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Abstract
This paper presents a study on the influence of psychophysical stimuli on facial thermal emissions. Two
independent groups of stimuli are proposed to investigate facial changes resulting from human stress
and physical exhaustion. One pertains to physical effort while the other is linked to stress invoked by
solving a simple written test. Subjects’ face reactions were measured through collecting and analysing
long-wavelength infrared images. A methodology for numerical processing of images is proposed. Results
of numerical analysis with respect to different facial regions of interest are provided. An automatic deep
learning based algorithm to classify specific thermal face patterns is proposed. The algorithm consists of
detection of regions of interests as well as numerical analysis of thermal energy emissions of facial parts.
The results of presented experiments allowed the authors to associate emission changes in specific facial
regions with psychophysical stimulations of the person being examined. This work proves high usability of
thermal imaging to capture changes of heat distribution of face as reactions for external stimuli.
Keywords: facial biometrics, thermal face images, psychophysical stressors.
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1. Introduction

Facial thermal heat emission strongly depends on the physical and psychical state of a human.
While observing the image of the human face via a thermal infrared camera one can observe
the influence of external conditions (cold or hot environment), stress, physical effort as well as
changes of thermal emissions in time. A great challenge in the field of human state recognition is
to develop a set of representative stimuli which would provide the repeatability of experiments in
a larger group of subjects. Since subjects may intentionally simulate some reactions, it is crucial
to develop stimuli that will be independent of human intentions. The ability to interpret emotional
state related to stress and emotional matters may prove beneficial to diagnoses of various illnesses.

It is widely known in psychology that a stressor is a stress factor. We can distinguish between
physical, psychological, sociological and biological stressors [1]. Stressors can be classified by
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their cause and duration. When classifying stressors with respect to the source we can distin-
guish external stressors appearing from the body’s external environment, most often resulting in
a fight-or-flight response. Internal stressors are stimuli coming from the inside of the body, like
traumatic memories, fear of diagnostic tests, etc. Virtual stressors (their source being the virtual
world – TV/the Internet) present in the scenes of violence and horror affect the human psyche
with almost the same strength as in the real world. Then, with regard to the duration of stressors,
the so-called one-time events are internal or external stimuli that inevitably lead to anxiety or fear.
The remaining, cyclical stressors, correspond to stress reactions appearing periodically, caused
by traumatic memories related to a place or a specific time. The latter group are called long-term
stressors – these are situations when a stimulus acts on the body constantly, e.g. family problems
or a chronic illness.

According to [2, 3] psychological stressors cause biological reactions in the body, e.g. in-
creasing the heart rate. The human body reaction to strong stressors such as an interrogation,
an interview or another mental load task [4, 5] can lead to temperature changes based on the
blood veins map all over the body. Each organism has its upper and lower efficiency threshold
and reacts with stress to exceeding these thresholds. Stress tolerance also changes as a result of a
deterioration of health or a mental condition [1].

Physical stressors can be divided into several groups. Climatic stressors depend on temperature
combined with humidity (both of these factors work together). Temperature changes cause thermal
stress [6] which can even turn into a heat stroke. Another group comprises of sound stressors
(such as noises) that reduce concentration, hinder communication and can also damage hearing.
The body cannot adapt to constant noise and this can lead to development of hypertension or a
gastric or duodenal ulcer [1]. Visual stressors can be triggered by the brightness of light (induced
by the so-called glare) Lack of light also causes stress. Flashing light of a frequency below 10 Hz
is also a strong stressor causing seizures in one in every 5 to 10 thousand people. Another group is
related to inertial force - a force that acts on the body when it changes its speed and/or direction.
This force causes changes in the body’s blood and body fluid distribution, leading to hyperaemia
and ischemia in different parts of the body.

Long-wavelength infrared imaging (LWIR; 6–15 µm), also referred to as thermal infrared
imaging, takes advantage of mature and efficient technology capable of detecting small differences
in apparent temperature of objects. Thermal face imaging is sensitive to changes of emotional,
physical and health condition of the subject. Moreover, properties of the face depend on the
temperature of the body, environmental conditions and occlusions present on the face such as
scarfs, hairs, facial hairs, glasses or any disguise accessories that alter the emitted heat pattern. The
image of a human face acquired in thermal infrared presents its unique heat-signature presenting
thermal energy distribution and, as such, can be used for facial recognition [1]. An analysis
of relative temperature distribution on the surface of a face can reveal individual patterns of
heat variations and thus can give specific indicators of the subject’s current state. The radiation
registered is proportionally to relative distribution of apparent temperature of objects. In this
paper we present a study on the influence of psychophysical stimulus on facial thermal emissions.

The aim of this work is to report on study of physical and psychological stimuli on facial heat
distribution.

The contributions are summarized as follows:
– Long-lasting experiments presenting influence of psychophysical stimuli on facial thermal

emissions;
– A methodology for numerical processing of images is proposed;
– Classification of thermal face images based on heat emission analysis;
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– Two classification methods based on:
(a) numerical image analysis;
(b) a deep learning classifier applied to extracted thermal facial images.

The paper is organized as follows: in section 2, an overview of stressors and related works are
discussed. Section 3 presents a methodology of measurement based on classification of facial
expressions and thermally significant facial feature points. Description of experiments is provided.
Section 4 is dedicated to the description of the results and analysis process. In section 5 the data
processing methodology and algorithm are explained. The study is summarized in Section 6.

2. Related works

There is an increasing number of works showing that robotic devices can be trained to use
facial thermography to classify human interaction of subjects’ feelings. Recent studies have shown
the possibility to use machine learning techniques to classify the valence of the expressed feelings
(positivity vs. negativity) [7]. Nhan and Tau [8] discovered that, in addition to distinguishing
between positive and negative feelings, infrared thermography can be used to differentiate between
high and low self-reported excitement. The proposed method achieved over 80 per cent of
classification accuracy of elevated excitement versus the baseline and elevated valence versus the
baseline. Success levels were much lower, in the 50–60 per cent range, for the classification of
high vs. low excitement and high vs. low valence. To classify discrete feelings, Khan [9] used
comparative techniques. However, the work reported difficulty in distinguishing between separate
feelings, such as happiness and sorrow, due to participation of comparable groups of muscles.

Although the study mentioned above indicates the potential for using infrared thermography in
testing emotional theories, its implementation is limited by the nature of machine-based learning.
To overcome this, the authors generated algorithms identifying the temperature readings that
provide the most distinctive data and generate equations that use appropriate data to predict
emotions. However, predictive equations are not included in the published studies as well as
specific patterns of facial temperature that can be used for the classification of specific discrete
feelings or emotional dimensions. Nevertheless, the fact that effective classification algorithms
using facial temperature measurements were created firmly indicates that emotional reactions
appear on the face as heat signatures. Khan [9, 10] and Marzec [11, 12] presented methods for
automatic determination of significant points on the face called FTFPs (Facial Thermal Feature
Points), mainly based on the physiology of the human face. However, future studies must determine
how temperature variations in particular areas of the face correspond to emotional aspects and/or
discrete feelings in order to facilitate testing sociological theories.

According to Khan [9], humans involuntarily react to emotions. Specific muscular-physio-
logical activities are believed to generate some muscle-thermal cues. As a result, a change of a
given affective state can cause a change of the body temperature.

Referring to Jones [13], the normal core body temperature of a healthy person, under normal
conditions, ranges between 35.5◦C in the morning to 37.7◦C in the evening. Humans are capable
of maintaining a constant body temperature. An increase (or decrease) of body temperature can
cause a body malfunction and even a failure of body organs [14].

The normal temperature of the core body helps to preserve the homeostasis. The skin is a vital
organ that receives signals from a temperature-regulating element in brain called a hypothalamus
to maintain the body’s core temperature through the process called thermoregulation. Physio-
logical thermoregulation in humans comprises changes in heat dissipation (sweating) and heat
generation (shivering) in response to various internal and external thermal stimuli [8].
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As reported by Tanda [15] and Smith [16], during a graded load exercise, where the load
on the body progressively increases together with the blood demand for the working organs, the
mean skin temperature of the subjects decreases throughout the exercise. The reduction of skin
temperature occurs immediately after starting to run, even during the first steps at moderately
low velocities, without the appearance of sweat on the skin and thus it is not related to thermal
factors such as evaporation due to skin sweat. In the last stage, during the recovery following the
running stage hyperthermal spots were observed probably due to peripheral vasodilation enabling
a progressive transfer of warmer blood from the body core to the surface [7]. This can be used to
determine the RoI (Region of Interest) for specific scenarios.

Cruz-Albaran [17] presented a methodology to obtain a non-invasive smart-thermal system
based on an analysis of biomedical infrared images that can diagnose basic emotions i.e. joy,
disgust, anger, fear and sadness. Such emotions show different thermal facial behaviour due to the
blood flow through the vessels when an emotion occurs; therefore, in this study the quantification
of the change in the facial temperature was registered at different RoIs in order to propose a
biomarker as a response to these emotions. However, subjects have different reactions to the same
stimulus. Thus, a stage of self-calibration in the system is proposed in order to obtain a correct
diagnosis when one of the five basic emotions occurs [17].

Warmelink [18] stated that people that are involved in terrorism or other illegal activities at
the time of their actions appear to be accompanied by alertness, anxiety, and even fear. Since
the sympathetic nervous system [19] produces symptoms, it cannot be completely controlled.
These symptoms can provide useful hints for security staff of critical infrastructures to identify
prospective suspects (e.g. first-time offenders). Redistribution of the blood flow in the surface
blood vessels creates abrupt changes in the local temperature of the skin. This is easily visible on
the human face where the skin layer is very thin.

Pavlidis [19] segmented snapshots from the beginning, middle, and final stages of an activity.
The face of the subject was segmented out from the rest of the background into 5 areas, namely,
periorbital area, nasal area, cheeks (left and right), chin area and neck area. In [19] image
measurements have been performed at 5 designated sub-areas on the face for 2 primary activities:
a response to a startle stimulus and a mild aerobic exercise. Significant and measurable facial
thermal changes appeared. In response to a startle stimulus, the fear was accompanied by an
instantaneous (less than 300 milliseconds) increase in the blood flow around the eyes; it being
independent of the movement of the face or eye. Other facial changes, i.e. the cooling over
the cheeks and the heating over the neck area, occurred simultaneously. Moreover, the average
temperature of the nasal area remained more or less the same. All the changes returned within
1 minute to the pre-start resting values [19].

In this study we aim to provide a quantitative analysis of effects of external psychophysical
stimuli on subject’s state through an analysis of facial thermal infrared images. This paper aims to
address the possibility of automatic distinguishing between different subject’s states with a deep
learning algorithm. During this study, a measurement methodology was proposed together with
a methodology for image numerical analysis. The outcomes of image analysis were implemented
in the form of a deep learning algorithm.

3. Measurement methodology

In this section, we present the methodology of the measurements. Two main experiments
were performed to show the general usability of thermal imaging to capture changes of thermal
distribution of the face as reactions to external stimuli. The results are arranged in two main
groups.
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Thermal image of the human face presents its unique heat-signature that can reveal individual
patterns of intensity variations [20]. Thermal infrared imaging does not need illumination since
it relies on heat emitted by all bodies and objects within the field of view of the camera. The
radiation registered is proportional to relative distribution of apparent temperature of objects.
The projection of objects depends on noise equivalent temperature difference and optics, as well
as on temperature difference between objects and their emissivity. The acquired image strongly
depends on environmental conditions during the acquisition process. In order to capture the shape
and structure of the face, the imager needs to distinguish between very small amounts of energy.
The ability to capture and quantify the thermal energy depends on the parameters of the camera,
in particular, the noise equivalent temperature difference (NETD). This parameter directly defines
the ability of a camera to detect the shape of an object. Infrared cameras equipped with uncooled
micro-bolometer focal plane arrays offer NETD values between 40 and 130 mK, whereas imagers
with cooled detection units have an NETD value below 20 mK.

As part of the experimental study, it is proposed that participants will be exposed to two
elicitations including physical stimuli and psychological stressors. During the study, the subjects’
reactions will be captured with a state-of-the-art thermal infrared camera of the parameters
presented in Table 1.

Table 1. Parameters of the FLIR A65 camera.

Parameters Values

Detection unit Focal plane array (FPA),
uncooled VOX microbolometer

Resolution 640 × 512 pixels

Field of View (FOV) 25◦ × 20◦ with 25 mm lens

Spectral range 7.5 µm – 13 µm

NETD 50 mK at 300 K

Acquisition frequency 30 Hz

The selection of the stressors in the form of physical and psychological factors resulted from
the fact that these factors can simultaneously inform about external stimuli (physical effort or
environmental changes) as well as those connected to emotional states, independent of exertion or
the environmental factors mentioned. During the study, all the factors were considered following
the Cooper experiment. The experiment consisted of two phases, physical and psychological
during which the participants were exposed to stimuli including instances of stimulants affecting
the sensual domain, e.g. loud sound, bright light, flickering light.

This work focused on linking the presence of specific external stimuli with heat emission
changes in specific areas of the face. The psychological and physical parts of the experiment
had their own criteria based on intensity variations in the function of occurring stressors. In
both experiments, images were registered during the presence of the stimuli as well as while the
stressor was not influencing the subject directly. During both tests we analysed images to extract
differences of pixel intensities in order to provide information for the classification process.
The process relied on relative values instead of absolute values. We looked for pixel intensity
changes of specific RoIs with respect to the subject being in the neutral state. The measurement
was considered successful when a set of images acquired during the experiment was classified
correctly.
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All the measurements were taken indoors. During the psychological part of the test, a subject
sat on a chair in front of the camera at a distance of 1.5 m. The camera was mounted on a tripod at
a height of 1.2 m above the floor. After the physical exercises, images were collected of subjects
standing still in front of the camera. Ambient temperature during each of the measurement sessions
was controlled and recorded using a thermometer and stabilized using an air conditioning system.
In order to ensure a uniform background of images, the camera was directed towards the wall
covered with cotton fabric. The fabric was used to reduce the non-uniformity of wall as well as
eliminate reflections.

3.1. Physical test

The first type of the experiment concerned evaluating the impact of physical factors on facial
heat distribution. The physical test, being part of the Cooper test, was performed in the form of a
12-minute run endurance training. The task of each subject was to run the longest distance within
12 minutes. In order to achieve full commitment to the task, the distance was compared to the
gender-specific scoreboard.

The Cooper test, designed to determine an athlete’s performance, was limited to a run element
being the most common factor in everyday life. Conducting the tests in a diversified age group
(20, 30, 40) allowed us to check whether the examined face areas recorded on thermographs had
common features with the same stimuli.

Thermal photos were taken immediately after the workout and repeated at specified time
intervals. Each set of images collected for each subject contained images presenting subjects
before the test and during cooling down. Images before the test were acquired for reference.

3.2. Psychological test

The mental stressors considered in the study were evaluated for the same group of subjects
performing the same activities comprising solving an arithmetic test, putting words on a sheet
of paper in the correct order and finding differences between two images. The duration of this
test was limited. During the experiment each subject sat in front of the camera while performing
specific actions guided by a person supervising the measurement process.

In order to achieve the stress element in the activities presented, it was decided to use a
factor which was simultaneously a stimulus and the consequence of a failure. In the course of
designing the experiment various consequences had been considered including physical (pain),
mental (rebuke or embarrassment) or financial (financial penalty). A physical penalty is by nature
not acceptable for this type of test. Neither is psychological punishment. The application of the
financial penalty was accepted as the most acceptable and, at the same time, the most relevant to
the binding social order (penalty for traffic offences). Subjects participating in the study agreed
to be punished with the financial penalty. All the participants in the study also agreed on the
amount of the fine at the level of around 100 USD. The subject to achieve the lowest score
in the test was supposed to lose the declared amount in favour of the other participants of the
study.

The duration of each task was limited to a time interval between 1 and 3 minutes. The subject
was notified by a visual or sound signal to look at the thermal camera in order to acquire a thermal
face image. Images were acquired with one minute intervals. As a result, we obtained a dataset
of thermal face images. The dataset was then analysed to extract changes of heat distribution of
the subjects’ faces. For the purpose of comparison, images presenting the subjects in the relaxed
state were also acquired.
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4. Data processing and results

During the experiments of both types, thermal face images as well as environment conditions
were recorded. The images were then considered as material for processing and analysis. The
thermal infrared camera used during the experiment acquired thermal data images with a reso-
lution of 640 × 512 pixels, each with the depth of 14 bits. Images were analysed with respect to
selected RoIs. A sample imaging matrix showing a sample RoI is presented in Fig. 1.

Fig. 1. Array of pixels.

In order to measure the value of emissive power in specific areas of the face it is required to
determine the location of the face in the image. Face analysis consists of several stages starting
from pre-processing, RoI detection and analysis of heat distribution. Since the RoIs for analysis
are located at the entire facial region, the RoI detection algorithm has been trained to detect entire
head.

The head detection was performed using the Faster R-CNN [20] algorithm trained with
thermal infrared and visible face images. The selection of the Faster R-CNN method is the result
of an extensive study on thermal face detection algorithms. We had studied three algorithms
including machine learning Viola-Jones [21], and two deep learning methods YOLOv2 [22] and
Faster-RCNN. For the purpose of this work, the best performing algorithm was selected for face
detection.

The Faster R-CNN algorithm is based on the idea of region proposal network (RPN). The
RPN outputs the objectness score for many proposed boxes which indicates whether the selected
part of an image contains a background or a foreground object. All the boxes are examined by
a classifier and a regressor to check the occurrence of objects. The Faster R-CNN is composed
of two networks, a RPN for generating region proposals and a network using these proposals to
detect objects. This algorithm demonstrates an impressive face/head detection performance.

We selected specific face areas for the numerical analysis including forehead, eyes, nose and
cheeks as unique markers for determining one’s physical and psychological state. The method to
determine specific RoI’s coordinates is based on [17]. It applies the ratio distribution factor of
the elements on the face based on the human anatomical parameters calculated for large group
of subjects. According to Fig. 3 the centre of nose RoI can be estimated by using the following
formula: [

xnose
ynose

]
=

[
xface + 0.5D
yface + 0.55d

]
, (1)

where D is size of a face along its x axis and d is a face size along its y axis.

405



J. Panasiuk, P. Prusaczyk, et al.: STUDY ON FACIAL THERMAL REACTIONS FOR PSYCHO-PHYSICAL STIMULI

Fig. 2. Estimation method of the centres of specific ROIs.

The RoIs for the calculations of the mean value of emissive power were specified as a particular
ratio of corresponding dimensions of the detected face as presented in Fig. 3. These regions were
used for calculating the mean value of normalized pixel intensities.

Fig. 3. Regions of interests.

The mean value of normalized intensities for each region of interest were calculated with the
following formula:

EROI =

∑
VROIxROIy

ROIx∗ROIy
, (2)

where EROI is mean value of emissivity of a selected RoI, VROIxROIy are values of emissivity for a
specified pixel and ROIx , ROIy are width and height of the RoI, respectively. Pixel intensities of
each image were normalized before the analysis using min-max normalization.

4.1. Psychological test

The data acquired during the psychological test were divided into 4 groups described in
Table 2.

A gallery of sample images presenting a subject during the psychological test is shown in
Fig. 4.
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Table 2. Description of subsequent parts of the measurements in the psychological test.

Stage Task description

Baseline Data acquired at the beginning of the experiment

Maths task Data acquired during the mathematical test

Sorting task Data acquired during the sorting test

Find the differences task Data acquired during the graphical test of finding
the differences between two images

Fig. 4. Gallery of thermal facial images presenting subject during the psychological test; A) before the experiment,
B) before the math task, C) during the math task, D) after the math task, E) before the sorting task, F) during the sorting

task, G) after the sorting task, H) before the FD task, I) during the FD task, J) after the FD task.

Increasing values of normalized intensities were observed during each test, followed by a
decrease after reporting the task as completed. These observations are shown as the effect of
stress affecting each participant. Graphs of normalized pixel intensities across the different tasks
are presented in Fig. 5.

The analysis of the results showed a certain regularity. After the initial moment of each part
of the test (mathematical test, sorting, finding the differences) the normalized intensity rises as
shown in Fig. 6.

The change in normalized intensity is directly connected with the change of apparent temper-
ature. However, since we did not use any stabilized radiation source (a blackbody), the measured
values of pixel intensities should not be considered real temperatures. Afterwards, the normalized
intensities rise to the maximum value. The values of normalized intensity decrease at the end of
the task. This trend was repeated for each participant during all the three stages of the experiment.
The strongest trend is visible in the case of forehead and eyes and the weakest in the case of nose.

For each facial RoI, we calculated a threshold which corresponds to the mean intensity of a
RoI for the subject being in the neutral state. In this step, only images presenting subjects in the
neutral state were analysed. Based on these thresholds, we compared the RoI values of subjects
during the test. Finally, we calculated the total ratio of facial images correctly classified as neutral
or during the test which equals 76.40%.

One can also notice here that different parts of the test had a different influence on the stress
level of the subject. In the case of the mathematic test, which in terms of content could be the
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Fig. 5. Graphs of normalized average pixel intensities for the forehead during the psychological test.

Fig. 6. Graphs of normalized average pixel intensities for facial areas during the psychological test.

most difficult, it is clear that the measurement of normalized pixel intensities at the surface of the
forehead implies the highest impact compared with the other parts of the experiment.

4.2. Physical test

The results collected during the second part of the experiment were grouped with regard to
the stage of the measurement process. Table 3 provides a description of the measurement process.
During each stage 5 images of each subject were collected.
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Table 3. Description of the measurement stages.

Stage
number Part description

Baseline Beginning of the experiment

Stage 1 Subjects coming in from the cold environment outside

Stage 2 Subjects after a 16-minute run in low temperatures outside

Stage 3 First minute after running

Stage 4 2 minutes after running

Stage 5 3 minutes after running

Stage 6 4 minutes after running

Stage 7 5 minutes after running

Stage 8 10 minutes after running

Stage 9 15 minutes after running

The baseline measurements were acquired before the tests to determine each participants’
neutral face heat distribution. At the first stage, the participants were asked to spent 5 minutes
outside the building at the temperature of 5◦C. After the first stage, subjects were asked to perform
the running test according to the Cooper proposition. Each participants’ values measured were
lower than the baseline (Fig. 5). The running test was performed outside at the temperature of 5◦C.
The image acquisition started after the physical exercise in the laboratory with air temperature
of 22◦C and humidity of 35%. A gallery of images acquired before and after the physical test is
presented in Fig. 7.

Fig. 7. Gallery of thermal facial images presenting subject during physical experiment; A) before the experiment, B) after
5 minutes in a low temperature environment, C) after 12 minutes of running, D) 1 minute after running, E) 2 minutes after
running, F) 3 minutes after running, G) 4 minutes after running, H) 5 minutes after running, I) 10 minutes after running,

J) 15 minutes after running.
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As presented above, facial thermal emission changed significantly after the exercise. Physical
exercise showed to be very strong stimulus since it increased the heart rate and the blood flow.
It took the human body several minutes for to regulate the thermal emission and return to the
baseline, depending on type of physical stimuli, age and other factors related to the health of
a subject. The measurement scheme was applied to collected images to find patterns of heat
emission changes as presented in Fig. 8.

Fig. 8. Sample thermal image, after workout (left), baseline (right).

Graphs of pixel intensities for the forehead and the remaining areas are presented in Fig. 9
and Fig. 10, respectively.

Fig. 9. Graphs of normalized average pixel intensities for the forehead area during the physical test.

An analysis of changes of facial heat distribution registered by the thermal camera after a
physical effort brings us to the conclusions below. The coherent nature of the results can be clearly
observed in the case of the subjects at different ages (S1 – 32 yr., S2 – 28 yr., S3 – 44 yr.) (Fig. 9).
The changes in their characteristics are consistent for all the RoIs as presented in Fig. 10.
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Fig. 10. Graphs of normalized average pixel intensities for facial RoIs during the physical test.

There is a significant difference in heat emissions reflected with different pixel intensities
between a person who entered a laboratory from a 5◦C environment and a person who came from
a similar environment conditions after 12 minutes of physical effort. Based on the baseline pixel
intensities and environmental conditions, it is possible to determine whether the examined person
came from a low temperature environment or the so-called room temperature. Due to the ability
of human body to adapt to different conditions, this information disappears after several minutes.
The thermal balancing process depends on a variety of factors, both personal and environmental.

The acquired thermal data of measured RoIs can be interpreted in the context of environmental
conditions as well as their changes during the experiment. The observed heat distribution trends
allow us to detect the changes that results from stress, entering a room from a low-temperature
area or a physical effort. The results of the psychological test reveal that stress caused a heat
distribution change related to a local increase in temperature for all the measured RoIs except for
the nose. At the end of the psychological test we recorded a noticeable intensity decrease which
is particularly visible at the forehead and eyes. This situation repeats in the case of each person
examined at each stage of the test.

Based on the physical test, it is possible to see a significant deviation from the initial face heat
map (the baseline). The physical exercise caused a strong change in thermal heat emission of the
face for each of the subjects. Restoring the baseline heat distribution takes several minutes.

Similarly to the psychological test, we calculated a classification ratio for the physical test. For
each facial image of a subject in the neutral state, we calculated a threshold which corresponds to
the mean intensity of a RoI. Based on these thresholds, we compared the RoI values of subjects
after the physical exercise. As a final step, we calculated the total ratio of facial images correctly
classified as neutral or after the exercise. The classification accuracy is 78.1%. We noted that
most of the images incorrectly classified were registered at the end of the experiment (after 10
minutes). Therefore, in order to achieve high accuracy, the measurement should be performed
immediately after the physical task, no later than 10 minutes.
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5. Classification algorithm

The starting point for the algorithm registering the environmental conditions under which
the test is performed and used as a reference for results obtained from the specific individual
measurement areas.

A block diagram of the classification algorithm is presented in Fig. 11. The algorithm aims
to recognize subject’s psychophysical state based on registered images as well as external, envi-
ronmental conditions. Since the state of a subject depends on numerous factors, the facial heat
distribution analysis has to be linked with other parameters. The images are categorized with
specific metadata including at least air temperature and air humidity. The data registered can be
supplemented with the pulse ratio.

Fig. 11. Block diagram of the classification algorithm.

The algorithm starts with acquisition of metadata and thermal infrared images of a subject’s
face. The facial images need to be pre-processed before the numerical analysis. Head detection
was performed with the Faster R-CNN algorithm achieving a high detection rate of over 95%
with zero false detection rate. In order to train the head detection algorithm, 1148 thermal images,
each containing a single face were manually annotated. The training dataset is a composition of
images brought from two databases (in-house [23] and PROTECT [24]).

Currently, deep learning classification algorithms offer high performance for a variety of tasks.
Numerous methods for image classification are known including AlexNet [25], VGG networks
[26], residual neural networks, inception networks [27], etc.

For automatic classification, a residual neural network (ResNet-50) was considered. ResNets
is a family of networks proposed in many variants [28]. ResNet-18, ResNet-50 and ResNet-101
were proposed as a solution for training very deep networks with a limited amount of data. These
CNNs use the so-called identity shortcut connection or residual connections that skip some of
the connections to jump over some layers. Typical ResNet models are implemented with double-
or triple- layer skips that contain nonlinearities (ReLU) and batch normalization in between.
The network constructs pyramidal cells in the cerebral cortex during data processing. ResNet-50
consists of 50 hidden layers. Since the collected dataset of samples is relatively small, we chose
this network as it had been proven less prone to overfitting.

The network analyses the thermal facial images in order to classify the state of a subject as
neutral, after a physical effort or stressed. The algorithm aims to provide a good separation rate
between different classes of a subject’s state. For development of the classification algorithm, we
selected 500 images presenting subjects in three states – neutral, after a physical effort and during
the psychological test. Extracted face images were grouped into three classes corresponding to
two investigated subject’s states and the neutral state. In order to classify the subject’s state,
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thermal images need to be acquired at certain time intervals during the experiment. The process
should start with acquisition of images of a subject in the neutral state, followed by images
captured during the experiment and after it was completed. During our study, all the predictions
were based on 6 images including two images in the neutral state, two images taken during the
experiment and two images acquired afterwards.

A simple transfer learning scheme was applied training of the classifier. The network model
was first trained on the ImageNet dataset in order to provide general representation of various
objects and retrained on visible and thermal infrared images. The entire dataset was divided into
training, testing and validation parts with the split ratio of 70%, 20%, and 10%, respectively.
Our study has revealed that it is possible to determine whether a person performed physical
exercise, entered a room of different temperature, or is under stress. Classification performance
was calculated in a 5-fold cross-validation scheme with the mean classification performance of
88.21% ± 2.1%.

6. Conclusions

This paper presents a study of influence of psychophysical stimuli on facial thermal emissions.
The study consists in applying two groups of stimuli including physical effort and stress invoked
by solving a simple written test. The paper presents the methodology used as well as results of
numerical analysis of thermal infrared images collected during the experiments. An automatic
algorithm to classify specific thermal face patterns is proposed.

This work proves high usability of thermal imaging to capture changes in heat distribution of
the face as reactions for external stimuli. The analysis of collected images revealed that in the case
of psychological stimuli the dynamics of pixel intensity changes is much higher as compared to
the physical effort experiment. The presented methodology can be used to develop an automatic
method for classification of state of a subject based on thermal infrared images. However, it
should be emphasized that individual reaction depends on a variety of factors including personal
and environmental ones. Interpretation of the thermal image of the human face can serve as an
additional factor in recognizing a subject’s psychophysical conditions.

The conducted numerical analysis, based on specific facial RoIs, achieved the classification
ratio of 76.40% and 78.10% for psychological and physical tests, respectively. It has been also
revealed that in order to achieve high classification accuracy the measurement should be made
immediately after the physical task, no later than 10 minutes after it was completed. The proposed
deep-learning based algorithm achieves mean classification performance of 88.21% ± 2.1% in a
5-fold cross-validation scheme.

In order to improve the reliability of the algorithm, a study based on a larger group of subjects
would be beneficial. Auto-calibration of the thermal infrared imager as well as reference data of
subject being in relaxed state should also improve the method’s performance. Nevertheless, this
paper shows that both measurement methodology and algorithm are valid and can be used in
further investigations. Such extensive research could be used to build a fully functional system
allowing to read information about the human psychophysical state from facial thermal infrared
images.

References

[1] Terelak, J. (2001). Psychologia stresu. Bydgoszcz: BRANTA.

[2] Adelson, R. (2004). Detecting deception. APA Monitor on Psychology, 35(7), 70–73.

413



J. Panasiuk, P. Prusaczyk, et al.: STUDY ON FACIAL THERMAL REACTIONS FOR PSYCHO-PHYSICAL STIMULI
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