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Abstract. In recent years, smog and poor air quality have become a growing environmental problem. There is a need to continuously monitor 
the quality of the air. The lack of selectivity is one of the most important problems limiting the use of gas sensors for this purpose. In this 
study, the selectivity of six amperometric gas sensors is investigated. First, the sensors were calibrated in order to find a correlation between the 
concentration level and sensor output. Afterwards, the responses of each sensor to single or multicomponent gas mixtures with concentrations 
from 50 ppb to 1 ppm were measured. The sensors were studied under controlled conditions, a constant gas flow rate of 100 mL/min and 50 % 
relative humidity. Single Gas Sensor Response Interpretation, Multiple Linear Regression, and Artificial Neural Network algorithms were used 
to predict the concentrations of SO2 and NO2. The main goal was to study different interactions between sensors and gases in multicomponent 
gas mixtures and show that it is insufficient to calibrate sensors in only a single gas.
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grain size and porosity, and adding impurities and dopants, but 
it decreases with higher levels of humidity of the environment 
[3]. MOX sensors also have low reproducibility due to their 
manufacturing process [4]. They are not single-gas selective 
and one MOX sensor is not able to detect a gas concentration 
in a gas mixture [5]. Such sensors, due to their low cost and 
availability, are often used in multisensor arrays as the so-called 
electronic noses (e-nose) [6‒8].

A very interesting solution is the use of ZnO and TiO2 nano-
structures for NO2 detection [9]. TiO2 can detect low concen-
trations of this gas, but its sensitivity is highly dependent on 
the humidity of the atmosphere. ZnO is less sensitive to the 
changes in humidity, but it is not able to accurately determine 
the concentration of NO2. It is characterised by fast desorption 
and thus the combination of TiO2 and ZnO structures facilitates 
the detection and disappearance of NO2 gas in a short time. The 
effect of air humidity on the sensitivity of the sensors can be 
minimised with the help of dehumidifiers.

The application of a graphene sensing layer allows us to 
measure very low concentrations of toxic gases. It has been 
demonstrated that graphene sensors are able to detect every 
single molecule of nitrogen dioxide [10, 11].

Current research focuses on gas-sensitive materials and 
pattern recognition development [12]. It has been revealed 
that a multisensor array in combination with machine learning 
algorithms is a promising way to get a fast analysis of, e.g. air 
contaminants or food flavours and odours, so it can be used to 
verify the quality [7, 13‒16].

Gas detection and classification is a major problem in 
many industries. One method that works well with these types 
of tasks is to use a neuro-fuzzy network [17]. The modified 
Takagi-Sugeno-Kang network structure proposed by Osowski, 
Brudzewski and Tran Hoai is suitable for solving regression and 
classification problems with multidimensional data.

1. Introduction

Poor air quality has not only a significant impact on the health 
of the human population, particularly in urban areas, but also on 
the economy, increasing medical costs, cutting lives short and 
reducing productivity. Air pollution is also very dangerous to 
vegetation and ecosystems. It has a devastating effect on water 
and soil, contributing to the destruction of fauna and flora. 
The most harmful air pollutants for the ecosystem are ozone, 
ammonia, and nitrogen oxides, which introduce an excess of 
nutrient nitrogen. Nitrogen oxides and sulphur dioxide lead to 
the acidification of soil, rivers and lakes and cause acid rain, 
resulting in biodiversity loss.

Despite reductions in emissions and ambient concentrations, 
air quality still remains poor in multiple areas when it comes to 
Europe. According to the European Environment Agency [1], in 
2016 premature deaths attributed to PM2.5, NO2 and O3 were 
412,000, 71,000 and 15,100 people, respectively. The countries 
with the highest numbers of premature deaths and years of life 
lost are Germany, Italy, Poland, France, Spain, and the United 
Kingdom.

For environmental protection, it is very important to mea-
sure the level of air pollution. On the market, there is a wide 
range of commercial gas sensors. The most popular are metal 
oxide semiconductor sensors (MOX) whose output signal is 
based on a change of conductivity of the oxide that is caused by 
a reaction with volatile compounds [2]. Unfortunately, this type 
of sensor has poor selectivity and is sensitive to almost any vol-
atile substances. Its sensitivity can be enhanced by changing the 
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Amperometric sensors are more selective and stable, and 
have fast recovery time. This type of gas sensor consists of an 
electrolyte and three electrodes. Gas molecules are reduced or 
oxidised at the working electrode, while an opposite reaction 
takes place at the counter electrode. The output signal is mea-
sured as a current generated by a reaction between the gas and 
the analyte [18].

A very important parameter of gas sensors is cross-sensitiv-
ity caused by interfering gases. Information provided by manu-
facturers in data sheets is declared only for selected conditions 
and often differs from the real-life properties of the sensors. 
Cross-interference is often a cause of false sensor readings 
[19]. That is why a laboratory evaluation of sensor properties 
is needed. For example, it is very hard to differentiate nitrogen 
dioxide and ozone because these types of molecules get reduced 
at electrodes that are made of gold or carbon at much the same 
potentials [20].

Interpretation of the responses of a gas sensor is usually 
done using a simple method, further referred to as Single Gas 
Sensor Response Interpretation (SGS). In this approach, gas 
concentration is calculated only on the basis of the target sensor 
and its declared sensitivity to this gas type. This method does 
not produce accurate results, because the presence of other gases 
often increases or reduces the target sensor response. There-
fore, in order to do the calibration properly, we should also 
use sensors of other gas types and consider their interaction. 
Presumably, better performance can be achieved by setting up 
algorithms such as Multiple Linear Regression or Artificial Neu-
ral Networks and training them in multicomponent mixtures.

The first objective of this study was to determine how gas 
sensors react to the presence of the gases they are constructed 
to detect, including other gases and multicomponent gas mix-
tures. The second task of the work was to prove that due to the 
sensors’ cross-sensitivities, calibration of sensors in gas mix-
tures rather than in single gases provides better results. The 
main goal was to study different interactions between sensors 
and gases in multicomponent gas mixtures and show that it is 
insufficient to calibrate sensors in only a single gas. The text 
contains exemplary results for SO2 and NO2.

2. Experimental

The measurements were performed in a custom-designed cham-
ber having a volume of 240 cm3. Six commercially available 
amperometric gas sensors were placed in this chamber. The 
results for sensors manufactured by one of the leaders in gas 
sensing technology, namely S1-H2S, S2-O3, S3-NO, S4-SO2, 
S5-NO2 and S6-CO which detect H2S, O3 and NO2, NO, SO2, 
NO2 and CO, respectively, are described in this text. Ampero-
metric sensors have to be controlled by a potentiostatic circuit 
to work properly at a fixed potential. Ten custom-designed 
electronic modules forming the measuring system were used 
for sensor response acquisition. More details of the developed 
systems were presented elsewhere [21, 22]. The sensor response 
was measured by custom-written PC software once per minute 
and saved to a text file.

The gas-delivery system consisted of four Brooks GF40 
mass flow controllers (MFCs) connected to the computer via 
an RS-485 interface (Fig. 1). The flow rate range of MFCs was: 
250 sccm, 250 sccm, 12 sccm and 12 sccm with accuracy ±1% 
of set point at 35–100% of its range, or ±0.35% of full scale at 
2–35% of its range. The flow of gas was programmed with the 
Medson software. The desired gas mixture was obtained by mix-
ing and diluting gases from reference cylinders with synthetic 
air. In order to make the gas mixtures, four ALPHAGAZ™ 
cylinders containing high-purity gases were used (Table 1). The 
measurements were carried out under controlled gas concentra-
tions, a constant air flow rate of 100 ml/min and 50% relative 
humidity conditions.

Table 1 
Data of used gas cylinders

Type  
of gas

Components/Nominal 
concentration 

Uncertainty ±  
[%] Quality

Synthetic air 80% N2, 20% O2 1 N 50

SO2 10 ppm SO2 3 N 45

NO2 10 ppm NO2 3 N 25

NO 50 ppm NO 3 N 25

For the sensitivity calculation, the synthetic air gas was 
used for about 3 hours, then the sensors were f lushed alter-
nately with synthetic air and a f ixed value of specific toxic gas 
concentration (from 50 ppb to 1 ppm) for 4 hours. Multicom-
ponent gas mixtures were measured for 2 pairs of two toxic 
gases, SO2 and NO2, SO2 and NO, NO2 and NO. Between the 
changes in the type of toxic gases, the sensors were f lushed 
with synthetic air to clear any residual toxic gas from the mea-
surement chamber.

Two experimental sequences were used. The first sequence 
consisted of synthetic air alternately with 1 ppm of the f irst 
toxic gas, 1 ppm of the second toxic gas, and 1 ppm of both 
gases at the same time. The second sequence consisted of 

Fig. 1. Structure of the measuring stand
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synthetic air alternately with the f irst and second toxic gas 
in a balance of 250 ppb : 750 ppb, 500 ppb : 500 ppb, and 
750 ppb : 250 ppb. These sequences were repeated twice. Con-
centrations of SO2 and NO2 have been determined, NO was 
used as a disturbing gas.

3. Methods

After dispensing the gas into the chamber, it was possible to 
set up training algorithms to quantify the components of the 
mixture. Prediction of the gas concentration was carried out 
by three methods: Single Gas Sensor Response Interpretation 
(SGS), Multiple Linear Regression (MLR), and Artificial Neu-
ral Networks (ANN). Scripts written in Python and MATLAB 
were used to make such analyses.

The total dataset consisted of 900 measurement points 
divided into 60% for the training set, with the remaining 40% 
being the testing set. The training set contained 540 points: 
180 and 360 points were measured in single and binary gases, 
respectively. The test data was collected a few months after 
the training data.

3.1. Single Gas Sensor Response Interpretation (SGS). The 
first method allowed us to predict the ‘ideal sensor’ toxic gas 
concentration, namely, assuming that the sensor is ideal and 
reacts only with the target gas. Values were obtained by (1):

 CSGS = 
Isens

Scalc
, (1)

where Isens – sensor response in nA; Scalc – calculated sensitivity.
This model uses only one independent variable, which is the 

response of the sensor, divided by its sensitivity.

3.2. Multiple Linear Regression (MLR). This is very similar 
to Simple Linear Regression, but it takes more than one explan-
atory variable. It includes all sensor responses with calibration 
parameters according to (2):

 CMLR = β 0 + β1x1 + β2x2 + … β6x6 , (2)

where β 0 … 6 – calibration parameters; x1 … 6 – sensor response 
(independent variables).

The performance of prediction can be significantly improved 
by finding the linear relationship between one dependent vari-
able, which represents the gas concentration and several inde-
pendent variables (sensor responses).

3.3. Artificial Neural Networks (ANN). In this work, a Multi-
layer Perceptron model was used to quantify the toxic gas con-
centration. The number of neurons in the input layer was equal 
to the number of sensors (N = 6), and output layer consisted 
of 1 neuron (target gas concentration). The number of hidden 
layers (l = 2) and hidden neurons (n = 7) was experimentally 
chosen to achieve the best accuracy determined by performance 

metrics. However, similar results were obtained for other net-
work architectures.

The Levenberg-Marquardt backpropagation algorithm 
was used to train the networks. The initial weights have been 
selected randomly. Tanh transfer function was used to activate 
neurons.

3.4. Model performance. The performance of all the algo-
rithms was determined by several criteria, such as coefficient 
of determination (R2), Root Mean Squared Error (RMSE) and 
Mean Absolute Error (MAE), which are shown in Table 2. The 
higher R2, the better the model, in contrast to RMSE and MAE 
(which is less sensitive to outliers than RMSE) values.

Table 2 
Evaluation metrics of model performance; n is a number 
of measurement points, y is a vector of reference values,  

p is a vector of values of predicted concentrations,  
and i is an actual measurement point

Metric Symbol Formula

Coefficient of 
determination

R2 1 ¡  
∑n

i = 1 (yi ¡ pi)
2

∑n
i = 1 (yi ¡ y–)2

Root Mean Squared Error RMSE
µ

1
n

¶
 ¤ ∑n

i = 1 (yi ¡ pi)
2

Mean Absolute Error MAE
µ

1
n

¶
 ¤ ∑n

i = 1 jyi ¡ pij

4. Results

The sensitivity of the sensors was investigated by measuring 
their response with a gradually increased concentration of 
target gases. Figures 2 and 3 present time courses of sensor 
responses to different SO2 and NO2 concentrations. Usually, 
for most sensors, an increased presence of each gas caused an 
increased response of all sensors. For example, the presence of 

Fig. 2. Sensor response to different concentrations of  SO2
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SO2 resulted in a significant response from the SO2 sensor, but 
also from the H2S sensor. Such behaviour confirms the lack of 
selectivity in this kind of sensors.

Once the response stabilised (i.e. before the new gas con-
centration was introduced into the chamber), 15-minute aver-
ages of the curve parts were used to calculate the response of 
the sensors to a given concentration of SO2 and NO2 according 
to (1), which is graphically presented in Figs. 4 and 5, respec-
tively. The experiment was repeated for all toxic gases (not 
shown here). The sensor response almost linearly depended 
on the concentration of the measured gases. The slope of the 
response was used to calculate the sensor sensitivity (Table 3). 
Generally, the obtained numbers are within the range declared 
by the manufacturer. As can be seen, the measured sensitivity 
of S1-H2S and S5-NO2 slightly differ from the information 
on their datasheets.

Table 3 
Comparison of calculated sensor sensitivity values and sensitivities 

provided by datasheets

Sensor model Calculated sensitivity 
[nA/ppm]

Datasheet sensitivity 
[nA/ppm]

S1-H2S 1120.08 ± 26.92 1450 ÷ 2150

S2-O3 −322.47 ± 5.74 −650 ÷ −225

S3-NO 544.55 ± 78.53 500 ÷ 850

S4-SO2 278.70 ± 4.08 275 ÷ 475

S5-NO2 −166.13 ± 20.05 −450 ÷ −175

S6-CO 278.73 ± 9.89 220 ÷ 375

Fig. 3. Sensor response in given concentrations of  NO2
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Fig. 4. Sensor responses in given concentrations of SO2
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Fig. 6. Raw sensor responses to SO2 and NO2
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Fig. 5. Sensor responses in given concentrations of NO2
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sor is necessary to find a correlation between the concentra-
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tion level and sensor output. The calculated sensitivities from 
Table 3 allowed for converting the current responses of sensors 
to toxic gas concentration levels, which is illustrated in Fig. 7. 
The obtained curves show cross-sensitivity of the sensors to the 
presence of NO2 or SO2.

It can be observed that sensors reacted slower to NO2 than 
to SO2. Every sensor except for the S6-CO reacted to the toxic 
gases used in the experiment. The difference between S2-O3, 
S4-SO2 and S5-NO2 responses to SO2 and NO2 gas should be 
equal to the response of the sensors to a mixture of these gases 
with identical concentrations, but it is not equivalent, as it is 
presented in Table 4.

Table 4 
Sensor responses to SO2, only NO2 alone and to a mixture of them

Sensor 
model

Response 
to 1 ppm 
of SO2 
[ppm]

Response 
to 1 ppm 
of NO2 
[ppm]

Response to 
1 ppm of SO2 
and 1 ppm of 
NO2 [ppm]

Calculated 
response to 1 ppm 
of SO2 and 1 ppm 

of NO2 [ppm]

S1-H2S 0.15 − 0.16 − 0.01 − 0.01

S2-O3 0.00 − 0.70 − 0.76 − 0.70

S3-NO 0.04 − 0.23 − 0.27 − 0.27

S4-SO2 0.91 − 0.75 − 0.11 − 0.16

S5-NO2 0.00 − 0.92 − 1.03 − 0.92

S6-CO 0.00 − 0.01 − 0.01 − 0.01

5. Discussion

In Section 4, it was shown that the sensors also react to non-tar-
get gases. For example, sensor responses to a mixture of 1 ppm 
of SO2 and 1 ppm of NO2 are not equal to the sum of responses 
to such concentrations of these gases calculated separately. 
Usually sensors are calibrated in individual gases only. It can 

be assumed that this approach does not guarantee an accurate 
estimation of concentrations. This approach does not consider 
the different interactions between gases and sensors. Therefore, 
it can be assumed that much better results can be obtained by 
calibration also in mixtures, which will be demonstrated later.

Two analyses were made to verify this assumption. The 
first was obtained by teaching algorithms on learning data only 
consisting of sensor responses to individual gases. In the second 
case, responses to single gas as well as mixtures were used 
as training data. All algorithms were tested on data, measured 
later than the calibration data, but using identical measuring 
sequences.

5.1. Calibration in single gas. In this analysis, the training 
dataset consisted of a part of total training set: 180 points 
measured in synthetic air alternately with 1 ppm of one toxic 
gas. The total test dataset was used for testing the models. To 
determine the parameters of Multiple Linear Regression, (2) 
was used on training dataset, where independent variables 
x1 … 6 were the responses of the sensors in the following order: 
S1-H2S, S2-O3, S3-NO, S4-SO2, S5-NO2, S6-CO.

The extracted parameters are included in Table 5. The 
higher value of the parameter, the more important is the sensor 
response by which it is multiplied. In the case of the prediction 
of the SO2 concentration, response of the SO2 and NO2 sensors 
is the most significant. Similarly, O3 and NO2 sensors provide 
the most information about the NO2 concentration.

Table 5 
MLR regression summary done from single gas measurement data

Parameter
SO2 NO2

Value Standard Error Value Standard Error

β0 −0.01 0.00 −0.01 0.00

β1 −0.79 0.15 −0.43 0.24

β2 −1.43 0.46 −17.54 0.75

β3 −0.16 0.02 −0.74 0.03

β4 −3.22 0.13 0.53 0.22

β5 −3.59 0.66 18.22 1.08

β6 −0.16 0.08 0.17 0.12

Figure 8 shows scatterplots of the predicted versus reference 
concentrations using SGS, MLR and ANN algorithms on the 
test dataset. Dispersion of points at all concentrations is similar 
for all methods except for ANN. For ANN (blue triangles), in 
the case of both gases, the measurements for 0.25 ppm, and 
0.75 ppm were identified as clearly underestimated and over-
stated concentrations, respectively. This might be the conse-
quence of an overfitting caused by a relatively small training 
dataset. The ANN was trained on only 0 ppm and 1 ppm of 
toxic gas, so it tried to match the sensor responses with values 
that were known to this network. The network had difficulty 
correctly identifying the intermediate value.

Fig. 7. Sensor responses converted to concentrations
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Linear regression lines between reference values and model 
outputs show how close the model is to making perfect predic-
tions. The slope of the ideal model should be equal to 1 (green 
line). The obtained values of the slopes for all methods are 
presented in Table 6.

Table 6 
Slopes and their uncertainties of  linear regression lines drawn 

between predicted and reference data after calibration in single gas

Method SO2 Slope ± u NO2 Slope ± u

SGS 0.71 ± 0.04 1.09 ± 0.01

MLR 1.06 ± 0.00 1.19 ± 0.01

ANN 1.13 ± 0.01 1.09 ± 0.01

Table 7 gives performance metrics for SGS, MLR and ANN 
methods. It has been proven that the SGS method is not accu-
rate enough for calculating concentration of sulphur dioxide, 
because the S4-SO2 sensor reacts to other gas types, such as 

nitrogen dioxide (as shown in Table 4) and hence generates 
false signals. The use of the MLR and ANN methods achieves 
more precise results, and their slope values are closer to 1. On 
the other hand, SGS is the best method for the determination 
of NO2.

5.2. Calibration in single gas and binary mixture. The cal-
ibration procedure was analogous to that presented in Sec-
tion 5.1. The only difference was the use of training dataset 
enlarged by measurements made in binary mixtures. The test 
dataset has not been changed.

The extracted parameters of Multiple Linear Regression 
given by (2) are included in Table 8. They changed a bit com-
pared to the previous calibration (Table 5). In the SO2 calcula-
tion, the S2-O3 sensor weight parameter increased significantly. 
This is the effect of calibration in a mixture, where nitrogen 
dioxide, was present at the same time.

Table 8 
MLR regression summary done from single gas and binary mixture 

measurement data

Parameter
SO2 NO2

Value Standard Error Value Standard Error

β0 −0.01 0.00 −0.01 0.00

β1 −0.33 0.13 0.74 0.32

β2 −5.44 0.31 −12.09 0.78

β3 −0.21 0.02 −0.70 0.04

β4 −4.28 0.12 −0.48 0.29

β5 −2.71 0.42 10.33 1.05

β6 −0.42 0.07 0.67 0.17

Fig. 8. Predictions of gas concentrations made on a test dataset with the use of SGS, MLR and ANN methods against reference concentrations 
of: a) SO2, b) NO2 with linear regression lines. The training set consisted of only measurements in one toxic gas and synthetic air
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Scatterplots of the predicted versus reference concentrations 
using SGS, MLR and ANN algorithms are shown in Fig. 9. The 
dispersion of points at all concentrations is narrower than in the 
approach from Section 5.2 (Fig. 6). For SO2, the regression for 
MLR and ANN lines overlap with the line predicted = refer-
ence (1:1), which means that these models except make perfect 
predictions. The obtained values of the slopes of regression 
lines for all methods are presented in Table 9.

Table 9 
Slopes and their uncertainties of linear regression lines drawn 

between predicted and reference data after calibration in single gas 
and binary mixture

Method SO2 Slope ± u NO2 Slope ± u

SGS 0.71 ± 0.04 1.09 ± 0.01

MLR 0.99 ± 0.00 1.15 ± 0.01

ANN 1.00 ± 0.00 1.09 ± 0.01

The performance summary for the SGS, MLR and ANN 
models is shown in Table 10. Both the MLR and ANN gave 
similar predictions, but for NO2, the ANN slightly outperformed 
the MLR. Additional training data containing measurements in 
two toxic gases at once improved the results. This means that 
information about interfering gases is important and should be 
included in calibration processes.

The SGS algorithm showed the best results in NO2 predic-
tions. This may be related to the presence of an advanced filter 
in the S5-NO2 sensor. Such filter removes interfering gases, 
resulting in better selectivity. It chemically adsorbs some gas 
types and therefore has a limited lifetime, which is different 
from the gas cell lifetime. After this time, the sensor may show 
incorrect readings and it should be calibrated.

Fig. 9. Predictions of gas concentrations made on test dataset with the use of SGS, MLR and ANN methods against reference concentrations 
of: a) SO2, b) NO2 with linear regression lines. The training set consisted of measurements in single gas, binary mixture, and synthetic air

6. Conclusions

In the present investigation, six electrochemical gas sensors 
were used in order to reveal their cross-sensitivities. Two dif-
ferent types of gases – SO2 and NO2 – were applied at a concen-
tration of 1 ppm. Mixtures with different balances of these two 
gases were also taken into consideration. The results presented 
in the text confirm that electrochemical sensors do not only 
react to the presence of the gases they are constructed to detect. 
For each sensor, the current response usually depends on the 
presence of several gases. The least selective were the S1-H2S 
and S3-NO sensors, both responding to SO2 and NO2.

When using the SGS method, the sensor responses in multi-
component gas mixtures showed that a concentration of 1 ppm 
of SO2 and 1 ppm of NO2 was misclassified as a mixture of 
0.01 ppm H2S, 0.70 ppm O3, 0.27 ppm NO, 0.16 ppm SO2, 
0.92 ppm NO2 and 0.01 ppm CO. The results proved that anal-
yses performed with amperometric sensors can be error prone 
in the presence of interfering gases.

Table 10 
Statistics of error calculated to assess the performance of gas 

prediction methods with respect to the input dataset while 
algorithms were trained on single gas and binary mixture 

measurement data

Gas Method R2 RMSE [ppm] MAE [ppm]

SO2

SGS 0.017 0.339 0.197

MLR 0.995 0.023 0.017

ANN 0.994 0.026 0.043

NO2

SGS 0.951 0.074 0.038

MLR 0.937 0.084 0.054

ANN 0.944 0.079 0.034
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Cross-sensitivity caused by interfering gases is a very 
important parameter. It can mislead the user of the sensor that 
there is a target gas present, or it may reduce the reported level 
of the target gas when in fact this is not true and the user does 
not know that they may be at risk. In order to improve the 
reliability of target gas measurements, further treatment of the 
data is required. This can be carried out by the application of 
machine learning algorithms, such as MLR and ANN.

It was shown that calibration in mixtures provides better 
results than in single gases, because it considers information 
about how the sensor responds to interfering gases. This was 
presented in two calibration approaches with the use of the 
SGS, MLR and ANN algorithms. In the first, the algorithms 
were trained on data consisting of measurements only in a sin-
gle gas or synthetic air. The second contained additional mea-
surements in two gases at once.

The R2 coeff icient and RMSE and MAE error statistics 
were used to evaluate which model was the best. In SO2 pre-
dictions, Multiple Linear Regression and Artif icial Neural 
Networks resulted in a much higher R2 and lower RMSE and 
MAE than SGS, evidencing that the MLR and ANN are more 
effective methods. The case was different in NO2 calculations, 
because the SGS was found to be the best algorithm. This 
may be related to the presence of an advanced filter inside the 
S5-NO2 sensor.
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