
883Bull.  Pol.  Ac.:  Tech.  68(4)  2020

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 68, No. 4, 2020
DOI: 10.24425/bpasts.2020.134189

Abstract. The model predictive control (MPC) technique has been widely applied in a large number of industrial plants. Optimal input design 
should guarantee acceptable model parameter estimates while still providing for low experimental effort. The goal of this work is to investigate 
an application-oriented identification experiment that satisfies the performance objectives of the implementation of the model. A- and D-op-
timal input signal design methods for a non-linear liquid two-tank model are presented in this paper. The excitation signal is obtained using 
a finite impulse response filter (FIR) with respect to the accepted application degradation and the input power constraint. The MPC controller 
is then used to control the liquid levels of the double tank system subject to the reference trajectory. The MPC scheme is built based on the 
linearized and discretized model of the system to predict the system’s succeeding outputs with reference to the future input signal. The novelty 
of this model-based method consists in including the experiment cost in input design through the objective function. The proposed framework 
is illustrated by means of numerical examples, and simulation results are discussed.

Key words: model predictive control, optimal input design, convex optimization, application-oriented identification.

Application-oriented experiment design for model predictive control

W. JAKOWLUK1* and M. ŚWIERCZ2

1 Bialystok University of  Technology, Faculty of  Computer Science, Wiejska 45A, 15-351 Bialystok, Poland 
2 Bialystok University of  Technology, Faculty of  Electrical Engineering, Wiejska 45D, 15-351 Bialystok, Poland

*e-mail: w.jakowluk@pb.edu.pl 

Manuscript submitted 2019-12-05, revised 2020-04-17, initially accepted  
for publication 2020-05-25, published in August 2020

CONTROL, INFORMATICS AND ROBOTICSBULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 68, No. 4, 2020
DOI: 10.24425/bpasts.2020.XXXXXX

Application-oriented experiment design for model predictive control

W. JAKOWLUK1∗ and M. ŚWIERCZ2
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1. Introduction

The efficiency of the model-based control scheme is highly in-
fluenced by the quality of the plant model and the accuracy
of its parameters. The model parameters estimates depend on
conditions under which the identification experiments are per-
formed, including the proper choice of input signals. Optimal
input design plays a substantial role in the task of establishing
precise estimates of model parameters. Early results of optimal
input design for system identification relied on minimization of
the error of the parameters being estimated with respect to pro-
cess constraints. The fundamental principle of system identifi-
cation is to maximize the sensitivity of the state variable to un-
known parameters [1–3]. The focus of the system identification
theory is to design optimal inputs for parametric identification
of linear time-invariant models.

Most recently, great effort has been made to develop identi-
fication methods for robust control [4, 5]. The identification for
robust control relies on estimating the nominal model and im-
posing a limitation on the model’s uncertainty set [6]. With the
worst-case identification experiment model in mind, parameters
are estimated with the established error bounds expressed in the
form of the noise affecting the model of the system [7]. Consid-
ering the set membership uncertainty method, a set of models,
including the true system, is identified [8]. Then the robust con-
trol design is used to provide acceptable control efficiency for
the models within the set [9].
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Effective analysis tools for the stochastic uncertainty set are
based on the covariance matrix of the parameters to be esti-
mated [10].

By applying these tools to the task of identification for robust
control, it becomes possible to rate the performance of the real
unknown system with the controller developed using an esti-
mated model. However, such an approach does not provide the
satisfactory performance of the control loop. This is because
the conditions of the identification experiment cannot guaran-
tee that the identified model is precise. This inconvenience can
be eliminated by the concept of the least-costly identification
experiment design for control. The objective of the least-costly
design is to develop a strategy that results in an uncertainty set
that is relatively small and guarantees the best control perfor-
mance. Instead of putting constraints on the experiment cost
(i.e. input energy, experiment duration), the experiment cost is
integrated with input design through the cost function [11]. The
application-oriented input design problem presented in this arti-
cle is based on some results of the approach proposed by Bom-
bois et al. [12].

The cost of the identification experiment is quantified by
the power of a perturbation signal under real working condi-
tions [13]. Another approach for experimental cost minimiza-
tion, with a so-called ‘plant-friendly’ identification task, has
been proposed in [14–17]. The plant-friendly excitation signal
design is similar to the application-oriented system identifica-
tion. The goal is to find a trade-off between minimum deviation
of working conditions and the accuracy of the model param-
eters to be estimated [14, 18]. In [19], the concept of a robust
plant-friendly input design task with the constraints imposed on
the power of the input and the output trajectory was developed.
This type of experiment consists in utilization of the sequential
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and robust problems solution. The techniques for computing the
input signals in the economic, plant-friendly and application-
oriented frameworks, where the purpose is to minimize the dis-
placement from normal operating conditions, were described in
[6, 17, 20].

It has been shown that the model development assimilates
about 75% of the costs related to real-life control processes
[21]. Therefore, one of the trends is to design tools which per-
form simultaneous identification and system control in a se-
quential manner. The goal is to sequentially ameliorate the sys-
tem performance by means of more accurate estimates of model
parameters. The problem can be solved by the model predictive
control (MPC) procedure, where the input signal yielded by the
MPC algorithm is designed to ensure acceptable control perfor-
mance [22–24].

It has also been reported that fractional models provide a
more exact description of the system dynamics than the models
developed using ordinary differential equations [25, 26]. For an
overview of the optimal input design for fractional-order sys-
tem identification, see publications [27, 28].

A method presented in this article can be classified as an
application-oriented input design for control. The goal of this
paper is to design an input signal that minimizes the objective
function which includes the experimental cost. The excitation
signal of a given length is obtained by means of utilizing a finite
impulse response filter (FIR), subject to input power constraints
[19, 29]. The simulation experiments have been performed con-
sidering the non-linear gravitational water tanks system which
has been disturbed with the additive white output noise. A- and
the D-optimal criteria have been considered [2] as a measure
of optimality. After obtaining the accepted model parameters,
the MPC controller is adopted to control the water levels of the
double-tank system.

2. Dynamic system identification

The goal of the application-oriented input signal design is to
construct a model of the dynamic system from experimental
data in a manner that reduces model uncertainty. The open-
loop system structure, assumed for system identification, is pre-
sented in Fig. 1, where u(t) is the input sequence, y(t) is the
measured output, and e(t) is the white noise signal. The G and
H transfer functions are parameterized by the parameter vec-

e(t)

u(t) y(t)+
+

G(q)

H(q)

Fig. 1. System description

tor θ , and q is the unit delay operator. In this paper, the open-
loop discrete-time LTI system is used. Therefore, the model re-
sponse y(t) is given by the following:

y(t) = G(q,θ)u(t)+H (q,θ)e(t). (1)

There exists the vector θ 0 of real parameters that leads to the
true system response ys(t) in the following form:

ys(t) = G
(
q,θ 0)u(t)+H

(
q,θ 0)e(t). (2)

The vector of model parameters estimated from the number
of N measurements of the system input and output is denoted
as θ̂N .

3. Prediction error identification technique

The prediction error method (PEM) is used for the estimation
of unknown parameters of the model described by equation (1).
This technique relies on the minimization of a difference be-
tween the output of the real plant and the output of the esti-
mated model [30]. The one-step-ahead predictor of model (1)
is formulated as:

ŷ(t|θ) = H−1 (q,θ)G(q,θ)u(t)+
[
I −H−1 (q,θ)

]
y(t). (3)

The operation of inversion (H−1) is dedicated only for square
systems (i.e. those with the same number of inputs and out-
puts) with an invertible feedthrough matrix, which handles both
continuous- and discrete-time systems [30]. Hence, the one-
step-ahead error estimator is expressed by:

ε (t,θ) = y(t)− ŷ(t|θ) = H−1 (q,θ) [y(t)−G(q,θ)u(t)] . (4)

The parameter values, based on N observations, are evaluated
by minimization of the cost function given by:

VN(θ) =
1
N

N

∑
t=1

ε(t)2. (5)

The estimate of the parameter vector is defined as follows:

θ̂N = argmin
θ

VN(θ). (6)

In this paper, performance function (5) will be reformulated to
fit quadratic criterion, required by the Moose2 package, to allow
for solution [31]. This criterion can be expressed as:

VN(θ) =
1

2N

N

∑
t=1

ε(t,θ)Λ−1ε(t,θ)T , (7)

where Λ is a zero-mean, white noise covariance matrix. The pa-
rameters to be estimated converge to the real parameter values
when the number of measurements tends to infinity. In general,
the series of random variables is given by:

N
(
θ̂N −θ 0) IF

(
θ̂N −θ 0)T

, (8)
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where IF is the Fisher information matrix (FIM). It converges
to the χ2 distribution with n-degrees of freedom. According to
the Cramer-Rao inequality definition, when the number of mea-
surements N appears to be large, the expected value E of the
FIM can be obtained from:

IF =
1
N

N

∑
t=1

E

{(
d

dθ
ŷ(t,θ)

)
Λ−1

(
d

dθ
ŷ(t,θ)

)T
}
. (9)

For a large number of samples N, the parameter estimates θ̂N
are, with probability α , internal elements of the identification
confidence ellipsoid [30].

εSI =

{
θ |

(
θ̂N −θ 0) IF

(
θ̂N −θ 0)T ≤ χ2

α(n)
N

}
, (10)

where the constant χ2
α(n) is the χ2 distribution with n-degrees

of freedom and with probability α . The confidence uncertainty
region should confirm the advantages of optimal input design.

4. Input spectrum generation

The MPC technique considers optimal input design to minimize
experimental effort while still ensuring adequate performance.
In real-life applications, it is extremely important to disturb nor-
mal working conditions of a system as little as possible. Consid-
ering the experimental expense, the following measures should
be included: the input power employed for the experiment, the
excitation time duration and the length of the experiment [12].
Thus, an optimal input signal can be designed in the frequency
domain by means of computing its spectrum. And spectral den-
sity of the input signal can be defined as:

Φu(ω) =
∞

∑
k=−∞

ckℜk
(
e jω) , (11)

where the scalar basis functions
{

ℜk
(
e jω)}∞

k=0 are proper, sta-
ble and rational so that ℜ−k

(
e jω) = ℜk

(
e− jω) and the fac-

tors c−k = cT
k . Since the Fisher information matrix is associ-

ated with input spectrum Φu, the model parameter estimates are
disrupted by the input spectrum to be designed. The Moose2
toolbox uses the FIR filter parametrization of the input spec-
trum with a predetermined number of coefficients in the spectral
density function. Hence, the basis functions are exponentials
ℜk

(
e jω)= e− jωk. The optimal input design problem can some-

times be solved by means of convex optimization with respect
to the decision factors ck =E

{
u(t)u(t − k)T

}
. Consequently, ck

factors should be searched such that:

Φu(ω)� 0, ∀ ω. (12)

Finally, only m initial factors of (11) are considered in order to
identify the input signal spectrum:

Φu(ω) =
m−1

∑
k=−(m−1)

ckℜk
(
e jω) . (13)

Finite-dimensional parametrization can be executed using the
positive real lemma which arises from the Kalman-Yakubovich-
Popov lemma [32]. The above partial expansion formulation
will be used in the experimental part of this work.

The objective of optimal input design is to create an exact
model of the system which provides for acceptable performance
during system identification.

5. Input design constraints

The application cost function in the form given by equation (5)
depends on the established vector of model parameters, θ . Let
us denote the performance index to be minimized as Vapp(θ).
When the value of the cost function Vapp is zero, then the pa-
rameters θ are equal to real parameters, θ 0. If the performance
index is differentiable in a θ 0 region, the application cost has
the following attributes:

Vapp
(
θ 0)= 0, V ′

app
(
θ 0)= 0, V ′′

app
(
θ 0)� 0. (14)

When the application cost increases its value, the performance
degradation ratio also increases. The maximum permitted per-
formance degradation can be defined as:

Vapp(θ)≤
1
γ
, (15)

where γ is at least some high pre-specified value, e.g. the proba-
bility that the performance degradation cost is less than 1=(2γ)
is at least 99% when using the identified model [33]. The es-
timates of model parameters that satisfy inequality (15) are
included in an acceptable application performance set Θapp,
given by:

Θapp(γ) =
{

θ |Vapp(θ)≤
1
γ

}
. (16)

The fundamental principle of model parameter estimation is
to maximize sensitivity of the state variables to unidentified
parameters [1]. Applying definition (16) for input design pur-
poses, we ensure that, with high probability, the parameter esti-
mates are adequate to the real parameters. This requirement can
be formulated as:

εSI(α)⊆ Θapp(γ), (17)

for selected values of α and γ . It is assumed that an application-
oriented input design relies on an input construction with prob-
ability α that satisfies inequality (15).

The method presented in this paper is similar to the
least-costly identification experiment and is referred to as
the application-oriented experiment design. The cost function
based on the application-oriented experiment assumption can
be defined as:

minimize
input

Experimental effort

subject to IF
{

θ ∈ Θapp(γ)
}
≥ α.

(18)
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ŷ(t,θ)

)T
}
. (9)

For a large number of samples N, the parameter estimates θ̂N
are, with probability α , internal elements of the identification
confidence ellipsoid [30].

εSI =

{
θ |

(
θ̂N −θ 0) IF

(
θ̂N −θ 0)T ≤ χ2

α(n)
N

}
, (10)

where the constant χ2
α(n) is the χ2 distribution with n-degrees

of freedom and with probability α . The confidence uncertainty
region should confirm the advantages of optimal input design.

4. Input spectrum generation

The MPC technique considers optimal input design to minimize
experimental effort while still ensuring adequate performance.
In real-life applications, it is extremely important to disturb nor-
mal working conditions of a system as little as possible. Consid-
ering the experimental expense, the following measures should
be included: the input power employed for the experiment, the
excitation time duration and the length of the experiment [12].
Thus, an optimal input signal can be designed in the frequency
domain by means of computing its spectrum. And spectral den-
sity of the input signal can be defined as:

Φu(ω) =
∞

∑
k=−∞

ckℜk
(
e jω) , (11)

where the scalar basis functions
{

ℜk
(
e jω)}∞

k=0 are proper, sta-
ble and rational so that ℜ−k

(
e jω) = ℜk

(
e− jω) and the fac-

tors c−k = cT
k . Since the Fisher information matrix is associ-

ated with input spectrum Φu, the model parameter estimates are
disrupted by the input spectrum to be designed. The Moose2
toolbox uses the FIR filter parametrization of the input spec-
trum with a predetermined number of coefficients in the spectral
density function. Hence, the basis functions are exponentials
ℜk

(
e jω)= e− jωk. The optimal input design problem can some-

times be solved by means of convex optimization with respect
to the decision factors ck =E

{
u(t)u(t − k)T

}
. Consequently, ck

factors should be searched such that:

Φu(ω)� 0, ∀ ω. (12)

Finally, only m initial factors of (11) are considered in order to
identify the input signal spectrum:

Φu(ω) =
m−1

∑
k=−(m−1)

ckℜk
(
e jω) . (13)

Finite-dimensional parametrization can be executed using the
positive real lemma which arises from the Kalman-Yakubovich-
Popov lemma [32]. The above partial expansion formulation
will be used in the experimental part of this work.

The objective of optimal input design is to create an exact
model of the system which provides for acceptable performance
during system identification.

5. Input design constraints

The application cost function in the form given by equation (5)
depends on the established vector of model parameters, θ . Let
us denote the performance index to be minimized as Vapp(θ).
When the value of the cost function Vapp is zero, then the pa-
rameters θ are equal to real parameters, θ 0. If the performance
index is differentiable in a θ 0 region, the application cost has
the following attributes:

Vapp
(
θ 0)= 0, V ′

app
(
θ 0)= 0, V ′′

app
(
θ 0)� 0. (14)

When the application cost increases its value, the performance
degradation ratio also increases. The maximum permitted per-
formance degradation can be defined as:

Vapp(θ)≤
1
γ
, (15)

where γ is at least some high pre-specified value, e.g. the proba-
bility that the performance degradation cost is less than 1=(2γ)
is at least 99% when using the identified model [33]. The es-
timates of model parameters that satisfy inequality (15) are
included in an acceptable application performance set Θapp,
given by:

Θapp(γ) =
{

θ |Vapp(θ)≤
1
γ

}
. (16)

The fundamental principle of model parameter estimation is
to maximize sensitivity of the state variables to unidentified
parameters [1]. Applying definition (16) for input design pur-
poses, we ensure that, with high probability, the parameter esti-
mates are adequate to the real parameters. This requirement can
be formulated as:

εSI(α)⊆ Θapp(γ), (17)

for selected values of α and γ . It is assumed that an application-
oriented input design relies on an input construction with prob-
ability α that satisfies inequality (15).

The method presented in this paper is similar to the
least-costly identification experiment and is referred to as
the application-oriented experiment design. The cost function
based on the application-oriented experiment assumption can
be defined as:

minimize
input

Experimental effort

subject to IF
{

θ ∈ Θapp(γ)
}
≥ α.

(18)

Bull. Pol. Ac.: Tech. 68(4) 2020 3



886

W. Jakowluk and M. Świercz

Bull.  Pol.  Ac.:  Tech.  68(4)  2020

W. Jakowluk and M. Świercz

Using the optimal input design technique for the model param-
eters estimation, an adequate criterion based on the Fisher in-
formation matrix IF (FIM) should be selected:
• A-optimality: tr

(
I−1
F

)
, minimizes the total variance of pa-

rameter estimates,
• D-optimality: det

(
I−1
F

)
, minimizes the generalized variance

of parameter estimates.
For an overview of available criteria, see [2]. Instead of only im-
plementing the assumptions arising from the Cramer-Rao defi-
nition [1], the difference between system performance and the
performance obtained from the model is also verified [33].

6. Interacting liquid tanks process

The application-oriented input design for the non-linear system
identification is executed on the water double-tank process.

The system consisting of two interconnected cylindrical wa-
ter tanks is presented in Fig. 2. The system is determined by
the ratio of the volumetric flow Qin(t) into the upper tank to
the water outflow Qout(t) through the valve of the lower tank.
The balance of the liquid flow in the tank can be expressed as
follows:

A
dh(t)

dt
= Qin(t)−Qout(t) , (19)

where: A is the cross-sectional area of the tank and h(t) is the
liquid level in the tank.

h1 Tank 1

Qin

Q1

Valve a1

h2 Tank 2

Q2

Valve a2

Fig. 2. Interacting water tanks process diagram

It has been assumed that the outlet hole has an ideal sharp-
edged orifice. Liquid outflow from the interconnected tanks can
be determined by means of the Torricelli’s law, given by the
following equation:

Qout(t) = a ·
√

2gh(t) . (20)

where: a is the cross-sectional surface of the hole and g is the
gravitational constant value (9.8 m/s2).

Substituting equation (20) with (19) and supposing that the
tanks are connected, as in Fig. 2, it becomes possible to formu-
late the following nonlinear differential equations:




A1
dh1(t)

dt
=−a1 ·

√
2gh1(t)+Qin(t),

h1(0) = h10 ,

A2
dh2(t)

dt
= a1 ·

√
2gh1(t)−a2 ·

√
2gh2(t),

h2(0) = h20 .

(21)

The pointer n = 1, 2 represents one of the system’s tanks. After
the following substitution, the nonlinear differential equation
(21) could be presented in the standard form of the state-
space equations: Qin(t) = u(t), x1(t) = h1(t), x2(t) = h2(t),
y(t) = h1(t).




ẋ1 =− a1

A1
·
√

2gx1 +
1

A1
u, x1(0) = h10 ,

ẋ2 =
a1

A2
·
√

2gx1 −
a2

A2
·
√

2gx2, x2(0) = h20 ,

(22)

where: x1 = x1(t,a1), x2 = x2(t,a1,a2). The liquid level in the
upper tank h1(t) is to be predicted using the MPC method. The
water levels have real constraints:

hi,max ≥ xi(t)≥ 0, i = 1, 2. (23)

The physical constraints and the model parameters of the water
tanks process are displayed in Table 1.

Table 1
Physical constraints and model parameters

Parameter Value Unit Description

h1,max 4.00 [m] Max. water level in tank 1

h1,min = h2,min 0.00 [m] Min. water level in tanks 1 and 2

h2,max 2.00 [m] Max. water level in tank 2

h10 0.60 [m] Initial condition of tank 1

h20 0.50 [m] Initial condition of tank 2

a1 = a2 0.05 [m2] Area of water outlet holes

A1 1.50 [m2] Cross-section of tank 1

A2 0.75 [m2] Cross-section of tank 2

u0 0.05 [m3/s] Initial water inflow

To control the water level in the upper tank (Fig. 2), the
model predictive control method can be applied. In the case
of the MPC application, the controlled system should be linear
and discrete-time-guided. Generally, the model of the discrete
system can be written as [23]:

x(t +1) = Adx(t)+Bdu(t)+ v(t),

y(t) =Cdx(t)+w(t),
(24)

where: x(t) ∈ ℜn denotes a state vector, u(t) ∈ ℜm is an input
signal, y(t) signifies the output measured, whereas v(t) and w(t)
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represent stationary, zero-mean process noise and measurement
noise, respectively.

The nonlinear process of level control in water tanks (22) was
linearized around the steady-state values of x0 and u0 and sub-
sequently discretized. The state-space matrices obtained using
a first-order Taylor expansion are:

Al =

[
−τ1 0
τ3 −τ4

]
, Bl =




1
A1

0


 , Cl =

[
1 0

]
,

τ1 =
a1

A1

√
g

2x0
1
, τ3 =

a1

A2

√
g

2x0
1
, τ4 =

a2

A2

√
g

2x0
2
.

(25)

The discretization utilizing a zero-order hold on the input and a
1 Hz sampling rate according to (24) yields:

Ad = eAl , Bd =

1∫

0

eAl(1−t)Bl dt, Cd =Cl . (26)

The above matrices are then used by the model predictive con-
trol algorithm to predict the future system output.

7. Simulation results of water tanks system

The optimal input design and system identification methods are
verified in this section on the two water tanks system described
in the previous section. The system, originally non-linear, was
converted to a linear process close to an operating point.

All computations were performed using Matlab dedicated
toolbox Moose2 [34]. To run some of the applications,
the YALMIP and SDPT3 packages should also be installed
[35, 36].

7.1. Application-oriented input design. Optimal input sig-
nal is the result of an application-oriented input design task. The
parameters estimated should provide a model with adequate ap-
plication performance and the experimental cost should be as
low as possible.

The Moose2 package supports the models of the type used
by the idpoly function from the Matlab System Identification
Toolbox [37]. It is a polynomial model of the system with the
input vector u(t), output y(t), and the white Gaussian noise pro-
cess e(t) with covariance λ . The single-input and single-output
linearized system (25) was implemented in the form of a poly-
nomial model with identifiable coefficients:

A(q)y(t) =
B(q)
F(q)

u(t)+
C(q)
D(q)

e(t), (27)

where: A, B, C, D, and F are polynomials, and q is the shift
forward operator, so q−1 corresponds to a unit time decrement.
Optimal input is assumed to be designed using the FIR fil-
ter parameterization of the spectrum with 20 lags (i.e. 20 fac-
tors in the spectral density function (13)). The problem spec-
ification is: A = 1.0; B = [0.0 θ1]; F = [1.0 θ2]; C = 1.0;
D = 1.0; θ 0 = [0.6667 0.0851] – initial estimate; λ = 1.0 –

noise variance; Ts = 1.0 – sampling time [s]; N = 401 – num-
ber of samples; γ = 100 – acceptable application degradation;
α = 0.95 – confidence region of degradation. The optimal ex-
periment has been performed in the open-loop system using A-
and D-optimality criteria. The objective function has been for-
mulated as:

minimize
Φu(ω)

1
2π

π∫

−π

Φu(ω)d(ω)

subject to εSI(0.95)⊆ Θapp(100)

Φu(ω)≤ 1, ∀ω.

(28)

The employment of approximation with εSI allows to solve the
convex optimization problem.

The resulting optimal input signal is displayed in Fig. 3.

Fig. 3. Optimal input design using D-optimality criteria

Parameters of the white input signal are selected in such a
way that the pertinence of the estimates is provided with an
identical probability regarding optimal excitation. White Gaus-
sian input with the zero mean and the variance one (Fig. 4) has

Fig. 4. White Gaussian input signal using the above framework
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represent stationary, zero-mean process noise and measurement
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The discretization utilizing a zero-order hold on the input and a
1 Hz sampling rate according to (24) yields:

Ad = eAl , Bd =
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The above matrices are then used by the model predictive con-
trol algorithm to predict the future system output.

7. Simulation results of water tanks system

The optimal input design and system identification methods are
verified in this section on the two water tanks system described
in the previous section. The system, originally non-linear, was
converted to a linear process close to an operating point.

All computations were performed using Matlab dedicated
toolbox Moose2 [34]. To run some of the applications,
the YALMIP and SDPT3 packages should also be installed
[35, 36].

7.1. Application-oriented input design. Optimal input sig-
nal is the result of an application-oriented input design task. The
parameters estimated should provide a model with adequate ap-
plication performance and the experimental cost should be as
low as possible.

The Moose2 package supports the models of the type used
by the idpoly function from the Matlab System Identification
Toolbox [37]. It is a polynomial model of the system with the
input vector u(t), output y(t), and the white Gaussian noise pro-
cess e(t) with covariance λ . The single-input and single-output
linearized system (25) was implemented in the form of a poly-
nomial model with identifiable coefficients:

A(q)y(t) =
B(q)
F(q)

u(t)+
C(q)
D(q)

e(t), (27)

where: A, B, C, D, and F are polynomials, and q is the shift
forward operator, so q−1 corresponds to a unit time decrement.
Optimal input is assumed to be designed using the FIR fil-
ter parameterization of the spectrum with 20 lags (i.e. 20 fac-
tors in the spectral density function (13)). The problem spec-
ification is: A = 1.0; B = [0.0 θ1]; F = [1.0 θ2]; C = 1.0;
D = 1.0; θ 0 = [0.6667 0.0851] – initial estimate; λ = 1.0 –

noise variance; Ts = 1.0 – sampling time [s]; N = 401 – num-
ber of samples; γ = 100 – acceptable application degradation;
α = 0.95 – confidence region of degradation. The optimal ex-
periment has been performed in the open-loop system using A-
and D-optimality criteria. The objective function has been for-
mulated as:

minimize
Φu(ω)
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−π

Φu(ω)d(ω)

subject to εSI(0.95)⊆ Θapp(100)

Φu(ω)≤ 1, ∀ω.

(28)

The employment of approximation with εSI allows to solve the
convex optimization problem.

The resulting optimal input signal is displayed in Fig. 3.

Fig. 3. Optimal input design using D-optimality criteria

Parameters of the white input signal are selected in such a
way that the pertinence of the estimates is provided with an
identical probability regarding optimal excitation. White Gaus-
sian input with the zero mean and the variance one (Fig. 4) has
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approximately five times larger peak to peak values in compar-
ison to the D-optimal input signal. The A- and D-optimal input
signals have then been used for the system (27) parameter esti-
mation. The optimal input task has been configured to provide
1% performance degradation with 95% probability.

For identification of the water tanks system parameters, 100
Monte-Carlo (MC) independent attempts have been made. The
ellipsoidal confidence regions of the identified parameters of
the water tanks system are displayed in Figs. 5 and 6.

Fig. 5. A-optimal experiment application set

Fig. 6. D-optimal experiment application set

A comparison of the ellipsoidal confidence regions (Fig. 5,
6) of the water tanks parameters identification confirms that
the spaces occupied by the estimated parameters are similar.
But the values of the estimates obtained using D-optimal input
signal have less dispersion. The values of objective functions,
identification costs and estimated values of parameters are pre-
sented in Table 2.

The results of the identification process are based on Monte-
Carlo simulations and have been used for the calculation of ex-

Table 2
Results of A- and D-optimal experiments

A-optimality D-optimality

Initial objective value 10.000 5.394

Final objective value 3.150 1.270

Average cost for θ1 0.041 0.039

Average cost for θ2 0.059 0.055

Mean value of θ1 0.681 0.675

Mean value of θ2 0.084 0.086

perimental indices. The average application cost was obtained
using the 2-norm Matlab function as the difference between the
model parameter estimate θ (obtained in the minimization pro-
cedure) and the true system parameter θ 0 is displayed in Ta-
ble 2. Based on MC data, the mean values of the estimated
model parameters have been also presented.

Several disadvantages arise when implementing the
application-oriented input design under industrial conditions.
First of all, an application cost must contain operating costs
related to the production process. Secondly, the identification
experiment, in reality, must be executed during the normal
operation mode. Thirdly, the closed loop cannot be cut off
during the normal production process.

7.2. MPC implementation for water level control. To con-
trol the water level of the first system tank, the MPC controller
has been introduced [23]. The MPC scheme constructed using
a Kalman filter (KF) is shown in the figure below.

Fig. 7. Block diagram of the system and controller

The MPC takes advantage of the linearized and discrete-
time plant model around its working point x0 and u0 in form
(24). The discrete-time matrices of state-space system are
given by:

Ad =

[
0.918 0

0.147 0.812

]
, Bd =

[
0.639

0.052

]
,

Cd =
[

1 0
]
.

(29)
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The MPC is the recursive method that uses the model of the
system and incoming data to predict the system’s future out-
put with respect to future input signals. To estimate the system
output, full knowledge of the state variable is required:

ŷ(t + k | t) =CdAk
dx(t)

+
k−1

∑
i=0

Ak−i−1
d Bdu(t + i).

(30)

The model performance should be obtained by means of cost
function minimization in the following form:

J(t) =
Ny

∑
i=0

‖ŷ(t + i|t)− r(t + i)‖2
Q

+
Nu

∑
i=0

‖∆û(t + i)‖2
R ,

(31)

where: ŷ(t + i|t) is the predicted output, r(t) is the reference
signal and ∆û(t) is the input variation over time. Q and R are
both weighting matrices, Ny denotes the prediction region and
Nu is the control horizon. The MPC input sequence is obtained
as a solution to the minimization problem with the control per-
formance index (31):

minimize
u(t)

J(t)

subject to ŷ ∈ Y
û ∈U.

(32)

where Y and U are the constraint sets of the outputs and inputs,
respectively. To provide reliable performance of the MPC algo-
rithm, the model has to be constructed very precisely, including
valid properties of the system.

The MPC issue of the water level control can be numerically
solved using the Matlab-Simulink package. The Kalman es-
timator of state variables is working in the system presented
in Fig. 7, where the process and the observation zero-mean
Gaussian noise signals v(t) and w(t) have the same arbitrar-
ily selected variances, in the range from 1e-5 to 1e-1, respec-
tively. The prediction of state variables is executed for fixed
values of parameters: a1 = 0.05 and a2 = 0.05. The identifi-
cation experiment is performed using the sequential quadratic
programming method with a time duration of 20 sec. Mean-
while, equations describing the dynamics of water tanks were
simulated under the following initial conditions: x1(0) = 0.75,
x2(0) = 0.5. The KF response sequence was computed using
the fixed-step, 4-th order Runge-Kutta algorithm with a grid in-
terval of 0.1 sec.

The reference trajectory, chosen similarly to [6, 24], has the
shape of the zero-one square wave with a period of 10 [s] and
duration of the high value (1 [m]) equal to 4 [s]. Figs. 8 and 9
show the nominal responses of model (29) controlled with the
MPC developed for the twin system.

The goal of the MPC algorithm was to ensure the reference
tracking of the water level in the double-tank system. The wa-
ter levels in the upper and lower tanks for the plant model are

Fig. 8. States of the first (x1) and second (x2) tank of the system con-
trolled with the MPC algorithm

Fig. 9. Input signal to water tanks system controlled with MPC

displayed in Fig. 8. The black (solid) curve represents the wa-
ter level in the first tank and the red (dashed) line illustrates
the water level in the second tank. The input signal obtained
for the system controlled by the MPC algorithm is shown in
Fig. 9. These plots are obtained for the noise variance values
v(t) = 1e-5 and w(t) = 1e-5, respectively. For greater variance
values the charts are similar but the curves are more affected
by noise. Fig. 10 shows the curves of the first water tank level
measurement uncertainty (dashed) black line and the estimation
error (solid) red curve obtained for noise variance v(t) = 1e-2.
The measurements and KF estimates errors were computed as a
difference of values between estimated states and the real states
normalized by the number of data points.

As can be noticed from Fig. 10, the KF estimates have about
a 35% lower error rate comparing to the raw data.
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The MPC is the recursive method that uses the model of the
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put with respect to future input signals. To estimate the system
output, full knowledge of the state variable is required:

ŷ(t + k | t) =CdAk
dx(t)

+
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∑
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(30)

The model performance should be obtained by means of cost
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‖ŷ(t + i|t)− r(t + i)‖2
Q

+
Nu

∑
i=0
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where: ŷ(t + i|t) is the predicted output, r(t) is the reference
signal and ∆û(t) is the input variation over time. Q and R are
both weighting matrices, Ny denotes the prediction region and
Nu is the control horizon. The MPC input sequence is obtained
as a solution to the minimization problem with the control per-
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minimize
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û ∈U.
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where Y and U are the constraint sets of the outputs and inputs,
respectively. To provide reliable performance of the MPC algo-
rithm, the model has to be constructed very precisely, including
valid properties of the system.

The MPC issue of the water level control can be numerically
solved using the Matlab-Simulink package. The Kalman es-
timator of state variables is working in the system presented
in Fig. 7, where the process and the observation zero-mean
Gaussian noise signals v(t) and w(t) have the same arbitrar-
ily selected variances, in the range from 1e-5 to 1e-1, respec-
tively. The prediction of state variables is executed for fixed
values of parameters: a1 = 0.05 and a2 = 0.05. The identifi-
cation experiment is performed using the sequential quadratic
programming method with a time duration of 20 sec. Mean-
while, equations describing the dynamics of water tanks were
simulated under the following initial conditions: x1(0) = 0.75,
x2(0) = 0.5. The KF response sequence was computed using
the fixed-step, 4-th order Runge-Kutta algorithm with a grid in-
terval of 0.1 sec.

The reference trajectory, chosen similarly to [6, 24], has the
shape of the zero-one square wave with a period of 10 [s] and
duration of the high value (1 [m]) equal to 4 [s]. Figs. 8 and 9
show the nominal responses of model (29) controlled with the
MPC developed for the twin system.

The goal of the MPC algorithm was to ensure the reference
tracking of the water level in the double-tank system. The wa-
ter levels in the upper and lower tanks for the plant model are

Fig. 8. States of the first (x1) and second (x2) tank of the system con-
trolled with the MPC algorithm

Fig. 9. Input signal to water tanks system controlled with MPC

displayed in Fig. 8. The black (solid) curve represents the wa-
ter level in the first tank and the red (dashed) line illustrates
the water level in the second tank. The input signal obtained
for the system controlled by the MPC algorithm is shown in
Fig. 9. These plots are obtained for the noise variance values
v(t) = 1e-5 and w(t) = 1e-5, respectively. For greater variance
values the charts are similar but the curves are more affected
by noise. Fig. 10 shows the curves of the first water tank level
measurement uncertainty (dashed) black line and the estimation
error (solid) red curve obtained for noise variance v(t) = 1e-2.
The measurements and KF estimates errors were computed as a
difference of values between estimated states and the real states
normalized by the number of data points.

As can be noticed from Fig. 10, the KF estimates have about
a 35% lower error rate comparing to the raw data.
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Fig. 10. Plot legend indicates water level measurement and the estima-
tion errors normalized by the number of obtained data

8. Conclusions

The application-oriented input design framework and the MPC
method were used for identification of the nonlinear water tanks
process. The presented input design formulation was utilized in
the identification of system parameters with the intended model
application. The aim of this experiment was to predict the wa-
ter level in the two-tank system, with respect to a reference sig-
nal, taking advantage of model prediction properties. The MPC
technique requires the linearized and discretized model of the
system to be controlled.

In this paper, the novel A- and D-optimal experiments were
performed to estimate the system parameters in the presence of
white noise disturbing the plant model. The experimental re-
sults show that the D-optimal input design yields more precise
model parameter estimates. The D-optimal identification exper-
iment shows that the estimated errors for the first and second
parameter do not exceed 1.23% and 1.17%, respectively. Per-
formance of the MPC scheme depends strictly on the accuracy
of the model to be used by the controller. The ARMAX polyno-
mial model was used for the precise estimation of the linearized
and discretized system coefficients. The resulting plant model
was then applied for the MPC output sequence prediction. The
numerical example confirms that following completion of the
intended model application experiment the cost of the identifi-
cation decreases.

Application-oriented input design was executed using the
Matlab-based Moose2 toolbox. From the user’s point of view,
the capabilities of the package should be extended to include
spectrum forms (i.e. discrete spectra, a sum of the sinusoids,
etc.), physically parameterized state-space models and differ-
ent application costs.
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The application-oriented input design framework and the MPC
method were used for identification of the nonlinear water tanks
process. The presented input design formulation was utilized in
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ter level in the two-tank system, with respect to a reference sig-
nal, taking advantage of model prediction properties. The MPC
technique requires the linearized and discretized model of the
system to be controlled.

In this paper, the novel A- and D-optimal experiments were
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mial model was used for the precise estimation of the linearized
and discretized system coefficients. The resulting plant model
was then applied for the MPC output sequence prediction. The
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intended model application experiment the cost of the identifi-
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Application-oriented input design was executed using the
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