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1. Introduction

High-precision motion control remains the fundamental prob-
lem of control theory and numerous applications. Robotics
(mobile robots and industrial manipulators) is a typical applica-
tion area, but the same problems and solutions appear in a wide
variety of high-performance mechatronic systems, including
micro- and nanoscale motion, machine and CNC tools, manu-
facturing tools, numerous servo drives, etc. The main factors in-
fluencing control performance and quality are the unknown pa-
rameters of the plant model and the nonlinear nature of load or
disturbing torques. Therefore, adaptive nonlinear control tech-
niques are widely and successfully applied in motion control
problems.

All practical systems are influenced by a variety of con-
straints. In a servo drive both main state variables – position
and speed – are bounded. Very often, the constraints are “hard”,
i.e. any, even a small violation is unacceptable as it may cause
mechanical damage of the machine or its surroundings, or even
contrive a danger for human users. Therefore, nonlinear, adap-
tive control in the presence of hard state constraints remains
an important issue. Some powerful control techniques have
been developed to deal with this problem. Methods based on
set invariance [1], admissible set control [2, 3], model predic-
tive control [4, 5] and reference governors [6, 7] produce nu-
merical algorithms with a heavy computation burden and now
mostly bear historical importance. Recently, the barrier Lya-
punov functions (BLF) approach was used to cope with various
(state [8, 9] or output [10, 11], constant or varying [12, 13]) con-
straints, also for motion control [14, 15]. But, the BLF approach
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to the tracking problem allows for imposing constraints for the
error system merely and the effective constraints for state vari-
ables must be derived taking into account the reference trajec-
tory and the controller parameters used in subsequent control
loops. The controller obtained is applicable only If it is possi-
ble to find a set of design parameters that satisfies the so-called
“feasibility conditions” [16, 17].

In this contribution, we propose a new approach to nonlin-
ear, adaptive motion control in the presence of hard state con-
straints based on nonlinear state-space transformation. This al-
lows us to impose hard constraints on the state variables directly
and to achieve asymptotic tracking of any reference trajectory
inside the constraints, in spite of the plant parameters remain-
ing unknown. The paper finds its place in the important area
of adaptive control applications to motion control problems.
Adaptive techniques are used in [18, 19] for tracking control
and in [20, 21] for state observation. The proposed approach to
handling hard state constraints is a new contribution.

2. Plant model and control objectives

The drive under consideration is modelled by two differential
equations:

ẋ1 = x2,

Jẋ2 = θ T ξ (x1,x2, t)+gu.
(1)

The angular or linear position is denoted by x1, the rotational
or linear speed by x2, J corresponds to system inertia while
g > 0 represents the transformation of the control input u into
the propulsion torque or force. Component f = θ T ξ (x1,x2, t)
describes all load or disturbance torques/forces such as fric-
tion, torque/force ripples, etc. Function ξ is known. Unknown,
constant parameters in p-dimensional vector θ will be approxi-
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mated by the adaptive parameters. It is assumed that parameters
J and g are also unknown, although they remain positive and
constant.

This type of equation may be used to model rotational or lin-
ear motion of numerous plants with a different source of propul-
sion. If an electric (rotational or linear) drive with a DC or
a synchronous permanent magnet motor is considered, model
(1) is obtained under the assumption that the current control
loop is much faster than the mechanical dynamics. The model
of a robotic manipulator with multiple joints is a straightfor-
ward generalization of (1) – in this case, f includes centripetal-
Coriolis forces, gravitational forces and frictional as well as dis-
turbing forces. The same structure of the model may also be
proposed for pneumatic servo systems.

Hard, asymmetric constraints are considered for both state
variables:

−bi,1 < xi < bi,2 , i = 1,2. (2)

The control aim is to follow the desired, smooth trajec-
tory x1d , ẋ1d with sufficient accuracy under the inviolable con-
straints (2).

3. Nonlinear state transformation

New state variables are introduced:

si = ln
bi,1 + xi

bi,2 − xi
, i = 1,2. (3)

The new state variable si → −∞ if xi → −bi,1 and si → ∞ if
xi → bi,2. Therefore, singularities in (3) correspond to bounds
imposed on state variables xi. The transformation defined in (3)
is a bijection between the open set (2) and the real axis and the
inverse is given by:

xi = bi,2 −
bi,2 +bi,1

esi +1
=−bi,1 +

(bi,2 +bi,1)

e−si +1
. (4)

Equations describing the dynamics of new state variables are as
follows:

ṡi =
d
dt

ln
bi,1 + xi

bi,2 − xi
=

2+ e−si + esi

bi,2 +bi,1
ẋi =: ki(si)ẋi . (5)

Functions ki(si) are nonzero for any −∞ < si < ∞:

|ki(si)|=
∣∣∣∣
2+ e−si + esi

bi,2 +bi,1

∣∣∣∣≥
4

|bi,2 +bi,1|
. (6)

Derivatives of ki(si)

hi(si) :=
d

dsi
ki(si) =

−e−si + esi

bi,2 +bi,1
, (7)

d
dt

ki(si) = hi(si)ṡi = hi(si)ki(si)ẋi (8)

are available for the controller design.

Typical behavior of the functions describing the proposed
transformation is illustrated in Fig. 1.
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Fig. 1. Plots of si, ki(si), hi(si) for −bi,1 =−1, bi,2 = 2

A similar transformation is applied to the reference trajec-
tory, leading to:

s1d := ln
b1,1 + x1d

b1,2 − x1d
, ṡ1d = k1(s1d)ẋ1d . (9)

4. Controller design

The adaptive controller is designed using the backstepping ap-
proach [22, 23]. It is based on the error system defined in the
transformed state-space. For application purposes, it is enough
to prove the uniform, ultimate boundedness (UUB) [24] of er-
rors and the boundedness of transformed state variables si.

The tracking error is defined for the variables being trans-
formed:

ε1 := s1d − s1 ,

ε̇1 = k1(s1d)ẋ1d − k1(s1)ẋ1 .
(10)

Step 0:
The additional integral action is added to the standard back-
stepping design. Therefore, the error integral is considered at
the initial stage of backstepping:

p :=
t∫

0

ε1(τ)dτ. (11)

The trajectory of p is described by:

ṗ = ε1 . (12)

2 Bull. Pol. Ac.: Tech. 68(5) 2020

Adaptive, nonlinear state transformation-based control of motion in presence of hard constraints

If signal ε1 is forced to follow the desired trajectory:

ε1d =−L0 p, L0 > 0, ε0 := ε1 − ε1d , (13)

where L0 > 0 is a design parameter, system (12) is stable for
ε0 → 0, as it follows from the Lyapunov function:

V0 =
1
2

p2 ⇒ V̇0 =−L0 p2 + pε0 . (14)

Step 1:
At the next stage of the design, the trajectory of ε0 is consid-
ered:

ε̇0 = ε̇1 − ε̇1d = k1(s1d)ẋ1d − k1(s1)ẋ1 +L0 ṗ

= k1(s1d)ẋ1d − k1(s1)x2 +L0ε1 . (15)

An inertial filter is used to create virtual control input in (15):

ż =−C(z− s2), C > 0,

z(0) = s2(0), ρ := s2 − z.
(16)

That is if the filter transition state is over z ≈ s2 and the gap
ρ may be arbitrarily narrowed by a proper choice of the filter
parameter C

(
if |ṡ2| ≤ c < ∞ then |ρ| ≤ c

C
[23]

)
. Therefore, it

is assumed that |ρ| ≤ ρmax < ∞.
Signals z and s2 are added and subtracted in (15), the desired

trajectory for s2 is denoted by s2d and the tracking error by:

ε2 := s2d − s2 . (17)

All these operations transform (15) into the following form:

ε̇0 = k1(s1d)ẋ1d − k1(s1)x2 +L0ε1 − s2d + ε2 + z+ρ. (18)

The Lyapunov function for this stage of backstepping is:

V1 =V0 +
1
2

ε2
0 (19)

hence, the Lyapunov function derivative takes the following
form:

V̇1 =−L0 p2 + ε0 (k1(s1d)ẋ1d − k1(s1)x2)

+ ε0 (z+ p+L0ε1 − s2d + ε2 +ρ) . (20)

Therefore, selecting the reference s2d as:

s2d = k1(s1d)ẋ1d − k1(s1)x2 + z+ p+L0ε1 +L1ε0 (21)

reduces the expression (20) to a simple form:

V̇1 =−L0 p2 −L1ε2
0 + ε0ε2 + ε0ρ (22)

and transforms the error dynamics description (18) into:

ε̇0 =−L1ε0 − p+ ε2 +ρ =−L1ε0 − p+ s2d − z. (23)

The derivative of the reference s2d is calculated as:

ṡ2d =
d
dt

[k1(s1d)ẋ1d − k1(s1)x2]

+
d
dt

[z+L0ε1 +L1ε0 + p]

= (h1(s1d)k1(s1d)ẋ1d) ẋ1d + k1(s1d)ẍ1d

−h1(s1)k1(s1)ẋ1x2 − k1(s1)ẋ2

−C (z− s2)+ ṗ+L0ε̇1 +L1ε̇0 (24)

and may be simplified by plugging in expressions for ẋ1, ẋ2, ε̇1,
ε̇0. Following these substitutions, ṡ2d is represented in a com-
pact form:

ṡ2d = G− k1(s1)

J

(
θ T ξ +gu

)
, (25)

where

G := h1(s1d)k1(s1d)ẋ2
1d + k1(s1d)ẍ1d

−h1(s1)k1(s1)x2
2 + ε1 −L0L1ε0

−L0 p+L0 (s2d − z)−L2
0ε1 −L2

1ε0

−L1 p−C (z− s2)−L1 [z− s2d ] . (26)

Step 2:
Finally, tracking error ε2 is considered:

ε̇2 =
d
dt

(s2d − s2) = G− k2(s2)ẋ2 −
k1(s1)

J

(
θ T ξ +gu

)

= G− k1(s1)

J

(
θ T ξ +gu

)
− k2(s2)

J

(
θ T ξ +gu

)

= G− [k1(s1)+ k2(s2)]

J

(
θ T ξ +gu

)
. (27)

It may be represented in a linear-in-parameters form:

J
g

ε̇2 =
J
g

G− [k1(s1)+ k2(s2)]

(
1
g

θ T ξ +u
)

= ϑ T ϕ − [k1(s1)+ k2(s2)]u, (28)

where

ϑ T :=
[

J
g

1
g

θ T
]
,

ϕ :=

[
G

− [k1(s1)+ k2(s2)]ξ

] (29)

are unknown constant parameters and a known regressor, re-
spectively. The unknown parameters will be substituted by
adaptive parameters ϑ̂ and the error of adaptation is denoted
by ϑ̃ := ϑ − ϑ̂ .

The final Lyapunov function is then:

V2 =V1 +
1
2

J
g

ε2
2 +

1
2

ϑ̃ T Γ−1ϑ̃ (30)

Bull. Pol. Ac.: Tech. 68(5) 2020 3



965

Adaptive, nonlinear state transformation-based control of motion in presence of hard constraints

Bull.  Pol.  Ac.:  Tech.  68(5)  2020

Adaptive, nonlinear state transformation-based control of motion in presence of hard constraints

If signal ε1 is forced to follow the desired trajectory:

ε1d =−L0 p, L0 > 0, ε0 := ε1 − ε1d , (13)

where L0 > 0 is a design parameter, system (12) is stable for
ε0 → 0, as it follows from the Lyapunov function:

V0 =
1
2

p2 ⇒ V̇0 =−L0 p2 + pε0 . (14)

Step 1:
At the next stage of the design, the trajectory of ε0 is consid-
ered:

ε̇0 = ε̇1 − ε̇1d = k1(s1d)ẋ1d − k1(s1)ẋ1 +L0 ṗ
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(with a positive definite matrix Γ), and so:

V̇2 =−L0 p2 −L1ε2
0 + ε0ε2 + ε0ρ

+ ε2
(
ϑ T ϕ − [k1(s1)+ k2(s2)]u

)
+ ϑ̃ T Γ−1 d

dt
ϑ̃ . (31)

The control is as follows:

u =
1

k1(s1)+ k2 (s2)

(
ϑ̂ T ϕ +L2ε2 + ε0

)
, (32)

where L2 > 0 and the identity
d
dt

ϑ̃ =− d
dt

ϑ̂ , reduce (29) to:

V̇2 =−L0 p2 −L1ε2
0 −L2ε2

2 + ε0ρ

+ ϑ̃ T
(

ε2ϕ −Γ−1 d
dt

ϑ̂
)
. (33)

If the robust adaptive law

d
dt

ϑ̂ = Γ
(
ε2ϕ −σ‖e‖ϑ̂

)
σ > 0,

e =
[
p, ε0, ε2

]T
(34)

is applied, the well-known inequality ϑ̃ T ϑ̂ ≤
∥∥ϑ̃

∥∥(‖ϑ‖−∥∥ϑ̃
∥∥) and the notation of Lmin = min{L0, L1, L2} allows to

simplify the Lyapunov function derivative:

V̇2 ≤−‖e‖
{

Lmin‖e‖−σ
∥∥ϑ̃

∥∥(‖ϑ‖−
∥∥ϑ̃

∥∥)−ρmax
}
. (35)

Therefore, if ‖ϑ‖ <
∥∥ϑ̃

∥∥ then −σ
∥∥ϑ̃

∥∥(‖ϑ‖−
∥∥ϑ̃

∥∥) > 0

and so, V̇2 ≤ 0 for any ‖e‖ >
ρmax

Lmin
. If ‖ϑ‖ >

∥∥ϑ̃
∥∥ then

0 <
∥∥ϑ̃

∥∥(‖ϑ‖−
∥∥ϑ̃

∥∥) ≤ ‖ϑ‖2

4
and hence, V̇2 ≤ 0 for any

‖e‖>
ρmax +σ

‖ϑ‖2

4
Lmin

.

The derivation of the controller may be summarized by the
corollary which follows from the Lyapunov theorem exten-
sions [24]:

Corollary 1. Under the proposed control, the adaptive param-
eter errors ϑ̃ and the tracking errors e =

[
p, ε0, ε2

]T are uni-
formly ultimately bounded (UUB). Increasing the design pa-
rameter Lmin allows to reduce the limit set for e freely.

As the state variables p, ε0, ε2 are UUB, so is ε1 = ε0 −L0 p
and the design parameter Lmin may be used to narrow the track-
ing error.

It follows (from the boundedness of the error variables, under
the assumption that the desired trajectory x1d , ẋ1d stays inside
constraints (2)) that the state variables s1 and s2 are bounded,
and hence x1 and x2 stay inside constraints (2).

The final scheme of the control system is presented in Fig. 2.

Fig. 2. Control system scheme with design parameters

5. Switching the integrator off

The integrator applied in the derived control scheme helps re-
duce tracking errors caused mostly by inaccurate compensation
and filter error ρ , which may be considered an external distur-
bance. However, the simplified controller without the integrator
will also assure closed-loop system stability in the UUB sense.
It is obviously not recommended to switch the integrator off or
on during the system transient, but the same control structure
may be started with or without the integrator.

If the integrator is switched off by taking L0 = 0, variable p
is not used by the controller. In the signal: ε1d =−L0 p = 0, and
ε0 = ε1 (see Fig. 3). The derivation starts with dynamics of ε1
in (10) and is summarized in the following formulae:

ε̇1 = k1(s1d)ẋ1d − k1(s1)x2 − s2d + ε2 +ρ , (36)

s2d = [k1(s1d)ẋ1d − k1(s1)x2 + z]+L1ε1 , (37)

ṡ2d = G− k1(s1)

J

(
θ T ξ +gu

)
, (38)

G := h1(s1d)k1(s1d)ẋ2
1d

+ k1(s1d)ẍ1d −h1(s1)k1(s1)x2
2

−L2
1ε1 −C (z− s2)−L1 [z− s2d ] , (39)

V2 =
1
2

ε2
1 +

1
2

J
g

ε2
2 +

1
2

ϑ̃ T Γ−1ϑ̃ , (40)

u =
1

k1(s1)+ k2 (s2)

(
ϑ̂ T ϕ +L2ε2 + ε1

)
, (41)

d
dt

ϑ̂ = Γ
(
ε2ϕ −σ‖e‖ϑ̂

)
,

σ > 0, e =
[
ε1, ε2

]T
.

(42)

The conclusions about UUB stability are similar, with
Lmin = min{L1,L2}.

Fig. 3. Integrator loop scheme
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6. Example

Both controllers (with and without the integrator) were tested
for the permanent magnet synchronous motor drive, propelling
the stiff arm working against the gravitational force. The cur-
rent control loop assures that direct axis current id is close to
zero and that torque is proportional to the desired value u of the
quadrature axis current iq The plant model is described by the
following equations:

ẋ1 = x2 ,

Jẋ2 =−bx2 + csin(x1)−Tf (x2)+ kiu.
(43)

Friction torque Tf is given by:

Tf = a1 (tanh(a2x2)− tanh(a3x2))+a4 tanh(a5x2). (44)

Such smooth model of friction was frequently used in the liter-
ature – see [25, 26] for details. According to the previous nota-
tion:

ξ =




−x2

sin(x1)

− tanh(a2x2)+ tanh(a3x2)

− tanh(a5x2)


 (45)

and the adaptive parameters θ T correspond to the un-
known [b, c, a1, a4]. The nominal values of parameters are
J = 0.1 [kgm2], b = 0.3

[
Nm

s
rad

]
, c = 2, a1 = 40 [Nm],

a2 = 110, a3 = 100, a4 = 2, a5 = 100 and ki = 2
[

Nm
A

]
.

It is assumed that state variables of system (2) must fulfill

constraints b11 = b12 = 1 [rad] and b21 = b22 = 5
[

rad
s

]
.

The aim of the first experiment was to stabilize the drive,
so x1d = ẋ1d = 0. The gains selected for all simulations are
L0 = 15 or L0 = 0 when the integrator is switched off; L1 = 15,
L2 = 15. Figs. 4, 5 show system trajectories corresponding
to different initial conditions. The starting values for adap-
tive parameters equal 80% of their nominal values and Γ =
diag(0.007;10;10;10;10), σ = 0.01.
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Fig. 4. Trajectories of state variables for several starting points. System
without the integrator, “o” – initial conditions
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Fig. 5. Trajectories of state variables for several starting points. System
with the integrator, “o” – initial conditions

All trajectories for both controllers (Figs. 4, 5) remain in
the bounded area. If the integrator is switched on, the speed
is closer to the constraint and more oscillations are visible in
Fig. 5. Next, the influence of the control gains L0, L1, L2 was
demonstrated. The state variables for different values of param-
eters Li are shown in Figs. 6, 7.
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Fig. 6. Stabilization of position x1 for different values of L1 and L2.
If L0 = 0, the integrator is off, if L0 > 0, it is on
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Fig. 7. Stabilization of velocity x2 for different values of L1 and L2.
If L0 = 0, the integrator is off, if L0 > 0, it is on
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The aim of the first experiment was to stabilize the drive,
so x1d = ẋ1d = 0. The gains selected for all simulations are
L0 = 15 or L0 = 0 when the integrator is switched off; L1 = 15,
L2 = 15. Figs. 4, 5 show system trajectories corresponding
to different initial conditions. The starting values for adap-
tive parameters equal 80% of their nominal values and Γ =
diag(0.007;10;10;10;10), σ = 0.01.
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All trajectories for both controllers (Figs. 4, 5) remain in
the bounded area. If the integrator is switched on, the speed
is closer to the constraint and more oscillations are visible in
Fig. 5. Next, the influence of the control gains L0, L1, L2 was
demonstrated. The state variables for different values of param-
eters Li are shown in Figs. 6, 7.
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Fig. 7. Stabilization of velocity x2 for different values of L1 and L2.
If L0 = 0, the integrator is off, if L0 > 0, it is on
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The aim of the second experiment was to follow the desired
trajectory x1d = 0.9sin(0.25t) under the constraints b11 = b12 =
1 and b21 = b22 = 5.

The control system includes the model of a PMSM motor

Ld
d
dt

id =−Rid +ωeLqiq +ud ,

Lq
d
dt

iq =−Riq −ωe (Ldid +ϕm)+uq ,

T = kiiq ,

(46)

with parameters from Table 1.

Table 1
Motor parameters and signals

Ld d-axis inductance 8.7 [mH]

Lq q-axis inductance 8.7 [mH]

R phase resistance 1.71 [Ω]

ϕm permanent magnet flux 0.86 [Vs/rad]

ki torque constant 2 [Nm/A]

id , iq d- and q-axis currents 6.5 [A]

ωe electric velocity 1500 [rot./min]

ud , uq d- and q-axis voltages 400 [V]

T motor torque 13 [Nm]

Linearizing control uq = ωe (Ldid +ϕm)+ vq allows for sim-
plifying the current control design – we are to select a PI

controller C(s) = Kq

(
1+

1
sTiq

)
for an inertial plant P(s) =

1
sLq +R

. This was done by means of standard linear control

techniques. The PI controller was tuned to make the iq domi-
nant time constant ∼ 100 µs.

The current generation dynamics

u = iq =
Kq

(
1+

1
sTiq

)
1

sLq +R

1+Kq

(
1+

1
sTiq

)
1

sLq +R

u0

obtained were included between the output of the nonlinear,
adaptive controller u0 and the input of the system (43) u.

The tracking errors for both controllers are shown in Fig. 8, 9.
Both controllers provide sufficient accuracy of tracking. The
integrator allows for reducing the quasi-steady-state error by
20% approximately.

The motor current is plotted out in Fig. 10. Integrator results
are used for more aggressive control of the initial state (initial
current peek). This may be reduced by the proper parameter
tuning as is demonstrated by the third experiment, below.

The norm of the error of adaptive parameters is presented in
Fig. 11. For both controllers, the adaptive parameters remain
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Fig. 8. Tracking error x1d − x1 for both controllers: dashed line – con-
troller with the integrator, solid line – controller without the integrator
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Fig. 9. Tracking error x2d − x2 for both controllers: dashed line – con-
troller with the integrator, solid line – controller without the integrator

bounded, as has been proven, and the rate of change of adaptive
parameters is moderate, facilitating practical applications.
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Fig. 10. Current iq for both controllers: dashed line – controller with
the integrator, solid line – controller without the integrator
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Fig. 11. Norm of the error of adaptive parameters
∥∥ϑ̃

∥∥ for both con-
trollers: dashed line – controller with the integrator, solid line – con-

troller without the integrator

Evidence that the velocity constraint is active and truly influ-
ences system performance is presented in Fig. 12. If the con-
straint is not imposed (b21 = b22 = ∞), maximum value of mo-

tor velocity during the transient is ∼ 4.3
[

rad
s

]
, while when

b21 = b22 = 3 the velocity constraint is strictly preserved.
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Fig. 12. Velocity x2 for the controller with the integrator: solid line
– constraint b21 = b22 = 3, dashed line – controller without velocity

constraints

The effect of active velocity constraints on the tracking er-
rors is presented in Figs. 13, 14. Only the initial part of the
time-history is affected. Convergence is slightly slower when
the constraints are active, but the velocity overshoot and the
motor current are actually significantly smaller (Fig. 15).

The aim of the third experiment was to demonstrate the in-
fluence of design parameters Li and velocity constraints b21 and

0 0.05 0.1 0.15 0.2

-0.3

-0.2

-0.1

0

0.1

Fig. 13. Tracking error x1d − x1 for the controller with the integrator:
solid line – constraint b21 = b22 = 3, dashed line – controller without

velocity constraints
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Fig. 14. Tracking error ẋ1d − x2 := x2d − x2 for the controller with the
integrator: solid line – constraint b21 = b22 = 3, dashed line – con-

troller without velocity constraints
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Fig. 15. Current iq for the controller with the integrator: solid line –
constraint b21 = b22 = 3, dashed line – controller without velocity con-

straints
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b22 on the maximum value Im of current iq during the transient
response. The desired trajectory and the position constraint are
the same as previously. The results obtained are presented in
Tables 2 and 3.

Table 2
Im value for different velocity constraints (Li = 10)

Velocity Im [A] Im [A]
constraints Controller with Controller without
b21 = b22 integrator integrator

2.3 43.5 22.0

2.5 44.0 22.5

3.0 46.0 23.5

5.0 50.5 25.5

Table 3
Im value for different value of parameters Li (b21 = b22 = 3)

Parameters
Im [A] Im [A]

Li
Controller with Controller without

integrator integrator

8 30.0 16.0

10 46.0 23.5

12 65.5 33.0

Increasing parameters b21 and Li increases maximum current
value Im. The presence or absence of the integrator in the con-
troller has the largest influence on the value of Im.

7. Conclusions

An adaptive control problem with hard state constraints was
formulated and solved for a servo drive. The proposed approach
was based on adaptive backstepping and nonlinear state trans-
formation. This allows us to impose hard constraints on the state
variables directly and to eliminate the restrictive feasibility con-
ditions, imposed by the BLF approach.

Two adaptive nonlinear controllers were proposed. Both con-
trol algorithms are sufficiently accurate from a practical point
of view. The adaptive structure guaranties proven robustness
against parametric model uncertainties. The technique pre-
sented allows for obtaining rigorous proof of closed loop sys-
tem stability in the UUB sense. The controllers derived are not
difficult to tune and the approach proposed can be easily ex-
tended to time varying-constraints. The experiments performed
demonstrate that both controllers are robust against un-modeled
dynamics of the plant.

The controller with an integrator allows for further reduc-
tion of the tracking error, especially during quasi-steady-state
operation. Unfortunately, the integrator gain, which reduces
the quasi-steady-state tracking error, results in more aggressive

control during the initial part of the transient response, with
a high peek of the motor current. Therefore, the adaptive ap-
proach to the integrator gain will be investigated in the next
contribution.
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[18] J. Kabziński, “Adaptive, compensating control of wheel slip in
railway vehicles”, Bull. Pol. Ac.: Tech. 63(4), 955–963 (2015).

[19] P. Serkies, “A novel predictive fuzzy adaptive controller for
a two-mass drive system”, Bull. Pol. Ac.: Tech. 66(1), 37–47
(2018).
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