameter isolcpus with
the list of CPUs to isolate, e.g. isolcpus = 2.3.

To ensure that a time-critical application gets the lowest pos-
sible latencies, hardware interrupts should not be serviced on
the core it is running. Affinity of all interrupts in the system to
CPU0 can be changed with a single line shell script:

for i in $(seq 0 255); do echo 1 > /proc/irq/$i/smp_affinity;

done.

The script writes value 1 to smp_affinity files located in
procfs filesystem, corresponding to every possible interrupt re-
quest (IRQ) present in the operating system. IRQ affinity can be
observed in /proc/interrupts file, which shows the overall count
of all IRQs handled on a specific CPU.

Kernel threads (kthreads, workqueues, timers) can be kept
away from isolated cores by setting CONFIG_CPU_ISOLATION
option at the kernel compilation. Prior to Linux version 4.15 it is
not possible to fully isolate the core from the kernel workload.

Running the real time task on a selected CPU can be done
with the use of the taskset utility, available in most Linux dis-
tributions.

4.5. Local timer interrupt frequency The Linux kernel op-
eration is based around a timer tick. A local timer generates
periodic interrupts at a predetermined frequency between 100
– 1000 Hz. Once every 1 ms (for 1000 Hz system), despite
the tasks being executed, the CPU gets interrupted, so the ker-
nel can do its housekeeping tasks and the CPU scheduler gets
the opportunity to switch the currently running processes. Lo-
cal timer frequency is set at the kernel compile time and can-
not be changed later. Running lower timer frequency can de-
crease the interruption rate of real time processes scheduled
on an isolated core. On the other hand, it can increase la-
tency of processes executed under normal scheduling policies.
It is also possible to disable timer tick on all cores except for
CPU0 by setting the option CONFIG_NO_HZ_FULL at the
compile time. The change is at the expense of latency during
the kernel to user space context transition, therefore it is bene-
ficial in real time applications not to switch contexts often. In
the case of the SV publisher that uses POSIX timer interface,
disabling timer interrupts effectively increases the worst-case
latency.

4.6. Processor sleep states To conserve power during idle
states, modern CPUs switch their C states. States are typically
numbered starting from C0 to C6, where C0 means an operating
state, and the higher the number, the deeper the sleep state is.
Recovery from higher C-states is a time consuming process, so

it can negatively impact the system latency. Therefore, it should
be disabled by writing processor.max_cstate = 0 into the kernel
command line at boot time. This will prevent the CPU from
entering any state other than C0.

To evaluate the impact of the presented latency sources on
the SV publisher thread, a test program was created in C.
Its main loop sleeps in 250 µ s cycles using clock_nanosleep
(CLOCK_MONOTONIC, TIMER_ABS). As soon as it wakes
up, the current time is read and compared to the expected
time as a consequence of a loop cycle. The time difference
is then calculated as latency and saved to a pre-allocated ar-
ray. Tests were carried out on the following hardware/software
setup:
• AMD 3-core CPU 4 Ghz,
• Linux 4.19.59-rt24, timer frequency – 1000 Hz,
• high resolution timers, TSC time source,
• GCC 5.5.0.

Test results are presented in Table 1. Every test introduces a
new change in the configuration (in brackets) as well as previ-
ous changes. All tests were conducted in a highly stressed sys-
tem (stress-ng utility, 3 cpu threads, 2 IO and 2 VM threads).
Every test consisted of one billion wakeups.

Table 1
Latency test results in different system configurations

Test
Min Max Avg Std dev
[µs] [µs] [µs] [µs]

Non RT 1.945 1080 2.928 4.661

RT patch 2.414 33.73 3.672 0.426

RT log, CPU, scal. (1, 2) 2.085 6.73 3.323 0.640

RT throttling (3) 2.022 6.19 2.937 0.527

RT core isol. (4) 2.239 3.477 2.451 0.100

RT 100 Hz (5) 1.801 4.004 2.401 0.076

The first test was meant as a reference – an unpatched non
real time kernel. The worst-case latency reached 10 ms, which
means the SV publisher thread would get scheduled on CPU
10 ms after the demand. The patching kernel with a RT patch
reduced maximum latency to 33.73 µs. Turning off the logical
CPU feature and frequency scaling decreased the maximum la-
tency to 6.727 µs. Finally, the core isolation and elimination
of RT throttling resulted in 3.477 µs worst-case latency and
2.451 µs average. Running the same test on a kernel with a local
timer frequency set at 100 Hz resulted in a slightly lower mini-
mum latency and a decreased standard deviation at the expense
of 0.5 µs worst-case latency.

Considering the 80 samples/cycle SV stream, samples need
to be sent every 208.3 or 250 µs (60 and 50 Hz system, respec-
tively) and the presented worst-case latency of 4 µs meets the
deadline requirements. In the case of latency Linux RT can be
successfully considered as a viable environment for the imple-
mentation of 9-2LE power protection tester.
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• the isolated core should be excluded from CPU scheduling
– no new user space processes should be scheduled on the
core,

• hardware interrupts should be handled on different cores,
• kernel threads should be kept away from the isolated core,
• time critical process should be manually run on the selected

core.
Core isolation from CPU scheduling can be done in a boot-

loader kernel command line by adding parameter isolcpus with
the list of CPUs to isolate, e.g. isolcpus = 2.3.

To ensure that a time-critical application gets the lowest pos-
sible latencies, hardware interrupts should not be serviced on
the core it is running. Affinity of all interrupts in the system to
CPU0 can be changed with a single line shell script:

for i in $(seq 0 255); do echo 1 > /proc/irq/$i/smp_affinity;

done.

The script writes value 1 to smp_affinity files located in
procfs filesystem, corresponding to every possible interrupt re-
quest (IRQ) present in the operating system. IRQ affinity can be
observed in /proc/interrupts file, which shows the overall count
of all IRQs handled on a specific CPU.

Kernel threads (kthreads, workqueues, timers) can be kept
away from isolated cores by setting CONFIG_CPU_ISOLATION
option at the kernel compilation. Prior to Linux version 4.15 it is
not possible to fully isolate the core from the kernel workload.

Running the real time task on a selected CPU can be done
with the use of the taskset utility, available in most Linux dis-
tributions.

4.5. Local timer interrupt frequency The Linux kernel op-
eration is based around a timer tick. A local timer generates
periodic interrupts at a predetermined frequency between 100
– 1000 Hz. Once every 1 ms (for 1000 Hz system), despite
the tasks being executed, the CPU gets interrupted, so the ker-
nel can do its housekeeping tasks and the CPU scheduler gets
the opportunity to switch the currently running processes. Lo-
cal timer frequency is set at the kernel compile time and can-
not be changed later. Running lower timer frequency can de-
crease the interruption rate of real time processes scheduled
on an isolated core. On the other hand, it can increase la-
tency of processes executed under normal scheduling policies.
It is also possible to disable timer tick on all cores except for
CPU0 by setting the option CONFIG_NO_HZ_FULL at the
compile time. The change is at the expense of latency during
the kernel to user space context transition, therefore it is bene-
ficial in real time applications not to switch contexts often. In
the case of the SV publisher that uses POSIX timer interface,
disabling timer interrupts effectively increases the worst-case
latency.

4.6. Processor sleep states To conserve power during idle
states, modern CPUs switch their C states. States are typically
numbered starting from C0 to C6, where C0 means an operating
state, and the higher the number, the deeper the sleep state is.
Recovery from higher C-states is a time consuming process, so

it can negatively impact the system latency. Therefore, it should
be disabled by writing processor.max_cstate = 0 into the kernel
command line at boot time. This will prevent the CPU from
entering any state other than C0.

To evaluate the impact of the presented latency sources on
the SV publisher thread, a test program was created in C.
Its main loop sleeps in 250 µ s cycles using clock_nanosleep
(CLOCK_MONOTONIC, TIMER_ABS). As soon as it wakes
up, the current time is read and compared to the expected
time as a consequence of a loop cycle. The time difference
is then calculated as latency and saved to a pre-allocated ar-
ray. Tests were carried out on the following hardware/software
setup:
• AMD 3-core CPU 4 Ghz,
• Linux 4.19.59-rt24, timer frequency – 1000 Hz,
• high resolution timers, TSC time source,
• GCC 5.5.0.

Test results are presented in Table 1. Every test introduces a
new change in the configuration (in brackets) as well as previ-
ous changes. All tests were conducted in a highly stressed sys-
tem (stress-ng utility, 3 cpu threads, 2 IO and 2 VM threads).
Every test consisted of one billion wakeups.

Table 1
Latency test results in different system configurations

Test
Min Max Avg Std dev
[µs] [µs] [µs] [µs]

Non RT 1.945 1080 2.928 4.661

RT patch 2.414 33.73 3.672 0.426

RT log, CPU, scal. (1, 2) 2.085 6.73 3.323 0.640

RT throttling (3) 2.022 6.19 2.937 0.527

RT core isol. (4) 2.239 3.477 2.451 0.100

RT 100 Hz (5) 1.801 4.004 2.401 0.076

The first test was meant as a reference – an unpatched non
real time kernel. The worst-case latency reached 10 ms, which
means the SV publisher thread would get scheduled on CPU
10 ms after the demand. The patching kernel with a RT patch
reduced maximum latency to 33.73 µs. Turning off the logical
CPU feature and frequency scaling decreased the maximum la-
tency to 6.727 µs. Finally, the core isolation and elimination
of RT throttling resulted in 3.477 µs worst-case latency and
2.451 µs average. Running the same test on a kernel with a local
timer frequency set at 100 Hz resulted in a slightly lower mini-
mum latency and a decreased standard deviation at the expense
of 0.5 µs worst-case latency.

Considering the 80 samples/cycle SV stream, samples need
to be sent every 208.3 or 250 µs (60 and 50 Hz system, respec-
tively) and the presented worst-case latency of 4 µs meets the
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5. Tester implementation

The tester structure was implemented as shown in Fig. 1. As-
sumed functionality of the tester is as follows:
• SV stream generation according to 9-2LE. Input data as

a COMTRADE (Common format for Transient Data Ex-
change) file or a predefined sequence of states,

• GOOSE inputs that allow for closed loop tests of IED,
• GOOSE outputs to simulate a binary data state change,
• time synchronization using PTP in master or slave mode,
• additional time synchronization of the SV data stream to

1PPS signal from an external source.

Fig. 1. IEC61850-9-2 software tester structure

SV processing should not be affected by non-deterministic
events. Therefore, its thread should have the highest priority.
When using a real time scheduler, thread prioritization can be
used. Priority values range from 0 to 99, with 0 as the lowest
priority and 50 as the priority of the kernel software interrupt
handlers. Thread priorities are set in the following order (from
the highest): SV publisher, 1PPS, GOOSE Output, GOOSE In-
put.

There are two types of sampled value streams defined in 9-
2LE UCAiUG guidelines. The first one is dedicated for pro-

&

Fig. 2. Simplified operation algorithm for tester threads

tection purposes (80 samples per nominal period) and another
one for applications that require high sampling rates, e.g. power
quality (256 samples per nominal period). The implemented
tester uses the protection-dedicated stream in which every data
unit consists of 16 INT32 variables – 8 channels (4 currents, 4
voltages) plus quality variable for every channel. Values are cal-
culated for primary side and are represented in mA for currents
and in 10 mV for voltages.

The main SV publisher thread is based on POSIX timers
– the clock_nanosleep system function is used. When con-
figured to use TSC (time stamp counter) as time base, 1 ns
granularity is achieved. TSC is an internal processor regis-
ter that counts CPU cycles. The above-mentioned function is
used to measure the delay between sending the subsequent
samples. It allows for the measurement of time as an abso-
lute value (TIMER_ABS parameter) instead of a fixed delay.
Clock_nanosleep can use different type of clocks and two main
options are CLOCK_REALTIME and CLOCK_MONOTONIC.
Both of them can use a TSC time source with a difference. The
real time method represents the current time and is a subject
of time adjustment by NTP and PTP services, while the mono-
tonic method represents the relative time from some unspeci-
fied point of time and is not adjusted during runtime. Times-
tamps used by the function are held in the timespec structure
which consists of seconds since the start of the Unix epoch and
nanoseconds (for real time method). The clock_nanosleep func-
tion wakes up the publisher thread every 250 µs and designates
the time moments when a sampled value frame is copied into
the send buffer. The values of samples to be published are read
from a predefined samples array, built from a COMTRADE file
or calculated from input data before the fault simulation starts
(sequence of states). This approach minimizes the calculations
that need to be done during the publisher thread execution. An
operation algorithm for tester threads is presented in Fig. 2.
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A basic testing procedure consists of the concurrent ex-
ecution of SV publisher GOOSE input and GOOSE output
thread. The SV thread sends samples using a selected gener-
ation algorithm (COMTRADE or sequence of states), while the
GOOSE input thread is constantly listening to Ethernet inter-
face for GOOSE messages from a specified multicast address
and GOCB. When it detects a state change of a variable marked
as a trip signal, a trip reception timestamp is saved in the shared
memory and a running flag is cleared. The SV publisher is noti-
fied of the trip reception and can simulate a post fault state. The
result of a simulated test is the tripping time of the tested de-
vice. It is calculated as a difference between the reception time
of the GOOSE message that carries a trip signal and the start of
a simulated fault state.

The GOOSE Output thread can simulate messages from a
user-specified Control Block and dataset with desired variable
values that change over time. This not only allows the tester to
generate changes in measured values but also in binary signals.
All the threads are stopped when the SV publisher or GOOSE
Input thread sets the running flag to false.

6. Time synchronization

Every device that acts as the SV publisher is required to do
the sampling synchronously. It is especially vital during the im-
plementation of differential protection, when time synchroniza-
tion inconsistencies can lead to tripping in normal conditions.
The tester’s main time synchronization source are IEEE 1588
v2 (PTP) protocol. PTP synchronization can work directly on
an Ethernet network or on the top of UDP protocol (L3). To
achieve the lowest latency possible, an Ethernet layer (L2) and
a multicast mode should be used (Power profile). The use of
PTP for SV synchronization is described in [11]. The expected
time synchronization accuracy defined in 61850-5 for protec-
tion classes (P2 and P3) is 4 µs (class T4). Class T5 (1 µs) is
required for applications where extra precision is needed. How-
ever, as shown in [8], an error of 100 µs in one MU sampling
process does not affect the operation of the tested differential
function. Authors suggest the time synchronization precision
of 100 µs should be enough for 80 samples/cycle and 40 µs for
256 samples/cycle SV streams, respectively.

Linux support for PTP is provided by two system services:
ptpd and linuxptp. Only the latter supports hardware times-
tamping and is preferred for power protection applications. Jit-
ter in time offset between the grand master clock and ptpd
working in a slave mode, as measured in [6], is 23 µs. To
achieve better time synchronization, NIC should support hard-
ware timestamping. In this mode onboard NIC hardware clock
is synchronized with the grand master clock. The clock is used
to timestamp the incoming and outgoing packets. The system
clock can then be synchronized with the NICs clock. Ptpd uses
software time stamping and timestamps are generated in the
kernel space with much poorer performance [12]. NICs PTP
clock support needs to be enabled in the kernel configuration
by enabling:
• CONFIG_PTP_1588_CLOCK,

• NETWORK_PHY_TIMESTAMPING
at the kernel compile time.

To evaluate linuxptp performance on IEEE 1588v2 supported
NIC (82576 Intel chipset), a laboratory setup was proposed as
shown in Fig. 3.
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Fig. 3. Laboratory setup to evaluate linuxptp performance

Two identical PCs are synchronized with Meinberg M100
grandmaster clock. Real time test application on both PCs
changes the state of the D0 data pin of the parallel port at 250 µs
intervals. The test was repeated in two configurations: PCs con-
nected to a boundary clock on top L3 (Edge to Edge) as shown
in Fig. 3a) and another reference configuration – direct Ethernet
connection, synchronization on top of L2 as shown in Fig. 3b).
In the second test, the PCs were synchronized without an ex-
ternal clock, with one of them acting as a master clock. Two
signals from D0 pins are observed on the oscilloscope. The sig-
nals are floating around zero phase with maximum magnitudes
of approximately:
• 1.6 µs – switch, L3 PTP synchronization through a bound-

ary clock (Fig. 4),

Fig. 4. Delta of D0 signals – switch, L3 synchronization with boundary
clock
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• 100 ns – direct connection, L2 PTP synchronization
(Fig. 5).

Fig. 5. Delta of D0 signals – direct connection, L2 synchronization

Assuming synchronization errors are equal on both sides, the
accuracy for L3 synchronization is below 1 µs, which meets
T4 and T5 class requirements. When using L2 IEC 61850-9-3
power profile supporting network architecture, synchronization
error can be expected to fall below 100 ns.

It is worth noting that the SV data stream synchronization
is based on the smpCnt counter. There are no dedicated times-
tamps included within the SV frame. SmpCnt is a part of every
SV frame. Its operation is controlled by the smpMod attribute
(part of the SV Control Block) and by default it counts frames
per second. Considering 80 samples per period stream, smpCnt
changes from 0 to 3999. For a synchronized stream, the zero
frame should always correspond to the start of a full second.
The synchronization of the SV stream is achieved using the
CLOCK_REALTIME clock in SV publisher, GOOSE Input and
Output threads. Timestamps obtained this way are subject to
constant time adjustments from linuxptp daemon.

7. Tester evaluation

IEC 61850 part 5 defines performance classes for different type
of messages. Every class specifies a required overall transfer
time, in which transfer time is defined as a complete trans-
mission time of a message including its handling at both ends
(sender, receiver). It is calculated from the moment the sender
copies the data into a send buffer and up to the moment when
the receiver extracts the data from its receiver buffer. Cod-
ing and decoding data is also accounted for overall transfer
time.

GOOSE message that carries trip information is the most im-
portant fast message in the substation. Therefore, it should meet
the highest performance constraints. The same applies to SV
data. Transfer time should be so small that no negative impact
on the application function is experienced. Both types of mes-
sages are specified in P1 and P7 (equivalent to P1) performance
classes, respectively, which should meet the constraints of the
highest TT6 transfer time class – less or equal to 3 ms.

In [8] performance of SV and GOOSE was examined with
respect to network load and latency. Part 10 of 61850 standard
defines network delay as accounting for 20% of overall transfer
time and internal processing as accounting for 40% [8]. To keep
network delays to a minimum, broadcast traffic should be kept
disabled and multicast addresses should be carefully selected
to avoid processing the redundant frames [13]. In the field of
background traffic affecting operation of a single device, the
tests carried out in [8] showed that properly configured 20 MUs
on 100 Mbit process bus have a negligible impact on IED per-
formance. The same test conducted when using the same multi-
cast address in every SV stream showed performance degrada-
tion of IED at 14 concurrent streams. For a reliable operation,
the ability to filter multicast traffic at IED NIC hardware level
is required. Without this mechanism, IED should be equipped
with at least 1 Gb/s Ethernet ports [7]. Authors of [9] tested
the limit capacity of 100 Mb/s process bus, which is 21 con-
current SV streams (80 spp) while still maintaining reasonable
performance without data loss. Performance Impact of Parallel
Redundancy Protocol (PRP) on the process bus was examined
in [14].

In order to confirm the proper operation of the described
tester in the context of IEC 61850 transfer time requirements,
SV and GOOSE evaluation tests were proposed. The final test
proves the correct operation of the system as a whole. The tester
was used to test the over-current protection of ABB REL670 re-
lay. The same tests were repeated using a standard OMICRON
CMC/SAM600 MU set as a reference.

In the first step of SV and GOOSE services evaluation, the
SV/GOOSE subscriber was implemented. Both the publisher
(tester) and the subscriber are implemented in PCs running
Linux RT and are synchronized to external clock through PTP
L3 Boundary clock. For the sake of evaluation, every published
data frame contains a timestamp taken just before copying the
data to a transmission buffer. The timestamp is read at sub-
scriber’s side and compared with the timestamp taken just after
the data is passed to its application layer. The time difference is
logged to a pre-allocated array and in the end dumped to a file.
Because the timestamps are measured in the application layer
of both systems, the calculated time difference consists of:
• processing time in system A,
• processing time in system B,
• transmission time through the network,
• time synchronization latency (below 1 µs).

The above mentioned elements correspond to the overall
transfer time defined in IEC 61850-5, except for the time syn-
chronization error, which is known. Tests were repeated twice,
once for the SV data stream and once for GOOSE messages
to prove that SV and GOOSE Linux implementation meets the
P1 class for sampling and trip signal requirements. During the
SV evaluation, the tester sent frames at 250 µs intervals, the
subscriber side processed the frames and calculated the trans-
fer delay and saved the data in its memory. While testing the
GOOSE mechanism, the same setup was used, with the addi-
tion of changes to the variables of the data model, which re-
sulted in generating a GOOSE message and were introduced
once every 500 µs on the subscriber side. While still generating
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the SV stream, the publisher processed the incoming GOOSE
messages and calculated the transfer delay with the same prin-
ciple as the subscriber did with SV frames. The test results are
presented in Table 2.

Table 2
Transfer time of SV and GOOSE Linux implementations

Service
Min Max Avg Std dev
[µs] [µs] [µs] [µs]

SV 21.091 396.16 29.745 4.971

GOOSE 26.656 281.36 36.838 5.025

To achieve those results libiec61850 library was patched to
support higher resolution timekeeping in its internal functions
– with the minimum quantum time of 1 ms, which was changed
to 10 µs with the use of the nanosleep function. The evaluated
publisher – subscriber setup meets the IEC 61850 TT6 trans-
fer time requirements, leaving extra time for additional network
delays and extra processing.

The final evaluation of the tester was conducted using a
REL670 v2.1 protection relay as a test object. It was equipped
with a 61850-9-2 digital input card synchronized to a 1PPS ex-
ternal signal. The over-current function was set as follows:
• IEC Definite Time characteristic,
• threshold value of 2 A,
• 0 ms delay.

Tests were carried out in two comparable setups:
• software tester – the tester and REL670 were connected

to the ABB ASF675 switch. 1PPS signal from the Arbiter
clock synchronized with GPS was supplied to IEC 61859-
9-2LE card. The tester PC was synchronized with PTP pro-
tocol to Meinberg M1000 clock. A trip signal was output
from the IED as a GOOSE message (Fig. 6).

• CMC/SAM600 – OMICRON CMC256+ test set and ABB
SAM600 MU were used as the SV source. The SAM600 in-
ternal clock was used as a 1PPS synchronization signal for
REL670. Because of the lack of binary inputs in SAM600,
a hardwired trip signal from the REL670 was directly con-
nected to the CMC binary input (Fig. 7).
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Fig. 7. Laboratory setup for IED evaluation – CMC/MU

The data in Table 3 presents average tripping times (10 shots)
for different test currents and test setups. It is worth noting the
software tester measured times are approximately 5 ms lower
than those measured in the CMC setup. This is the difference
between the relay output closing time and the processing time
of the GOOSE message.

Table 3
Mean tripping times of over current function

Software tester CMC/SAM600

Test current 2 A 3 A 5 A 2 A 3 A 5 A

Average trip time [ms] 32.02 15.31 7.11 32.56 20.02 15.46

Table 4 shows the results of a threshold value determination
test for the over-current function. The test attempts to find the
lowest value of the threshold fed from the tester’s side that re-
sults in tripping of the over-current function. The software tester
is approximately 10 times more accurate thanks to its digital
and synthetic nature. The CMC/SAM600 setup introduces two
levels of Analog/Digital conversions, which in turn results in
higher level of errors.

Table 4
Determination of threshold value of over-current function

Software tester CMC/SAM600

Test current Trip Test current Trip
[A] [ms] [A] [ms]

1.9998 no trip 1.995 no trip

1.9999 30.58 1.998 no trip

2.00 31.92 1.999 35.10

Abs.error 0.005% Abs.error 0.05%

8. Conclusions

IEC 61850 communication mechanisms allow for the reduction
of IED hardwiring. The same applies to power protection test-
ing systems, which can be successfully reduced to a single PC
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levels of Analog/Digital conversions, which in turn results in
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running RTOS. The proposed open testing platform uses Linux
and libiec61850, which are available as open source software.
This not only allows for reducing the testing system to a sin-
gle PC without the need for dedicated hardware, but also can
be freely changed and adapted to specific needs, which gives
the possibility to overcome the constraints imposed by vendors
of closed solutions available on the market. The platform was
thoroughly tested in terms of latencies, transfer times and time
synchronization accuracy. The conducted tests show a guaran-
teed Linux RT scheduler worst case latency of 4 µs. PTP time
synchronization error below 100 ns on L2 and below 1 µs on L3
is sufficient for power protection applications. SV and GOOSE
services implemented in Linux RT environment conform to the
most constrained IEC 61850 transfer time requirements – class
P1 (worst overall transfer time for SV is below 400 µs and be-
low 300 µs for GOOSE). Linuxptp implementation of the PTP
protocol meets the T5 time synchronization requirements (er-
ror below 1 µs). When comparing the proposed tester platform
to the conventional analog testing setups, an increase in accu-
racy and major reduction of hardware is achieved. Hardware
reduction also applies when compared to the digital IEC 61850
testers available.

Conclusions can be drawn that obtained results scale to the
subscriber side of SV and GOOSE services implementation.
This would allow for the implementation of power automation
devices purely inside the Linux operating system and move pro-
tection functions and systems into a virtual environment as de-
scribed in [15].
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