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1. Introduction

The chain scissor structure mechanism, a well-known princi-
ple for expanding and contracting a structure, is widely used
for space structures, machines (lifters), and building structures
(tents, gates, etc.). There is a great engineering utility value in a
structure that can expand by itself. A mathematical model that
governs its mechanics is required to design a general-purpose
structure. In general, to analyse the scissor structure, it is nec-
essary to impose the boundary conditions. To solve the zero-
stiffness problem with the pin connection of the scissor struc-
ture, we propose the solution of the equilibrium equation de-
rived from the equilibrium condition of a free-body diagram
(FBD) with the nodal forces at the scissor connection points.
For more complex, statically indeterminate scissor structure, we
have developed a new analysis method based on the finite ele-
ment method (FEM).

We consider a structural analysis to introduce this chain scis-
sor into a prefabricated bridge easily, quickly, and safely with
infrastructural structures. This eliminates the need for on-site
bridge assembly, and the process is quick and efficient. To
achieve this approach, a lightweight, high-strength bridge sys-
tem is also generally required [1–5]. Therefore, a method must
be developed to determine the optimal layout, shape, and design
of these bridges to ensure that the structural form of the bridge
system exhibits high stiffness [6,7]. To date, many structural op-
timisation theories have been developed in an attempt to ensure
both a lightweight [8] and highly rigid design. Moreover, the
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application of adaptive elements with controllable mechanical
characteristics enables obtaining adaptability and deformation
control under actual static or dynamic loading [9].

In this paper, we proposed a new, pre-assembled smart
bridge [10–15]. Previous studies have proposed methods to de-
termine the cross-sectional forces for all elements based on
equilibrium mechanics for a unit of a linked scissor structure.
The displacements of the nodal points of the scissor structure
have also been determined by structural analyses, such as by the
unit load method and/or minimum strain energy methods. This
bridge has a scissor structure that enables quick deployment via
a collapsible structural frame. It was structurally optimised us-
ing a reinforced scissor system. Except the authors’s theory of
equilibrium mechanics, no method for analysing such a bridge
has been proposed; the scissor system in this bridge contains
pin-joint structures that possess zero-stiffness and represent a
structural instability.

Scissor-type periodic structures are extremely useful in
building a quickly deployable bridge. The scissor bridge con-
structed of several scissor units can be considered as a peri-
odic structure. Periodic structures, such as honeycomb struc-
tures, are also called cell structures, and their basic units are
called unit cells. As computational power has increased, struc-
tural analysis can be performed using the FEM [16, 17]. There-
fore, the use of FEM (which incorporates multi-scale analysis,
the homogenisation method, extended truss theory including
scissor structures [18], etc.) with a unit cell as a representative
volume element (RVE) was proposed by C.T. Sun [19] et al.
to analyse such structures. Following such an approach, in this
analysis, we focused on the topology of the microtruss struc-
ture using the microtruss analytical method [10], considering
the symmetry present in periodic structures. The discretised pe-
riodic structure [20, 21] was analysed via the FEM and treated
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as a cell structure, and the issue of building a fundamental scis-
sor element using the FEM was also considered.

In this study, discrete FEM elements with many degrees
of freedom, which prevent structural instability and allow to
change support and load conditions freely, were developed tak-
ing into account the periodicity of the analysed structure. Using
the periodic units of the scissor structure as representative units,
the stiffness of the entire structure was analysed via the RVE
method [22]. After discretising n units of the scissor structure
to represent the overall scissor structure, a FEM element con-
sisting of these scissor units was constructed. Thus, a complete
FEM model with n scissor units could be developed. A new,
cell-based FEM that avoids indefinite numerical solutions for
scissor structures was developed, and accurate deformation in-
formation was obtained using the proposed method without the
need for special elements to represent pivots.

The accuracy of the proposed method was verified by
analysing displacements and the cross-sectional forces for each
member and comparing it with the results obtained by using
the present theories and ABAQUS software computation for a
scissors structures. The significant result of this study is devel-
opment of the analysis method for scissors structures and/or
frame elements with different pin connections for the periodic
modular elements using the FEM. Finally, the merits of three
present methods including equilibrium mechanics model, de-
veloped models of scissors structures and ABAQUS FEM mod-
els have been summarized in the concluding section.

2. Equilibrium mechanics for the scissor
structure

In this section, we introduce a part of the theoretical solution ap-
proach called equilibrium mechanics for a single scissor struc-
ture unit [23].

2.1. Equilibrium equibalance of a scissor unit. First, a free-
body diagram (FBD) of a scissor structure is shown in Fig. 1.
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Fig. 1. The definition of equilibrium mechanics for a unit of scissor
structure

It is assumed that the length of each member is � and the incli-
nation angle is θ measured clockwise from the vertical direc-
tion; the span λ and the height η are related by λ = �sinθ and
η = �cosθ .

Thus, the configuration of such a structure can be represented
by the angle θ . This scissor structure with five nodal points with
nodes named as AL,BL,C,AR,BR, can be analysed by using the
equilibrium equations for the FBD of Fig. 1. The equilibrium
equation for each external force1 in the x and y direction is as
follows:

ΣH : (AL)x +(BL)x +(C)x +(AR)x +(BR)x = 0, (1)

ΣV : (AL)y +(BL)y +(C)y +(AR)y +(BR)y = 0. (2)

For the intersecting members, BLAR and BRAL, two equilib-
rium equations can be obtained for the moments at point C:

ΣMC : − η
2
(BL)x +

λ
2
(BL)y +

η
2
(AR)x −

λ
2
(AR)y = 0, (3)

ΣMC : − η
2
(BR)x −

λ
2
(BR)y +

η
2
(AL)x +

λ
2
(AL)y = 0. (4)

Let us consider the case of a simple cantilever model that
has pinned supports at points AL and BL. The equilibrium of
such a structure can be written in the form of a matrix equation
based on the equilibrium equations derived above (Eq. (1) to
Eq. (4)).
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where

L=




1 0 1 0

0 1 0 1

−η λ 0 0
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, R=




1 0 1 0

0 1 0 1

0 0 η −λ
−η −λ 0 0



,

1This means that a force at the nodal point is (•∗)Φ, (•∗)Φ ≡[
•∗|AL,BL,C,AR,BR;∗= {L,R};Φ = {x,y}

]
, •∗ is nodal label.
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These equilibrium equations obtain the left nodal forces (BL)
and (AL) at points BL and AL for the right and central nodal
forces (BR), (AR), and (C), which are given as the load values.
Therefore, the axial force, shear force, and bending moment can
be calculated based on the projection of the above nodal forces
to the member directions.

2.2. Structural analysis for nodal displacements. We con-
sider a simple model of the scissor-type bridge by using the
equilibrium equation method to introduce the mechanical prop-
erties, definition of nodes, and internal forces Nj, Q j, Mj, which
are calculated by the projection of the above nodal forces on the
member direction (FBD shown in Fig. 2(a)). We assume that
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(a) FBD of a unit of scissor
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(b) A two-unit scissor structure under the loadings Q,P

Fig. 2. Models of scissors structures

there are two units of the scissor structure with a simple support
as shown in Fig. 2(b) and their internal forces Nj, Q j, Mj are ob-
tained based on the equilibrium equation method. The length of
all members is �=

√
η2 +λ 2 in which, η is the vertical height

and λ is the horizontal distance for a unit. We consider that the
vertical nodal displacement v• depends on the loading at nodal
points of n-units of the scissor structure according to the unit
load method in the following way:

v• =
n

∑
k=1

4

∑
j=1

�k
j/2∫

0

(
Nk

0 jN
k
• j

EA
+κ

Qk
0 jQ

k
• j

GA

+
Mk

0 j(χ)M
k
• j(χ)

EI

)
dχ, (6)

where χ is the distance from each corner nodal point in
Fig. 3(a). N0, N• are the internal axial force in the member
caused by the real loads and the internal virtual force caused
by the external virtual unit load, respectively; Q0, Q• are the
internal shear force in the member and internal virtual shear,
respectively; κ is the form factor for the cross-sectional area;
M0, M• are internal moments in the frame and the internal vir-
tual moment, respectively; k is the number of units; and j is the
number of half units of the member. We can consider several
scissor structure units with the coupling conditions of a linked
scissor structure. For example, in the case of two units (n = 2)
in the FEM shown in Fig. 2(b), the virtual moment Mk

• j under
P• = 1 at each nodal point is used to obtain a nodal displace-
ment of v•. As the shear effect is small and the corresponding
term can be neglected, Eq. (6) is expressed as

v• =
2
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2
+

�k
j/2∫

0

Mk
0 j(χ)M
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• j(χ)
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 ,

at points •= {C1, B2, C2, A2, A1, A3}. (7)

the virtual moment Mk
• j = 1 at each nodal point to obtain nodal

the deformed angle φ• in the following:

φ• =∑
k

4

∑
j=1

�k
j/2∫

0

Mk
0 j(χ)M

k
• j

EI
dχ, at points •= {C1, C2}. (8)

Thus, the mechanical method based on the equilibrium mechan-
ics of a scissor unit allows us to obtain the displacement, includ-
ing the rotation, of every node of the scissor structure.

3. FEM analysis of the scissor units

Second, we suggest the FEM, which allows us to assemble the
equilibrium equation with the stiffness matrix for units of scis-
sor structure. In this paper, the following assumptions are made
regarding the construction method of a scissors element and the
analytical conditions for the application of the FEM.
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and (AL) at points BL and AL for the right and central nodal
forces (BR), (AR), and (C), which are given as the load values.
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be calculated based on the projection of the above nodal forces
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as shown in Fig. 2(b) and their internal forces Nj, Q j, Mj are ob-
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• The scissors element is constructed using a static ap-
proach proposed in the analysis of periodic structures. This
methodology and analysis method is used only for the func-
tional simplification of joints. However, the accuracy of the
method is affected by stiffness of such connections.

• In fact, the actual scissor structures include various types of
non-linear phenomena in the joints (contact, clearance, fric-
tion). Nonlinear functions, such as the effect of friction and
contact issues, are not considered in this analytical model.
A precise mapping of the articulated joints enables the ad-
vanced static and dynamic analysis of this type of structure.
This complex situation requires the extensive use of FEM,
but is not within the scope of this paper.

In general, the discretised equilibrium equation of a standard
FEM containing N degrees-of-freedom of all frame elements in
global coordinate system (GCS) is described by

F( f ,u)≡ Ku− f = 0, (9)

where F is the defined equilibrium equation, K ∈ RN×N is the
stiffness matrix, u ∈ RN is the vector of nodal displacements
and f ∈ RN is the vector of nodal loads.

The stiffness equation in the Element Coordinate System
(ECS) is the following:

f e = k
e
ue,

[
f e

i

f e
j

]
=

[
ke

ii ke
i j

ke
ji ke

j j

][
ue

i

ue
j

]
in ECS, (10)

here f e ∈ R6 is a vector of the internal nodal forces for the local
frame element. ke

i j is the component i, j of the stiffness matrix
ke ∈ R6×6 for an element, EI is the bending stiffness, EA is the
axial stiffness for structural members in ECS k

e
is defined as

follows:

k
e
=




EA
�

0
12EI
�3 Symm.

0
6EI
�2

4EI
�

−EA
�

0 0
EA
�

0 −12EI
�3 −6EI

�2 0
12EI
�3

0
6EI
�2

2EI
�

0 −6EI
�2

4EI
�




. (11)

In this method, we focus on a set of units in the entire linked
scissor structure with the same length �. It is assumed that in
all members, each unit of the scissor structure is constructed
in the same manner. The deformation of this structure can be
analysed by determining the stiffness matrix K that expresses
the relationship between the displacement and load at the state
of equilibrium. A scissor structure is composed of scissor units
that consist of a pair of straight bars affected by both the axial

forces and the bending moments. An ‘X’-shaped scissor unit is
composed of four elements, m, which are described in terms of
the nodes denoted by i and j for each frame element.

3.1. Transformation through the scissor coordinate system
(SCI). One scissor unit system is comprised of 4 individual
elements shown in Fig. 3(a), and these 4 elements should be
combined to represent a coordinate system (SCI) per a scis-
sor element in this paper2. As shown in Fig. 3(b), the FEM of
the scissors unit comprises a configuration of four degrees of
freedom of the extended nodal force vector and the displace-
ment vector at each nodal point of the unit scissors structure.
If the scissors structure has no pin joints and is a rigidly con-
nected frame element, the two rotational degrees of freedom
have a common rotational displacement and each node then has
three degrees of freedom. A coordinate transformation matrix,
T (ϕm), is defined using inclination angles ϕm of the elements
in the initial configuration. The stiffness matrix k(m) is trans-
formed from the element coordinate system to scissor element
system using the coordinate transformation matrix, T (ϕm). The
transformation is obtained using the following equation:

k(m) = T T
m k

e
Tm

=

[
k(m)

ii k(m)
i j

k(m)
ji k(m)

j j

]
from ECS to SCI, (12)

where k(m) is the stiffness matrix after local transposition. The
ends of each element (m = 1, · · · ,4) correspond to the nodal
points i and j shown in Fig. 3 in the following way:

k(1) =

[
k(1)11 k(1)13

k(1)31 k(1)33

]
, · · · , k(4) =

[
k(4)33 k(4)35

k(4)53 k(4)55

]
.

Then, the transformation matrix Tm is defined as follows:

Tm =

[
T (ϕm) O

O T (ϕm)

]
, where (13)

T (ϕm) =




cos(ϕm) sin(ϕm) 0 0

−sin(ϕm) cos(ϕm) 0 0

0 0 a b


 ,

here
a b element no.
1 0 for m = 1,4
0 1 for m = 2,3

. (14)

The stiffness matrix and transformation matrix from ECS to
SCI is expanding the size of stiffness matrix K(1) for a unit of a
scissor element, with the size of the elemental stiffness matrix
k(m) as a part of a scissor unit from 16 to 20 degrees-of-freedom
of a frame element. It is defined by expanding stiffness matrices
as K(M)

sc for the M-th unit of a scissor FEM element with four

2This coordinate system (SCI) can be used to represent rigid frames with
different connections based on the periodic cell structure.
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(a) A scissor element system (SCI) (b) Degrees of freedom in a unit

Fig. 3. FEM for a scissors unit combined by 4 frame elements (m = 1, · · · ,4)

frame elements after transforming local stiffness matrix k(m) in
the following way:

K(M)
sc ≡

4

∑
m=1

[
k(m)

]
from SCI to GCS

=
4

∑
m=1




· · · · ·

· k(m)
ii · k(m)

i j ·
· · · · ·

· k(m)
ji · k(m)

j j ·
· · · · ·



,

{(i, j) or ( j, i)|(1,3),(2,3),(4,3),(5,3)}

∪{(i, i) or ( j, j), i �= j|i, j = 1, · · · ,5}

=




k(1)11 O k(1)13 O O

O k(2)22 k(2)23 O O

k(1)31 k(2)32 ∑4
m=1 k(m)

33 k(3)34 k(4)35

O O k(3)43 k(3)44 O

O O k(4)53 O k(4)55




, (15)

where the stiffness matrix of a unit of scissor might be de-
termined by using (15). Any diagonal components k(m)

j j , j =

1, · · · ,5 of the stiffness matrix K(M)
sc in a scissor unit are not

zero, and they should assume positive values. The pivot at the
centre of the scissor unit is used to determine the displacement
between the 4 elements, but not the rotation. The stiffness re-
sulting from the whole structural system consisting of each el-
ement can be placed in the matrix location corresponding to
that element; however, the stiffness resulting from the rotation
of each element must be inputted using additional columns and
rows. Specifically, when the stiffness corresponding to the pin

joint is included, a matrix k(m)
i j ∈ R4×4 is required. Following

the RVE method, we consider the set of unit elements of the
same geometry and scale, which are described by the stiffness
matrices:

K(1)
sc = · · ·= K(M)

sc = · · ·= K(n)
sc . (16)

The stiffness corresponding to the rightmost connection of
the scissor unit is shown in the lower right corner of the matrix,
and the stiffness corresponding to the leftmost connection is
shown in the upper left corner.

4. Determining the stiffness of n scissor units

The stiffness of n scissor units can be obtained by examining
the stiffness of one scissor unit with respect to the left and right
connected conditions and assembling the global stiffness matrix
of the system as follows:

Ksc =
n

∑
M=1

[
K(M)

sc

]
in GCS

=
n

∑
M=1




· · · · ·
·

[
K(M)

sc

]
ll

·
[
K(M)

sc

]
lr

·
· · · · ·
·

[
K(M)

sc

]
rl

·
[
K(M)

sc

]
rr

·
· · · · ·




=




[
K(1)

sc

]
ll

[
K(1)

sc

]
lr[

K(1)
sc

]
rl

[
K(1)

sc

]
rr
+
[
K(2)

sc

]
ll

. . .

. . . . . .
(M) . . .

. . .
[
K(n)

sc

]
rr




, (17)
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(a) A scissor element system (SCI) (b) Degrees of freedom in a unit

Fig. 3. FEM for a scissors unit combined by 4 frame elements (m = 1, · · · ,4)

frame elements after transforming local stiffness matrix k(m) in
the following way:

K(M)
sc ≡

4

∑
m=1

[
k(m)

]
from SCI to GCS

=
4

∑
m=1




· · · · ·

· k(m)
ii · k(m)

i j ·
· · · · ·

· k(m)
ji · k(m)

j j ·
· · · · ·



,

{(i, j) or ( j, i)|(1,3),(2,3),(4,3),(5,3)}

∪{(i, i) or ( j, j), i �= j|i, j = 1, · · · ,5}

=




k(1)11 O k(1)13 O O

O k(2)22 k(2)23 O O

k(1)31 k(2)32 ∑4
m=1 k(m)

33 k(3)34 k(4)35

O O k(3)43 k(3)44 O

O O k(4)53 O k(4)55




, (15)

where the stiffness matrix of a unit of scissor might be de-
termined by using (15). Any diagonal components k(m)

j j , j =

1, · · · ,5 of the stiffness matrix K(M)
sc in a scissor unit are not

zero, and they should assume positive values. The pivot at the
centre of the scissor unit is used to determine the displacement
between the 4 elements, but not the rotation. The stiffness re-
sulting from the whole structural system consisting of each el-
ement can be placed in the matrix location corresponding to
that element; however, the stiffness resulting from the rotation
of each element must be inputted using additional columns and
rows. Specifically, when the stiffness corresponding to the pin

joint is included, a matrix k(m)
i j ∈ R4×4 is required. Following

the RVE method, we consider the set of unit elements of the
same geometry and scale, which are described by the stiffness
matrices:

K(1)
sc = · · ·= K(M)

sc = · · ·= K(n)
sc . (16)

The stiffness corresponding to the rightmost connection of
the scissor unit is shown in the lower right corner of the matrix,
and the stiffness corresponding to the leftmost connection is
shown in the upper left corner.

4. Determining the stiffness of n scissor units

The stiffness of n scissor units can be obtained by examining
the stiffness of one scissor unit with respect to the left and right
connected conditions and assembling the global stiffness matrix
of the system as follows:

Ksc =
n

∑
M=1

[
K(M)

sc

]
in GCS

=
n

∑
M=1




· · · · ·
·

[
K(M)

sc

]
ll

·
[
K(M)

sc

]
lr

·
· · · · ·
·

[
K(M)

sc

]
rl

·
[
K(M)

sc

]
rr

·
· · · · ·




=




[
K(1)

sc

]
ll

[
K(1)

sc

]
lr[

K(1)
sc

]
rl

[
K(1)

sc

]
rr
+
[
K(2)

sc

]
ll

. . .

. . . . . .
(M) . . .

. . .
[
K(n)

sc

]
rr




, (17)

Bull. Pol. Ac.: Tech. 68(6) 2020 5



1324

I. Ario, T. Yamashita, Y. Chikahiro, M. Nakazawa, K. Fedor, C. Graczykowski, and P. Pawłowski

Bull.  Pol.  Ac.:  Tech.  68(6)  2020

I. Ario, et al.

=




K(1)
sc K(1)

sc

K(1)
sc K(1)

sc +K(2)
sc K(2)

sc

K(2)
sc K(2)

sc +K(3)
sc K(3)

sc

K(3)
sc K(3)

sc +
. . .

. . . . . .
(M) . . .

. . . +K(n)
sc K(n)

sc

K(n)
sc K(n)

sc




=




· · · · ·
· [Ksc]ii · [Ksc]i j ·
· · · · ·
· [Ksc] ji · [Ksc] j j ·
· · · · ·



, (18)

where in equation (17), l and r for ◦ and/or • of [K(M)
sc ]◦• su-

perscripts ◦•, denote the components that correspond to the left
connection and right connection, respectively. The stiffness of
one scissor unit is used to determine the global stiffness of n
scissor units that overlap periodically. Because the leftmost and
rightmost connections of a scissor unit are connected by pin
joints to the bordering units, the longitudinal and transverse
stiffnesses of each unit at these boundaries are the same and
are in the same cell of the matrix. However, the stiffnesses as-
sociated with the rotation are specific to each unit, and thus are
placed in separate locations in the stiffness matrix. In this study,
three connecting scissor units are used to represent n scissor
units.

5. Reinforcement of the scissor structure

In this section, we consider a structural model with a reinforced
member which is not a frame member after the stable expanding
scissors bridge, which is supported at its ends. As the applied
reinforcement resists only the axial force and not the bending
moment, the stiffness related to the axial force alone is changed
in the stiffness matrix. The overall stiffness matrix is combined
with the chained frame stiffness matrix Ksc of equation (17) and
the sectional stiffness from k

e
EB without any bending stiffness

EI of the reinforcement element. While considering the local
stiffness of the reinforced member, the total stiffness matrix K∗

sc
is defined as follows:

K∗
sc = Ksc +∑

m
K(m)

EB in GCS

= Ksc +∑
m




· · · · ·
·

[
k(m)

EB

]
ii

·
[
k(m)

EB

]
i j

·

· · · · ·
·

[
k(m)

EB

]
ji

·
[
k(m)

EB

]
j j

·

· · · · ·



, (19)

here ke|EI=0 is substituting EI = 0 for Eq. (12) in the following:

K(m)
EB =

[
k(m)

EB

]
from SCI to GCS

k(m)
EB = T T

m k
e
∣∣∣
EI=0

Tm =




[
k(m)

EB

]
ii

[
k(m)

EB

]
i j[

k(m)
EB

]
ji

[
k(m)

EB

]
j j




from ECS to SCI.

6. Superelement model of scissor unit

The approach alternative to application of the classical stiffness
matrix of a single scissors unit is construction of a “superele-
ment” that models a single scissors unit. The main difference
between both approaches is the number of nodes and the num-
ber of corresponding degrees of freedom used for scissors unit
modelling. In a classical FEM approach a single scissors unit
has five standard nodes (four nodes at the ends of scissors mem-
bers and one node at central pivot). In turn, the scissors unit
“superelement” has four external nodes ( j = 1,2,4,5 in Fig. 3)
located at the ends of the scissors members and one internal
node ( j = 3 in Fig. 3) at the central pivot. The external nodes
collect external degrees of freedom, while the internal nodes
collect internal degrees of freedom.

The methodology of constructing scissors units “superele-
ment” is analogous to development of other “superelements”
known in FEM. The scissors unit “superelement” is obtained
directly from the FEM model of a single scissors unit through
elimination of the internal dofs and expressing them in terms
of external dofs. Mathematically, the procedure of derivation of
the superelement is as follows.

• We start from the FEM equation governing the equilibrium
of a single scissors unit in which we separate the external
and internal degrees of freedom in order to obtain the matrix
equation:

[
Kee Kei

Kie Kii

][
qe

qi

]
=

[
f e

f i

]
, (20)

where the index ‘e’ denotes external degrees of freedom and
‘i’ denotes the internal ones. Thus, the partial stiffness ma-
trix, Kee collects reactions in external dofs resulting from
displacements at external dofs, Kei collects reactions in ex-
ternal dofs resulting from displacements at internal dofs,
Kie collects reactions in internal dofs resulting from dis-
placements at external dofs and, eventually, Kii collects re-
actions in internal dofs resulting from displacements at in-
ternal dofs. Consequently, qe and qi denote generalized dis-
placements at external and internal dofs, respectively, while
f e and f i denote concentrated forces and moments at exter-
nal and internal dofs, respectively.

• Firstly, we separate the subsystem describing equilibrium of
the internal node, which can be used to determine general-
ized displacements qi (two displacements and two rotations

6 Bull. Pol. Ac.: Tech. 68(6) 2020

Structural analysis of a scissor structure

at central pivot) in terms of generalized displacements qe
(two displacements and one rotation at each end of scissors
members):

qi = K−1
ii ( fi −Kieqe) . (21)

• Secondly, we separate the subsystem describing equilib-
rium of the external nodes and use the result (21). The re-
sulting equation takes the form:

(
Kee − K̃eiKie

)
qe = fe − K̃ei fi , (22)

where K̃ei = KeiK−1
ii . Eq. (22) can be written in a shorter

form:
K̃ee qe = f̃e, (23)

where K̃ee = Kee − K̃eiKie, f̃e = fe − K̃ei fi and it can be con-
sidered as equilibrium equation for scissors unit superele-
ment. The matrix Kii is a diagonal matrix, which contains
two displacements and two rotations at the central pivot.
All diagonal components of this matrix are non-zero (diag
[Kii] �= 0) and thus it has the inverse matrix K−1

ii . In the case
of small value of any diagonal component of matrix Kii it
is hard to find the stiffness matrix K̃ee and external loading
f̃e for the superelement due to numerical errors. Except this
case, it is possible to determine deformation of the scissors
unit using the superelement method.

Let us note that the size of the stiffness matrix of the superele-
ment is determined by the number of external degrees of free-
dom. Thus, superelement stiffness matrix K̃ee ∈ R12×12, while
the classical stiffness matrix of the scissors unit K ∈ R16×16.

From the mathematical point of view the procedure of deriv-
ing the scissors unit superelement allows to reduce the size of
the problem and to diminish the dimension of the inverted stiff-
ness matrix. In the case of scissors unit section the procedure
of deriving the superelement can be conducted fully analyti-
cally and allows to obtain algebraic formulae defining particu-
lar components of the stiffness matrix of the superelement. This
enables fast generation of the superelement stiffness matrix for
various geometrical and material data.

The methodology of assembling the model of the Mobile
Bridge (or any other scissors structure) using superelements
is analogous to the procedure of assembling it using standard
stiffness matrices of single scissors units. The main difference
is that smaller matrices are used and hence assembling of the
global stiffness matrix is facilitated. The advantage of the su-
perelement method is reduction of the total number of degrees
of freedom in analyzed mechanical system and decrease of the
corresponding cost of numerical solution. In turn, the disadvan-
tage is the requirement of conducting additional computations
including preliminary determination of superelement stiffness
matrix and reconstruction of internal degrees of freedom dis-
placements after the main part of FEM solution. At the current
stage of research we have decided not to continue the study
on superelement approach and to focus on developed FEM
methodology. Nevertheless the superelement approach can be
incorporated into arbitrary FEM software such as ABAQUS or
LsDyna, which creates possibilities of its versatile application.

7. Numerical computations

7.1. Validity of the proposed FEM. The stiffness matrix of
all scissor and/or all reinforcement struts in the GCS is shown in
Eq. (17) or Eq. (19) based on the connection conditions of each
unit. Using the boundary conditions and load conditions from
this stiffness matrix, based on Eq. (9), the nodal displacement
can be obtained by the stiffness equation:

u = K∗
sc
−1 f . (24)

If the scissors element has no reinforcements, it is possible to
directly use the equation u = K−1

sc f . By returning the displace-
ments to the ECS, the sectional forces of each member can be
obtained as follows:

pm = k(m)T T
m um ,

[
pm

i

pm
j

]
=

[
k(m)

ii k(m)
i j

k(m)
ji k(m)

j j

]
T T

m

[
um

i

um
j

]
,

(25)

where pm
• and um

• with • = i or j stands for ends of element of
a member m which has the following components:

pm
• =

[
f xm

• , f ym
• , Mm

• , Mm
•
]T

,

um
• = [um

• , vm
• , ϕm

• , ϕm
• ]

T .

These variables are corresponding to Fig. 3. The pm calculated
by Eq. (25) is the vector of the sectional forces, such as the ax-
ial force (Nm), shear force (Qm), and bending moment (Mm) in
the ECS. The validity of this method was assessed by compar-
ing it with the values calculated using the theory of equilibrium
mechanics, which produces forces consistent with the experi-
mental results [11, 12].

As an example of the benchmark model, we consider the
three units of the scissors structure supported at the ends as
the boundary condition shown in Fig. 4. This scissors model
becomes internally unstable in the truss member that has the
double rotations of degrees-of-freedom at the pivot centre point
which depends on zero-stiffness problem of geometrical con-
figuration or supports condition, hence it cannot be solved as
a numerical model. However, because the rigid frame element,
as opposed to the scissors element, can be stably obtained as
a numerical model, the models are compared and verified, as
in section 7.3. Analysis was conducted on this end-supported
analytical model, assuming that it was deployed with an angle
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Fig. 4. The three-scissor units with/without several reinforced struts on
the both ends hinge support with loads Q and P
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at central pivot) in terms of generalized displacements qe
(two displacements and one rotation at each end of scissors
members):

qi = K−1
ii ( fi −Kieqe) . (21)

• Secondly, we separate the subsystem describing equilib-
rium of the external nodes and use the result (21). The re-
sulting equation takes the form:

(
Kee − K̃eiKie

)
qe = fe − K̃ei fi , (22)

where K̃ei = KeiK−1
ii . Eq. (22) can be written in a shorter

form:
K̃ee qe = f̃e, (23)

where K̃ee = Kee − K̃eiKie, f̃e = fe − K̃ei fi and it can be con-
sidered as equilibrium equation for scissors unit superele-
ment. The matrix Kii is a diagonal matrix, which contains
two displacements and two rotations at the central pivot.
All diagonal components of this matrix are non-zero (diag
[Kii] �= 0) and thus it has the inverse matrix K−1

ii . In the case
of small value of any diagonal component of matrix Kii it
is hard to find the stiffness matrix K̃ee and external loading
f̃e for the superelement due to numerical errors. Except this
case, it is possible to determine deformation of the scissors
unit using the superelement method.

Let us note that the size of the stiffness matrix of the superele-
ment is determined by the number of external degrees of free-
dom. Thus, superelement stiffness matrix K̃ee ∈ R12×12, while
the classical stiffness matrix of the scissors unit K ∈ R16×16.

From the mathematical point of view the procedure of deriv-
ing the scissors unit superelement allows to reduce the size of
the problem and to diminish the dimension of the inverted stiff-
ness matrix. In the case of scissors unit section the procedure
of deriving the superelement can be conducted fully analyti-
cally and allows to obtain algebraic formulae defining particu-
lar components of the stiffness matrix of the superelement. This
enables fast generation of the superelement stiffness matrix for
various geometrical and material data.

The methodology of assembling the model of the Mobile
Bridge (or any other scissors structure) using superelements
is analogous to the procedure of assembling it using standard
stiffness matrices of single scissors units. The main difference
is that smaller matrices are used and hence assembling of the
global stiffness matrix is facilitated. The advantage of the su-
perelement method is reduction of the total number of degrees
of freedom in analyzed mechanical system and decrease of the
corresponding cost of numerical solution. In turn, the disadvan-
tage is the requirement of conducting additional computations
including preliminary determination of superelement stiffness
matrix and reconstruction of internal degrees of freedom dis-
placements after the main part of FEM solution. At the current
stage of research we have decided not to continue the study
on superelement approach and to focus on developed FEM
methodology. Nevertheless the superelement approach can be
incorporated into arbitrary FEM software such as ABAQUS or
LsDyna, which creates possibilities of its versatile application.

7. Numerical computations

7.1. Validity of the proposed FEM. The stiffness matrix of
all scissor and/or all reinforcement struts in the GCS is shown in
Eq. (17) or Eq. (19) based on the connection conditions of each
unit. Using the boundary conditions and load conditions from
this stiffness matrix, based on Eq. (9), the nodal displacement
can be obtained by the stiffness equation:

u = K∗
sc
−1 f . (24)

If the scissors element has no reinforcements, it is possible to
directly use the equation u = K−1

sc f . By returning the displace-
ments to the ECS, the sectional forces of each member can be
obtained as follows:

pm = k(m)T T
m um ,

[
pm

i

pm
j

]
=

[
k(m)

ii k(m)
i j

k(m)
ji k(m)

j j

]
T T

m

[
um

i

um
j

]
,

(25)

where pm
• and um

• with • = i or j stands for ends of element of
a member m which has the following components:

pm
• =

[
f xm

• , f ym
• , Mm

• , Mm
•
]T

,

um
• = [um

• , vm
• , ϕm

• , ϕm
• ]

T .

These variables are corresponding to Fig. 3. The pm calculated
by Eq. (25) is the vector of the sectional forces, such as the ax-
ial force (Nm), shear force (Qm), and bending moment (Mm) in
the ECS. The validity of this method was assessed by compar-
ing it with the values calculated using the theory of equilibrium
mechanics, which produces forces consistent with the experi-
mental results [11, 12].

As an example of the benchmark model, we consider the
three units of the scissors structure supported at the ends as
the boundary condition shown in Fig. 4. This scissors model
becomes internally unstable in the truss member that has the
double rotations of degrees-of-freedom at the pivot centre point
which depends on zero-stiffness problem of geometrical con-
figuration or supports condition, hence it cannot be solved as
a numerical model. However, because the rigid frame element,
as opposed to the scissors element, can be stably obtained as
a numerical model, the models are compared and verified, as
in section 7.3. Analysis was conducted on this end-supported
analytical model, assuming that it was deployed with an angle
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Fig. 4. The three-scissor units with/without several reinforced struts on
the both ends hinge support with loads Q and P
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of θ = 45◦. The loads consisted of a live load P and a dead
weight Q of a scissors unit. The analytical parameters and ma-
terial properties used are presented in Table 1. For this numer-
ical model of the scissors structure, it is possible to construct
a set of stiffness matrices K(M)

sc for a scissors element on the
SCI from Eq. (15). The numerical analysis is developed using a
FORTRAN program based on this method and the components
of the stiffness matrix K(1)

sc = K(2)
sc = K(3)

sc . The scissor stiffness

components of
4

∑
m=1

k(m)
33 of Eq. (15) on the SCI unit are as fol-

lows:

4

∑
m=1

k(m)
33

=




0.111E+06 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.111E+06 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.263E+09 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.263E+09


, (26)

where the underlined third and forth diagonal components of
the scissors’s stiffness matrix are the same rotational stiffness
values. The CPU time used for the computing of the three-unit
model was real: 0 m 0.096 s, using the command time on the
Linux system3.

Table 1
The analytical parameters of the three-scissor units

Length of the scissor member L (mm) 1000

Cross-sectional area of the scissor member A (mm2) 384

Deployment angle θ(◦) 45

Elastic modulus of the scissor units Eal (GPa) 70

Sectional moment of inertia I(mm4) 234592

Elastic modulus of the steel reinforcement Est (GPa) 200

Load P (N) 1000

Weight of the scissors unit Q (N) 1000
Stiffness ratio between the scissor units and their
reinforcement α 0.1

The set of four degrees of freedom from the left of the ma-
trix component corresponds to the node numbers j = 1, · · · ,5
in the scissors element. It is found that there are four degrees
of freedom including two independent rotations for each nodal
point because the expanding degree of the left (or right) nodal
connections of the scissors element are connected to the neigh-
bouring units for two different rotational displacements. The
exceptions are the external nodes at each end, where the ex-
tra degrees of freedom are not filled by the component of the
stiffness matrix of the neighbouring unit. To solve Eq. (24), the

3The computer specifications were AMD Athlon(tm) II Neo N36L Dual-
Core Processor, 800 MHz, 16GB RAM, running pgfortran 19.10-0 LLVM 64-
bit on x86-64 Linux.

mentioned additional degrees of freedom of the external nodes
do not have to be treated as fixed boundary conditions. These
independent external rotations will always be zero and do not
have to be included in the numerical computations.

There are several reinforcement patterns for this scissors
structure which will be described in the next section. Here, to
verify the analytical accuracy, the displacement value of the
scissor structure reinforced only in the upper centre position,
which is calculated using FEM, is compared to the value ob-
tained from equilibrium mechanics and results from the FEM
software ABAQUS.

The position of the reinforced strut is at the upper centre,
which is drawn as a solid line in Fig. 4. Using these analysis
conditions, we obtained the numerical results from two anal-
ysis methods: the theory of equilibrium mechanics and FEM
presented method (Table 2). Moreover, we compared these re-
sults with the ABAQUS calculation (Table 3). Details of the
ABAQUS model are presented in Section 8. We only present the
results of axial force for each element (although we obtained the
internal forces Qk

j and Mk
j ), as the axial force results for mem-

bers located in the left–right symmetrical positions were the
same. The difference between the equilibrium result and that
obtained by the FEM analysis and ABAQUS computations was
small, thereby confirming the validity of the FEM.

Table 2
The axial force results for the 3 units of scissors structure with the

reinforcement in the upper central section

Number of The present Equilibrium Difference Percentage
axial force method (N) mechanics (N) (N) (%)

N11 −2890.353 −2890.350 −0.003 0.00010

N15 −2183.247 −2183.250 0.003 −0.00014

N12 0.000 0.000 0.000 0.00000

N14 583.254 583.254 0.000 0.00000

N21 707.107 707.107 0.000 0.00000

N22 1661.919 1661.919 0.001 0.00006

Table 3
The axial force results for the 3 units of scissors structure with the
reinforcement in the upper central section. Used profile is rectangular

with 25 mesh elements for each beam

Number
of axial
force

ABAQUS
software (N)

Equilibrium
mechanics (N)

Difference
(N)

Percentage
(%)

N11 −2891.900 −2890.350 −1.550 −0.05349

N15 −2184.790 −2183.250 −1.540 −0.07062

N12 0.000 0.000 0.000 0.00000

N14 580.159 583.254 −3.095 −0.53347

N21 707.107 707.107 0.000 0.00000

N22 1668.110 1661.919 −6.192 0.37114
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The stiffness matrix from Eq. (11) is a stiffness matrix for a
Bernoulli beam. An analogous procedure as presented in Sec-
tion 3 was implemented for a Timoshenko beam. The results
obtained for the central displacement were 1.897% higher.

7.2. Effects of reinforcement for the scissors structure. The
reinforcement was analysed using several conditions. First, the
influence of reinforcement on stress distribution was observed
using the parameters presented in Table 1 and the loading was
conditioned as shown in Fig. 4. This analysis was performed
by manipulating the cross-section area ratio between reinforce-
ment and standard members of the scissor structure. The weight
of the reinforcement material was ignored, and the maximum
bending moment, axial force, compressive stress, and bending
stress were obtained. The maximum axial force was determined
to occur for the maximum cross-section area ratio between rein-
forcement and the scissor structure, and the maximum bending
moment occurred for a minimum cross-section area ratio be-
tween them. Using a parameter ratio of α , the stiffness of the
reinforced strut is EB = αEA. Here, EA is the stiffness for the
main scissors frame. Therefore, a trade-off between these two
values was determined. Before adding the reinforcing member,
the maximum bending stress was higher than the maximum ax-
ial stress, indicating that the bending stress should be reduced.
The bending stress obtained after reinforcement was lower than
that obtained before reinforcement.

Second, when effective displacement suppression is consid-
ered for the same boundary conditions as in Table 1 and loading
conditions as in Fig. 4, the suppression effect of vertical dis-
placement is evaluated for different types of reinforcement ma-
terial. Two types of reinforcement materials were used in this
analysis: aluminium alloy (as E = Eal) and steel (as E = Est).
In this analysis, we assumed that the weight of reinforcement
material was ignored. The results of the analysis are shown in
Fig. 5. As seen in Fig. 5(a), the central displacement was re-
duced to 90% after reinforcement was made of aluminium al-
loy. Likewise, Fig. 5(b), in which using α = 0.1, shows the
central displacement reduction after reinforcement was made
of steel. This reduction was 48.5% greater than in the situation
of using aluminium alloy, thereby indicating that steel is a supe-
rior reinforcement material in comparison to aluminium alloy.

Next, this analysis explains the influence of the location of
reinforcement. The system parameters are defined in Table 1,
loading condition is depicted in Fig. 4 and the aluminium alloy
is used as the reinforcement. The analysis was conducted using
5 cases: no reinforcement, only one reinforcement member in
the upper center position, only one reinforcement member in
the bottom center position, all possible reinforcement members
in the upper span, and all possible reinforcement members in
the bottom span. In this analysis, the own weight of the possible
reinforcement members is ignored. The result is presented in
Table 4. From the result, we can conclude that central displace-
ment is higher in cases of reinforcement in the case of bottom
and no reinforcement than in the case of the reinforcement in
the upper span. There are 2 types of upper span reinforcement
possible and their differences are shown in Table 4. Therefore,
upper span is a better suited location of reinforcement. This re-
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(b) Zooming up the range

Fig. 5. The central vertical displacements obtained using steel and alu-
minium alloy reinforcement materials with a cross-sectional area ratio

between reinforcement and scissors structure α

sult is analogous to the result in previous analysis, however, this
analysis considers the own weight of the structure. The analysis
indicates that considering the own weight increases the central
displacement, maximum moment, and maximum axial force. In
the case of reinforcement of the entire upper span, the central
displacement of the scissor structure is larger than in the case
of single reinforcing member located in the centre.

We obtain the results of the internal sectional forces by
this method as shown in Fig. 6. The model is equipped with
only one reinforcement member with characteristic parame-
ter α = 0.1 at the upper central position. Fig. 6(a) is the Ax-
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The stiffness matrix from Eq. (11) is a stiffness matrix for a
Bernoulli beam. An analogous procedure as presented in Sec-
tion 3 was implemented for a Timoshenko beam. The results
obtained for the central displacement were 1.897% higher.

7.2. Effects of reinforcement for the scissors structure. The
reinforcement was analysed using several conditions. First, the
influence of reinforcement on stress distribution was observed
using the parameters presented in Table 1 and the loading was
conditioned as shown in Fig. 4. This analysis was performed
by manipulating the cross-section area ratio between reinforce-
ment and standard members of the scissor structure. The weight
of the reinforcement material was ignored, and the maximum
bending moment, axial force, compressive stress, and bending
stress were obtained. The maximum axial force was determined
to occur for the maximum cross-section area ratio between rein-
forcement and the scissor structure, and the maximum bending
moment occurred for a minimum cross-section area ratio be-
tween them. Using a parameter ratio of α , the stiffness of the
reinforced strut is EB = αEA. Here, EA is the stiffness for the
main scissors frame. Therefore, a trade-off between these two
values was determined. Before adding the reinforcing member,
the maximum bending stress was higher than the maximum ax-
ial stress, indicating that the bending stress should be reduced.
The bending stress obtained after reinforcement was lower than
that obtained before reinforcement.

Second, when effective displacement suppression is consid-
ered for the same boundary conditions as in Table 1 and loading
conditions as in Fig. 4, the suppression effect of vertical dis-
placement is evaluated for different types of reinforcement ma-
terial. Two types of reinforcement materials were used in this
analysis: aluminium alloy (as E = Eal) and steel (as E = Est).
In this analysis, we assumed that the weight of reinforcement
material was ignored. The results of the analysis are shown in
Fig. 5. As seen in Fig. 5(a), the central displacement was re-
duced to 90% after reinforcement was made of aluminium al-
loy. Likewise, Fig. 5(b), in which using α = 0.1, shows the
central displacement reduction after reinforcement was made
of steel. This reduction was 48.5% greater than in the situation
of using aluminium alloy, thereby indicating that steel is a supe-
rior reinforcement material in comparison to aluminium alloy.

Next, this analysis explains the influence of the location of
reinforcement. The system parameters are defined in Table 1,
loading condition is depicted in Fig. 4 and the aluminium alloy
is used as the reinforcement. The analysis was conducted using
5 cases: no reinforcement, only one reinforcement member in
the upper center position, only one reinforcement member in
the bottom center position, all possible reinforcement members
in the upper span, and all possible reinforcement members in
the bottom span. In this analysis, the own weight of the possible
reinforcement members is ignored. The result is presented in
Table 4. From the result, we can conclude that central displace-
ment is higher in cases of reinforcement in the case of bottom
and no reinforcement than in the case of the reinforcement in
the upper span. There are 2 types of upper span reinforcement
possible and their differences are shown in Table 4. Therefore,
upper span is a better suited location of reinforcement. This re-
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Fig. 5. The central vertical displacements obtained using steel and alu-
minium alloy reinforcement materials with a cross-sectional area ratio

between reinforcement and scissors structure α

sult is analogous to the result in previous analysis, however, this
analysis considers the own weight of the structure. The analysis
indicates that considering the own weight increases the central
displacement, maximum moment, and maximum axial force. In
the case of reinforcement of the entire upper span, the central
displacement of the scissor structure is larger than in the case
of single reinforcing member located in the centre.

We obtain the results of the internal sectional forces by
this method as shown in Fig. 6. The model is equipped with
only one reinforcement member with characteristic parame-
ter α = 0.1 at the upper central position. Fig. 6(a) is the Ax-

Bull. Pol. Ac.: Tech. 68(6) 2020 9



1328

I. Ario, T. Yamashita, Y. Chikahiro, M. Nakazawa, K. Fedor, C. Graczykowski, and P. Pawłowski

Bull.  Pol.  Ac.:  Tech.  68(6)  2020

I. Ario, et al.

Table 4
The results depending on location of reinforcement (as α = 0.1)

Location of
reinforcements No reinforcement at the upper centre at the bottom centre all in the upper all in the bottom

Type of
calculation

Present
SCI. FEM ABAQUS

Present
SCI. FEM ABAQUS

Present
SCI. FEM ABAQUS

Present
SCI. FEM ABAQUS

Present
SCI. FEM ABAQUS

Central
disp. (mm) 10.261 10.483 1.036 1.037 10.261 10.483 0.938 0.940 10.261 10.483

Max. bending
moment (Nmm) 7.07×105 7.07×105 3.23×105 3.22×105 7.07×105 7.07×105 2.60×105 2.54×105 7.07×105 7.07×105

Max. axial
force (N) −2.12×103 −2.12×103 −3.26×103 −3.27×103 −2.13×103 −2.12×103 −3.02×103 −3.02×103 −2.12×103 −2.12×103
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(c) BMD (Nmm)

Fig. 6. The results of internal sectional forces with the reinforcing strut

ial Force Diagram, Fig. 6(b) is the Shear Force Diagram and
Fig. 6(c) is the Bending Moment Diagram. The member of this
bridge is rather a frame element which has a part of force dis-
tributions such as Axial Force Diagram (AFD), Shearing Force
Diagram (SFD), and Bending Moment Diagram (BMD).

The magnitude of the intersectional forces in the scissors
model without any reinforcement is shown in Fig. 7. It is found
that there are upper compression members and lower tension
members in the AFD, as shown in Fig. 7(a). In Fig. 7(c), large
positive values of BMD are seen for each unit without rein-
forcement.

7.3. Comparison with Rigid Frame Models. To compare not
only the scissors model but also the versatility of the proposed
analytical method, an examplary of analysis of a rigid frame
model is presented. In this case, the two independent rotational

(a) AFD

(b) SFD

(c) BMD

Fig. 7. Three-scissors units without a reinforcing strut

displacements of the scissors connection correspond to the de-
grees of freedom of the common rotational displacement; the
analytical conditions, such as boundary conditions and load
conditions, are almost the same as those of the scissors model.

For the numerical model of the scissors structure, it is possi-
ble to build a set of stiffness matrices K(M)

sc for a frame element
of the SCI from Eq. (15). In the numerical analysis of this rigid
frame structure, the size of the stiffness matrix is reduced so that

K(1)
sc = K(2)

sc = K(3)
sc . The rigid stiffness components of

4

∑
m=1

k(m)
33

of Eq. (15) on the SCI unit is as follows:

4

∑
m=1

k(m)
33 =




0.111E +06 0.000E +00 0.000E +00
0.000E +00 0.111E +06 0.000E +00
0.000E +00 0.000E +00 0.525E +09


 .
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The set of the three degrees of freedom from the left of
the matrix component corresponds to the node numbers j =
1, · · · ,5 in the frame (scissors) element. It is found that there
are three degrees of freedom including the common rotations
for each nodal point because the element does not expand as
in the ordinary finite element. The first and the second diago-
nal components of the stiffness matrix for the rigid frame and
for the scissors are corresponding to 0.111E + 06. The third
component of the stiffness matrix for the rigid frame is corre-
sponding to the sum of two rotational stiffness for the scissors
Eq. (26) as follows:

0.525E +09 = 0.263E +09×2.

Fig. 8 shows the analytical results of the rigid frame model
without reinforcement. Fig. 8(a) shows the axial force, Fig. 8(b)
shows the shear force, and Fig. 8(c) shows the bending moment
diagram, respectively. Comparing the analysis results of scis-
sors in Fig. 7, the distribution of axial force in Fig. 8(a) was al-
most the same axial force distribution in the form of ‘M’ for the
compression distribution and in the form of ‘W’ for the tension
distribution. The shear force in Fig. 8(b) is also similar to the
SFD of scissors. BMD in Fig. 8(c), unlike the result of the mo-
ment value is 0 at the connection end of the scissors member of
Fig. 8(c), the moment is the largest in the centre of the section.

� �

�

� �

�����

The frame structure of three units

(a) AFD

(b) SFD

(c) BMD

Fig. 8. Rigid frame results without the reinforcing strut on both end
supports

The moment at the centre of the model is positive and matches
its left and right ends values and is partly similar to the BMD
of scissors. Fig. 9 shows the cross-sectional force diagrams of
the upper chord member (α = 0.1) stiffened only in the central
spacing resisting only the axial force. The AFD in Fig. 8(a) had
almost the same distribution form as that in the case of stiff-
ened scissors in Fig. 6. BMD in Fig.6(c) becomes smaller than
the distribution value of scissors, and it can be seen that positive
and negative values are arranged in a well-balanced manner.
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The frame structure of three units with a reinforcement

(a) AFD

(b) SFD

(c) BMD

Fig. 9. Rigid frame results with the reinforcing strut supported on both
ends

8. Modelling by ABAQUS

ABAQUS 6.13-1 was used for the calculations. Because of the
nature of the analysed benchmark model, 2D beam element B21
in a 2-node linear beam was used in the computations. The parts
used in the models were 2D beam elements with an Multiple
Point Connection (MPC) between the beams. In the MPC pin
type connection, the displacement degrees are fixed while the
rotational degrees are free. Two beams of a single scissors sec-
tion are not located at the same vertical plane so they pass each
other in space. The material and geometrical characteristics of
the model are compatible with the information presented in Ta-
ble 1.
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The set of the three degrees of freedom from the left of
the matrix component corresponds to the node numbers j =
1, · · · ,5 in the frame (scissors) element. It is found that there
are three degrees of freedom including the common rotations
for each nodal point because the element does not expand as
in the ordinary finite element. The first and the second diago-
nal components of the stiffness matrix for the rigid frame and
for the scissors are corresponding to 0.111E + 06. The third
component of the stiffness matrix for the rigid frame is corre-
sponding to the sum of two rotational stiffness for the scissors
Eq. (26) as follows:

0.525E +09 = 0.263E +09×2.

Fig. 8 shows the analytical results of the rigid frame model
without reinforcement. Fig. 8(a) shows the axial force, Fig. 8(b)
shows the shear force, and Fig. 8(c) shows the bending moment
diagram, respectively. Comparing the analysis results of scis-
sors in Fig. 7, the distribution of axial force in Fig. 8(a) was al-
most the same axial force distribution in the form of ‘M’ for the
compression distribution and in the form of ‘W’ for the tension
distribution. The shear force in Fig. 8(b) is also similar to the
SFD of scissors. BMD in Fig. 8(c), unlike the result of the mo-
ment value is 0 at the connection end of the scissors member of
Fig. 8(c), the moment is the largest in the centre of the section.
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The frame structure of three units

(a) AFD

(b) SFD

(c) BMD

Fig. 8. Rigid frame results without the reinforcing strut on both end
supports

The moment at the centre of the model is positive and matches
its left and right ends values and is partly similar to the BMD
of scissors. Fig. 9 shows the cross-sectional force diagrams of
the upper chord member (α = 0.1) stiffened only in the central
spacing resisting only the axial force. The AFD in Fig. 8(a) had
almost the same distribution form as that in the case of stiff-
ened scissors in Fig. 6. BMD in Fig.6(c) becomes smaller than
the distribution value of scissors, and it can be seen that positive
and negative values are arranged in a well-balanced manner.
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The frame structure of three units with a reinforcement

(a) AFD

(b) SFD

(c) BMD

Fig. 9. Rigid frame results with the reinforcing strut supported on both
ends

8. Modelling by ABAQUS

ABAQUS 6.13-1 was used for the calculations. Because of the
nature of the analysed benchmark model, 2D beam element B21
in a 2-node linear beam was used in the computations. The parts
used in the models were 2D beam elements with an Multiple
Point Connection (MPC) between the beams. In the MPC pin
type connection, the displacement degrees are fixed while the
rotational degrees are free. Two beams of a single scissors sec-
tion are not located at the same vertical plane so they pass each
other in space. The material and geometrical characteristics of
the model are compatible with the information presented in Ta-
ble 1.
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In general we obtained very good agreement of results of pre-
sented methodology with results from Abaqus modelling. We
observed that for different types of profiles with the same cross-
sectional area A and sectional moment of inertia I, the results
are slightly different and we presented them as a comparison of
the central displacement in Fig. 10. The stiffness matrix used
in the FEM method in Eq. (11) is in fact the stiffness matrix
for the Bernoulli beam, nevertheless we included also compar-
ison with Timoshenko beam. In the software calculations, we
obtained results for three different profiles: generalized, rectan-
gular and box. In every case, the results were convergent for 25
mesh elements for each beam in the model.

(a) Numerical and ABAQUS modeling

(b) Percentage difference to numerical calculation of the Bernoulli
beam

Fig. 10. Central vertical displacements obtained using numerical com-
putation wtih Bernoulli and Timoshenko beam element and ABAQUS
software with different type of profiles and different numbers of mesh

elements n

The minimum difference of central displacement was be-
tween the presented method applied for the Timoshenko beam
and the ABAQUS software calculation with a rectangular pro-
file and it was 0.26%. The most closely aligned results to
the presented method applied for the Bernoulli beam was the
ABAQUS software calculation with a generalized profile, with
a difference of 0.65%.

The ABAQUS computation includes more degrees of free-
dom in the stiffness matrices, and therefore, calculations are
more complicated and computationally demanding than our
model. The computation of the presented benchmark model
using the FEM method in Mathematica 9.0.1. software took
1.04 s, while in the ABAQUS software, it took 26.12 s.

8.1. Influence of friction. To evaluate the influence of fric-
tion in the connection nodes between the beams, we changed
the type of pin connections from an MPC pin to a basic joint
rotation with a friction coefficient. In general, the friction co-
efficient depends on the combination of materials and surface
conditions. The static friction coefficient for friction between
aluminium alloy and aluminium alloy on clean and dry surfaces
varies in the range 1.05–1.35. Similarly friction coefficient for
aluminum on steel in dry condition of Mobile bridge is approx-
imately less 0.65. The influence of the variation between 0 and
1.4 is minimal, as presented in Fig. 11(a).

(a) Realistic range of the friction coefficient

(b) Influence of large friction coefficient modeling mechanical
blockage of rotations in joints

Fig. 11. Influence of the friction coefficient on static response of Mo-
bile Bridge

Potential mechanical blockage of rotation in all connections
between the beams is modelled as an extreme friction coeffi-
cient and presented in Fig. 11(b). In such a hypothetical situ-
ation, the central displacement was reduced by 28%, while a
significant increase was noticed only in the x-direction reaction
force.
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Table 5
The comparison of basic features of the proposed modelling methods

Type of the
calculation

Equilibrium mechanics model
Developed models of scissors structures

by present method as SCI. FEM
ABAQUS FEM models

Type of structure
analyzed

Statically determinate
(Stress method)

Statically (in-)determinate
(Displ. method)

Statically (in-)determinate
(Displ. method)

Type of structural
analysis

Static (buckling)
Static
Possibly: natural frequency, buckling
transient dynamics

Static, buckling, natural frequency,
transient dynamics, fully nonlinear

Number of finite
elements required

N/A
2 elements for each beam
4 elements for each unit
12 elements for 3-unit MB

10–20 elem. for each beam
20–40 elem. for each unit
120–240 elem. for 3-unit MB

Effort of model
preparation

Small: assembling of the
equilibrium equations

Small due to usage of scissors units
stiffness matrices and
assembly parameterization

Larger due to requirement of introducing
the entire geometry from scratch and
application of special techniques of
joint modelling

Cost of numerical
analysis

Very small: solution of small
system of algebraic equations
to determine forces & application
of Maxwell-Mohr formula to
determine displ.

Still very small: solution of slightly
larger system of algebraic equations
to determine displ./rotat.
& matrix multiplication
to determine internal forces

Significantly larger due to increased
number of finite elements/degrees
of freedom and occurrence
of nonlinear phenomena
(joints friction, large deformations)

Results possible
to be obtained

Internal forces (AFD, SFD, BMD),
reactions, strains, displacements

Displacements, strains,
internal forces (AFD, SFD, BMD),
reactions

Displacements, strains,
internal forces (AFD, SFD, BMD),
reactions, contact forces,
friction force and
backlash effects in joints

Model application
Theoretical /educational
(only statically
determinate structures)

Preliminary engineering analysis,
fast design evaluation, optimization,
control development

Final engineering analysis,
detailed analysis of
sophisticated nonlinear response,
detailed analysis of local effects in joints

Although the proposed FEM model of the Mobile Bridge4

takes into account dry friction in joints, it still can be con-
sidered as strongly simplified since it neglects the complexity
of joints operation resulting from the occurrence of geomet-
rical imperfections, various contact conditions, clearance and
backlash. Thus, the proposed FEM models are planned to be
further expanded by implementing more complex models of
joints, which will precisely capture possible nonlinear phenom-
ena that may occur during joint’s surfaces interaction. Both the
micromechanical models precisely simulating the effects aris-
ing at a single joint and their macromechanical counterparts
which can be applied in global models of scissors structures
are planned to be developed. Mentioned nonlinear phenomena
are expected to be especially important for the numerical anal-
ysis of large deformation of Mobile Bridge subjected to critical
loads and analysis of its transient dynamic response resulting
from exploitative or environmental loads. We assume that a fric-
tion parameter of Mobile bridge with the lubricating oil inside
at the pin-connection is very small.

4Since the pin joint-connection part of the Mobile bridge stores the lubricat-
ing oil inside, the friction of the pin contact surface is as small as possible, the
actual resistance is small, and the influence of the inclination is more sensitive
than that.

9. Conclusion

By using the periodicity of scissor structures to construct a stan-
dard element for the single scissor unit, we developed a new hi-
erarchical FEM to analyse these systems. The accuracy of the
proposed method was demonstrated by analysing the axial force
of each member and comparing it with the results obtained by
using the theory of equilibrium mechanics and ABAQUS soft-
ware computation.

Suitable reinforcement pattern depends on the material of the
reinforcing member, its cross-sectional area and its position.
The difference in the central displacements for different scis-
sors conditions was also investigated. It was determined that
steel reinforcing member placed at the centre of the upper span
was superior to aluminium one and resulted in the best rein-
forcement of the scissors structure. It was also found that there
is a difference in the internal forces distribution in compari-
son with the forces in a rigid frame elements without any pin
connections. The significant result of our study is the analysis
of scissors structures, including frame elements with pin-frame
connections for the periodic modular elements, using the FEM.

Finally, this paper summarizes the main merits and com-
pares three present analysis methods including equilibrium me-
chanics model, developed models of scissors structures and
ABAQUS FEM models in Table 5.
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ABAQUS FEM models
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analyzed

Statically determinate
(Stress method)

Statically (in-)determinate
(Displ. method)

Statically (in-)determinate
(Displ. method)

Type of structural
analysis

Static (buckling)
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Possibly: natural frequency, buckling
transient dynamics

Static, buckling, natural frequency,
transient dynamics, fully nonlinear

Number of finite
elements required

N/A
2 elements for each beam
4 elements for each unit
12 elements for 3-unit MB

10–20 elem. for each beam
20–40 elem. for each unit
120–240 elem. for 3-unit MB

Effort of model
preparation

Small: assembling of the
equilibrium equations

Small due to usage of scissors units
stiffness matrices and
assembly parameterization

Larger due to requirement of introducing
the entire geometry from scratch and
application of special techniques of
joint modelling

Cost of numerical
analysis

Very small: solution of small
system of algebraic equations
to determine forces & application
of Maxwell-Mohr formula to
determine displ.

Still very small: solution of slightly
larger system of algebraic equations
to determine displ./rotat.
& matrix multiplication
to determine internal forces

Significantly larger due to increased
number of finite elements/degrees
of freedom and occurrence
of nonlinear phenomena
(joints friction, large deformations)

Results possible
to be obtained

Internal forces (AFD, SFD, BMD),
reactions, strains, displacements

Displacements, strains,
internal forces (AFD, SFD, BMD),
reactions

Displacements, strains,
internal forces (AFD, SFD, BMD),
reactions, contact forces,
friction force and
backlash effects in joints

Model application
Theoretical /educational
(only statically
determinate structures)

Preliminary engineering analysis,
fast design evaluation, optimization,
control development

Final engineering analysis,
detailed analysis of
sophisticated nonlinear response,
detailed analysis of local effects in joints

Although the proposed FEM model of the Mobile Bridge4

takes into account dry friction in joints, it still can be con-
sidered as strongly simplified since it neglects the complexity
of joints operation resulting from the occurrence of geomet-
rical imperfections, various contact conditions, clearance and
backlash. Thus, the proposed FEM models are planned to be
further expanded by implementing more complex models of
joints, which will precisely capture possible nonlinear phenom-
ena that may occur during joint’s surfaces interaction. Both the
micromechanical models precisely simulating the effects aris-
ing at a single joint and their macromechanical counterparts
which can be applied in global models of scissors structures
are planned to be developed. Mentioned nonlinear phenomena
are expected to be especially important for the numerical anal-
ysis of large deformation of Mobile Bridge subjected to critical
loads and analysis of its transient dynamic response resulting
from exploitative or environmental loads. We assume that a fric-
tion parameter of Mobile bridge with the lubricating oil inside
at the pin-connection is very small.

4Since the pin joint-connection part of the Mobile bridge stores the lubricat-
ing oil inside, the friction of the pin contact surface is as small as possible, the
actual resistance is small, and the influence of the inclination is more sensitive
than that.

9. Conclusion

By using the periodicity of scissor structures to construct a stan-
dard element for the single scissor unit, we developed a new hi-
erarchical FEM to analyse these systems. The accuracy of the
proposed method was demonstrated by analysing the axial force
of each member and comparing it with the results obtained by
using the theory of equilibrium mechanics and ABAQUS soft-
ware computation.

Suitable reinforcement pattern depends on the material of the
reinforcing member, its cross-sectional area and its position.
The difference in the central displacements for different scis-
sors conditions was also investigated. It was determined that
steel reinforcing member placed at the centre of the upper span
was superior to aluminium one and resulted in the best rein-
forcement of the scissors structure. It was also found that there
is a difference in the internal forces distribution in compari-
son with the forces in a rigid frame elements without any pin
connections. The significant result of our study is the analysis
of scissors structures, including frame elements with pin-frame
connections for the periodic modular elements, using the FEM.

Finally, this paper summarizes the main merits and com-
pares three present analysis methods including equilibrium me-
chanics model, developed models of scissors structures and
ABAQUS FEM models in Table 5.
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