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The implementation of ‘Industry 4.0’ paradigm asks the smart operators in the digital factory
to accomplish more ‘cognitive-oriented’ than ‘physical-oriented’ tasks. The Authors propose
an analytical model in the information theory framework to estimate the cognitive workload
of operators. In the model, subjective and physiological measures are adopted to measure
the work load. The former refers to NASA-TLX test expressing subjective perceived work
load. The latter adopts Heart Rate Variability (HRV) of individuals as an objective indirect
measure of the work load. Subjective and physiological measures have been obtained by
experiments on a sample subjects. Subjects were asked to accomplish standardized tasks
with different cognitive loads according to the ‘n-back’ test procedure defined in literature.
Results obtained showed potentialities and limits of the analytical model proposed as well as
of the experimental subjective and physiological measures adopted. Research findings pave
the way for future developments.
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Introduction

The Fourth Industrial Revolution, the so-called
Industry 4.0, is born as a response to the need of im-
provement of current production systems, by provid-
ing a wide integration of digital technologies in man-
ufacturing [1]. ‘Smart Manufacturing Systems’ are
based on a digital network where the physical con-
text is closely intertwined with artificial intelligence
allowing to manage and monitor the production pro-
cess at operational and procedural levels. Consistent-
ly with this approach, the human factors are at the
heart of a virtuous closed-loop chain that leads the
industries in the new era of manufacturing.

According to recent studies, the tasks typology
as well as their complexity in smart factories will

significantly change. An increased role of automa-
tion and artificial intelligence will lead to evolving
workplaces in which the people will frequently inter-
act with ever-smart machines [2]. The technological
change led by the fourth industrial revolution has
redefined the ‘traditional’ manufacturing process in
a ‘smart’ manufacturing process where the physical
context is closely intertwined with the correspond-
ing cyber twin by means of IoT and Cloud Com-
puting Infrastructures. In this perspective, a cru-
cial role is played by operators who became “smart-
operators”, who are required to be highly flexible
and to demonstrate adaptive capabilities in a very
dynamic working environment [2]. Recently statisti-
cal studies showed that in industries the overall time
spent by industrial operators on manual tasks is re-
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ducing over the years; as a consequence, the manual
tasks assigned to machines, from 2018 to 2022, are
averagely increased of 13%, in terms of tasks’ number
[3]. If on one hand, the manual tasks performed by
‘smart operator’ is reducing over time, on the oth-
er hand, it is possible to observe that, in the next
years, the predicted time that each smart-operators
will dedicate to cognitive-oriented tasks will signifi-
cantly increase in the next years (Fig. 1) [3].

Fig. 1. Total hours worked in Europe and the Unit-
ed States, 2016 vs 2030 estimate, billion (adapted by

www.worldmanufacturingforum.org/report-2019).

The experts consider this trend to be a relevant
indicator of the changing and of the emerging role
of the human factor in manufacturing systems. The
requirement of new types of interactions between op-
erators and machines [4]. These interactions will gen-
erate a new intelligent workforce and have significant
effects on the work content. Therefore, the workforce
demand will change significantly in the next years.

While the tasks of the new work environments are
rapidly switching from manual- to cognitive-based,
the average age of the workforce is significantly in-
creasing. According to OECD Data (Fig. 2), the per-
centage of the working population in EU28 with an
age between 55–64 years old is increased in the last
fifteen years of 5%, and this trend will lead to a fur-
ther increase of further 3% in the next ten years.

Fig. 2. Percentage of the working population in EU28
with age between 55–64 years old (source: OECD Data,

available on URL http://www.oecd.org/).

The aging of the population directly affects the work-
force performance, as shown in recent studies high-
lighting an age-related reduction of cognitive capac-
ity [5].

In this context, the evaluation of Cognitive Work-
Load (CWL) can be crucial to design, manage, and
monitor the workloads in a smart factory. This strat-
egy allows ensuring both a higher efficiency of the
manufacturing system and the well-being of the
workforces. Strong limitations on the evaluation of
the CWL are highlighted by the available scientific
literature on this topic. Although many physiological
and subjective parameters are identified in order to
measure the perceived CWL (e.g. Heart Rate Vari-
ability (HRV), electroencephalogram (EEG), pupil
diameter, etc.), nowadays there is not a methodolo-
gy allowing to quantify the information content of a
specific cognitive task, in terms of bits, for example,
and then to assess the corresponding CWL required
to process it.

Further gaps in scientific literature showed that
there are not ‘conventional’ assessment models to be
adopted for evaluating the performance of the worker
exposed to cognitive load. In most cases, the exist-
ing assessment models consider the aspects related
to physical load at the workplace (e.g. OCRA, RU-
LA, OWAS, etc.). Currently, the CWL evaluation
methods are considered a hotspot in the scientific
community. If, on the one hand, it is possible to
claim that there are three different assessment ap-
proaches (i.e. subjective evaluation methods, work
performance evaluation methods, and physiological
evaluation methods), on the other hand for each of
them the experts identify important advantages and
disadvantages that do not allow an easy and flexible
implementation in manufacturing systems [6].

Consistently with the observations mentioned
above, to fully investigate the research problem, the
following subsidiary research questions are raised:
• RQ1. Whether it is possible to identify a mathe-

matical model that identifies the CWL on the ba-
sis of the information content of a corresponding
cognitive task;

• RQ2. How the well-known physiological param-
eters detection (e.g. HRV, EEG, PUPIL DIAM-
ETER) allows to dynamically estimate the per-
ceived CWL;

• RQ3. How the higher mental load affects the work-
ers’ performance in terms of reliability and safety.
Therefore, the aim of the proposed study consists

in investigating the relation between CWL, evaluated
by means of an analytical model, and the correspond-
ing perceived CWL, experimentally detected. In oth-
er words, the present work conducted allows identi-
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fying how the perceived CWL increases with the in-
creasing of the information content to be processed.
For this scope, an Analytical Model of Advanced
Manufacturing Systems has been adopted to evaluate
the human workload of specific tasks, characterized
by different complexity. Consistently with the pur-
pose of the work, the same tasks have been performed
by a sample of workers in order to identify and eval-
uate the corresponding perceived CWL. In experi-
ments conducted, the perceived CWL was estimated
through the HRV analysis, concerning the tasks to be
performed, the ’n-back’ tasks test [7, 8] (at n-levels)
was adopted for the workers’ cognitive assessment.
n-back tasks test, originally introduced by Kirchner
[8], has become a standardized tool to simulate tasks
with different cognitive complexities; it consists of
standardized working memory and attention tasks
with four incremental levels of difficulty.

The remainder of the paper is organized as fol-
lows: the literature review is introduced in the next
section, the case study is introduced in Sec. 3; ma-
terials and methods of experiments conducted are in
Sec. 4; finally, conclusions of this work are in Sec. 5.

Literature review

CWL is an important research topic in the field
of human factors engineering. According to Fan et al.
the higher amount of brain activity, the higher occu-
pancy rate of the brain, as well as the higher psy-
chological pressure will cause rapid fatigue, reduced
flexibility, increased human errors and frustration,
which will lead to errors in information acquisition,
analysis, and decision making [6]. On the contrary,
low CWL leads to the decline of job performance [9].
Therefore, nowadays the research on the evaluation
method of CWL is considered one of the most impor-
tant challenges for the manufacturing systems. Ac-
cording to available scientific literature, CWL can be
evaluated adopting different well-known methodolo-
gies, so-called: subjective, physiological and perfor-
mance, each of them including different evaluation
techniques (Fig. 3).

The first methodology is based on a subjective
evaluation of cognitive load led by the judgment of
the same worker to be analyzed. In this case, a survey
is conducted, by questionnaires administration, when
the worker(s) has(have) completed the assigned task,
in order to evaluate the cognitive effort perceived
during the task execution. The output of the survey
consists in a task load index returned by question-
naires evaluation. National Aeronautics and Space
Administration – Task Load Index (Nasa-TLX) is
one of the most common techniques included in the

‘subjective’ methodologies. It is based on a multidi-
mensional measuring scale in which are provided six
sub-scales representing different dimensions of cog-
nitive effort: mental demand, physical demand, tem-
poral demand, frustration level, effort, and perfor-
mance [10]. Similar procedures are adopted for the
other techniques, included in similar methodologies,
although different dimensions of the sub-scales are
considered.

Fig. 3. Most common methodologies adopted for CWL
evaluation.

The second methodologies are based on the moni-
toring of the human-body parameters, under the as-
sumption that when the tasks complexity changes,
physical changes are observed in the worker ana-
lyzed [11]. There are several techniques to evaluate
the CWL by bodily responses such as ECG measures,
EEG, Blood pressure, pupil diameter, etc.

The workers’ performance evaluation (i.e. third
methodologies) are based on the assumption that the
increase of the CWL of the assigned task leads less-
ening the efficiency and increasing the error rate.
Therefore, starting from performance parameters
(e.g. the Human Error Probability – HEP, the cy-
cle time, the number of accidents, etc.) it is possible
to identify the corresponding CWL [12].

Considering the limitation of the single evalua-
tion methodology, recent studies focused on the com-
prehensive adoption of more methods, so that the
various methods complement each other and avoid
their shortcomings [6].

Mansikka et al. evaluated the CWL of pilots in
a flight simulation comparing the NASA-TLX scale
and the modified Cooper-Harper scale (MCH). The
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study conducted showed a strong correlation be-
tween the results of the adopted techniques and
the variation of the mean inter-beat-interval (IBI)
parameter [13]. A demonstration of HRV’s sensi-
tivity to the cognitive demand is given by [14].
In this case, the CWL of the participants to the
test has been evaluated accordingly to NASA-TLX
and HRV techniques. Three different task kinds
(i.e. psychomotor vigilance task, duration discrim-
ination task, and n-back task) have been evaluat-
ed and, in every case, the authors showed a high
sensitivity of the HRV to the change of task com-
plexity.

Bommer and Fendley [12] developed a theoret-
ical framework based on a systematic approach to
measuring CWL through a computer simulation. The
model is based on the joint adoption of the NASA-
TLX, the Workload Profile, and the HEP. The au-
thors tested the model on a real full-case study, show-
ing its effectiveness to predict the operator’s perfor-
mance to variations of the CWL [12].

A set of case studies has been evaluated, adopting
the physiological methods, in order to evaluate the
change of CWL over time (before, during and after
the execution of the task) for different tasks charac-
terized by different complexity. All evaluations col-
lected have been included in a simulation program,
so-called IMPRINT, sponsored by the US weapons
research laboratory. The software allows predicting
the continuous workload profile of a specific task (in-
cluded in a database), in order to suggest the cog-
nitive load, required to the operator, for task per-
forming [15]. The EEG technique was adopted for
evaluating the CWL in assembly operations. The da-
ta collected on a sample of 46 workers, involved on
a manufacturing line, showed significant changes in
EEG measures by varying the task complexity. Three
different levels of task-hardness (low, medium, high)
have been considered [16].

Summing up, to the best of authors’ knowledge,
no studies investigate the relationship between hu-
man workload, evaluated in accordance with an ex-
isting analytical model, and the corresponded per-
ceived CWL, experimentally detected.

The case study

As a case study, we analyzed the n-back task.
n-back tasks test, originally introduced by Kirch-

ner [8] and by Mackworth [7], has become a stan-
dardized tool to simulate tasks with different cogni-
tive complexities; it consists of standardized working
memory and attention tasks with four incremental
levels of difficulty.

A sequence of stimuli (letters on a computer
screen) are shown to the tester (subject who runs
the test). The tester is asked to digit the right
shift button on a keyboard when the current stim-
ulus matches the one observed n steps earlier in
the sequence; in case of mismatching stimuli, the
tester has to digit the left shift button. Increas-
ing the number (n) of letters included between two
target letters, increases the difficulty of the task
and the mental effort required to accomplish it. We
implemented the zero- and the two-back levels by
exploiting the Psychology Experiment Building Lan-
guage toolkit (PEBL) version 2.1 (freely available at
http://pebl.sourceforge.net/download.html). In the
0-back task, testers responded to a predefined single
target letter (i.e., “X”); while in the 2-back task, the
targets were defined as any letter that was identical
to the one presented two trials back.

We exploited the model of Salvendy in order to
implement a custom model for evaluating the CWL
associated with the execution of the two implement-
ed “n-back” task levels [18]. The total task load (TL)
is evaluated in terms of ‘bit’ on the basis of task ar-
rival rate, task complexity, task uncertainty as well as
task performance requirement. According to the au-
thors, their model can be applied to all manufactur-
ing systems independently on automation levels [19].

In the implementation of the model of Salvendiy,
we used both subjective and objective measures.

We carried out a within-subjects experiment by
asking participants to execute two n-back test ses-
sions corresponding to the two implemented levels.
As subjective measures, we used participants rat-
ings collected by administering the NASA-TLX ques-
tionnaire. As objective measures, we used both par-
ticipants’ performance (i.e. reaction-time) and task
parameters (such as inter-target time), and physi-
ological parameters extracted by monitoring heart-
activity (i.e. HRV analysis).

Material and methods

We recruited 13 participants (all volunteer,
7 male and 6 female), with mean age 26.9 years
and deviation 2.98 years. They all had a Mechanical
and Management Engineering background (8 master-
degree students and 5 PhD. students). Before start-
ing the experiment, they all filled in a preliminary
questionnaire in order to check whether their life
habits and physical conditions allowed their partic-
ipation in the trial (participants were required to
maintain a regular sleep-wake cycle for at least one
day before the study and to abstain from stimulating
beverages or intense physical activity).
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The experimental procedure consisted in the ex-
ecution of the two implemented n-back task le-
vels. Before starting the experiment, each partic-
ipant received written and verbal information ex-
plaining the experimental procedure and her/his task
in the test. Then, in order to record the Electro-
cardiographic signal (ECG), an experimenter posi-
tioned three pre-gelled electrodes on the participant’s
chest. The ECG signal was acquired with a 1000 Hz
sampling rate by using the BITalino®Plugged
Kit BLE (https://bitalino.com/en/plugged-kit-ble),
a low-cost multimodal platform for physiological sig-
nals acquisition [20].

Before each level execution, each participant car-
ried out a training phase to get used to the correct
procedure. The execution order of the two “n-back”
task levels was counterbalanced among participants.
The zero-back level had 100 prompts and the two-
back 102 prompts, both levels had an inter-prompt
period of 3000 milliseconds (i.e. 500 ms of stimulus
presentation and 2500 ms of fixed delay). Each level
execution lasted about 5 minutes and had 33 targets
that were prompted randomly.

During the task execution, the ECG signal was
recorded together with participants’ performance
(i.e. reaction time and error rate). At the end of each
level each participant filled in the NASA-TLX ques-
tionnaire. The two “n-back” levels execution were in-
terleaved with a resting phase of at least 5 minutes.
During this phase, the ECG signal was recorded in
order to obtain a baseline measure of the heart ac-
tivity in rest conditions.

Analytical model evaluation

The analytical model adopted for CWL evalu-
ation was proposed by Bi and Salvendy [19] it is
based on 5 input parameters, one output and one, or
more, physiologic and/or subjective workload mea-
sures. According to the authors, the basic task load
can be divided into three categories: information in-
put, information process, and information output
[19]. For the task required by the “n-back” test, the
information input consists of indicating when the
current stimulus matches the one from n steps earlier
in the sequence; the information output is provided
through keystrokes activation (i.e. left ‘shift’ key if
the stimulus coincides with the target, right ‘shift’
key if the stimulus not coincides with the target).
The stimulus appears regularly at a fixed interval
time (3 (s)). As a consequence, no uncertainty has to
be considered in the task arrival. Moreover, in each
run of the n-back test there are no sub-tasks.

Under the above-mentioned hypotheses, the av-
erage task load of the j-th subject for each k-th level

of the n-back test (TLk,j) is derived from the general
model suggested in [18] and evaluated as:

TLk,j = a+ bλk + cλk
Tck

1− Pk,j
, (1)

where k is the level of n-back test: k = 0 for the
“0-back test”; k = 1 for the “2-back test”; Tck is
the task complexity of each run (in bit) identified
by Shannon entropy measures for discrete equiprob-
able states. In case of k = 0 (low level), the task
required to the operator is relatively easy: her/his
work consists to identify whether the variable showed
matches the fixed target-variable, hence only one
bit is the content of information to be processed
(yes/no). In case of k = 1 (high level), the operator is
asked to identify a target variable on the basis of the
sequence memorized (previous 3 letters displayed),
therefore, before confirming whether the observed
variable matches the target, she/he should remem-
ber the sequence. Since the target could be identified
only after a sequence of 3 letters have been displayed,
the subject has to compare the target appeared with
the letters in the sequence memorized. In this case,
the content of the information is quantified in six
bits. λk (i = 1, ..., λk) is the interarrival rate of runs
(100/300 (s−1) for k = 0; 102/306 (s−1) for k = 1);
Pk,j = Trk,j/Ta is the average schedule tightness of
the j-th subject in accomplishing all runs of the test
(100 for k = 0; 102 for k = 2), being: Trk,j the aver-
age value of the time required by the j-th subject to
accomplish a run; Ta is the available time for each
task run (3 (s)); ‘a’ (bit), ‘b’ (bit · s), and ‘c’ (non-
dimensional) are parameters obtained by regression
analysis.

In this study, the normalized (0;1) values of the
perceived cognitive load measured for each opera-
tor by means of the Raw NASA-TLX questionnaire
(RTLX) and of HR measures were considered as
a measure of subjective or physiological workloads,
respectively. For both levels of the n-back test, re-
gression parameters have been obtained. On the ba-
sis of Eq. (1), the average values (among subjects)
of the TLk based on the subjective and physiological
measures carried out during the experiments are in
Table 1.

Table 1
Normalized task load (TLk) obtained by Eq. (1).

Task load TLk (bit)
0-back level 2-back level

RTLX data set 0.27 0.55

HR data set 0.74 0.76

As it is shown in Table 1, a meaningful increase
in the average TLk values between the two levels
(k = 0, 1) has been observed when a subjective mea-

60 Volume 11 • Number 3 • September 2020



Management and Production Engineering Review

sure is adopted (RTLX). On the contrary, no sig-
nificant increase has been observed in TLk estimates
when referring to a physiological measure (HR). Such
a result obtained by the analytical model is in accor-
dance with the statistical analysis provided in the
following sections.

HRV assessment

Heart rate is the number of heartbeats per
minute. Heart rate variability (HRV) is the fluctu-
ation in the time intervals between adjacent heart-
beats [21]. Healthy heart rhythm is not fixed. The
oscillations of a healthy heart allow the cardiovascu-
lar system to rapidly adjust to sudden physical and
psychological challenges to homeostasis. Many stud-
ies in the literature are exploiting HRV analysis as an
indirect indicator of cognitive and physical workload
[13, 14, 22, 23]. According to Shaffer and Ginsberg,
HRV analysis can be carried out with respect to time,
frequency, and non-linear measurements [24]. Among
the factors influencing the reliability of HVR analy-
sis, the recording period length plays a crucial role.
In particular, the length ranges from 2 minutes (ultra
shorth-term) to 24 hours (long-term). We analyzed 5
minutes (short-term) time recordings that guarantee
a good tradeoff between recording length and HRV
results reliability [24].

In order to evaluate how participants reacted to
the different CWL associated with the implemented
n-back task levels, we carried out the analysis in the
time domain. Starting from the ECG signal we ex-
tracted the NN (i.e. RR) tachogram, by exploiting
the HRV analysis software tool [25] and, from it, the
HR indicators.

In the time domain, we assessed the Heart Rate
(HR) and the square root of the mean squared dif-
ferences of successive NN intervals (RMSSD).

We assessed all the indicators for the three
recording conditions: the “zero-back”, the “two-
back”, and the “baseline”. In order to evaluate the
effectiveness of such parameters as indicators of the
CWL, we considered the ratio between the indicators
in each one of the n-back levels and the “baseline”
level.

In accordance with the literature, we observed
that tasks involving higher CWL are associated with
an increase in HR and a decrease of RMSSD (Figs 4
and 5, respectively).

The Wilcoxon signed-rank test shows that the HR
ratio to baseline mean value for the Zero-back level
is significantly lower than the one for the Two-back
level (0.95 vs 1.03, p = 0.0327, Fig. 6).

The Wilcoxon signed-rank test shows that the
RMSSD ratio to baseline mean value for the Zero-

back level is significantly higher than the one for the
Two-back level (1.16 vs 0.80, p = 0.0327, Fig. 7).

Fig. 4. Values of the HR ratio to the baseline for the 13
participants.

Fig. 5. Values of the RMSSD ratio to the baseline for the
13 participants.

Fig. 6. Heart rate ratio to the baseline boxplots.

Fig. 7. RMSSD ratio to the baseline boxplots.
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NASA-TLX assessment

The NASA-TLX provides an overall workload
score (from 0 to 100 points) based on a weighted av-
erage of ratings on six dimensions: mental demands,
physical demands, temporal demands, own perfor-
mance, effort, and frustration. The NASA-TLX ques-
tionnaire sensitivity to mental-workload has been
demonstrated to be useful in a variety of cognitive-
ly demanding tasks from aircraft piloting [26, 27],
to surgery [28], or laboratory tasks context [29]. In
the literature, the use of an unweighted or raw TLX
(RTLX) is the most common, because high corre-
lations have been shown between the weighted and
unweighted scores [30, 31]. The assessment was car-
ried out by administering post task questionnaires
for both the “n-back” levels. Results on the overall
RTLX score evidence the different perceived effort
(Fig. 8).

Fig. 8. Values of the RTLX score for the 13 participants.

The RTLX samples were positively tested for
homoscedasticity and normality; the T -student test
showed that the RTLX mean value for the Zero-back
level is significantly different from the one for the
Two-back level (21.53 vs 43.71, p < 0.005, Fig. 9).

Fig. 9. NASA-TLX overall score (RTLX) box plots.

Conclusions and future research

This study investigated the relation between
CWL, evaluated in accordance with an analytical

model derived by [18], and the corresponding per-
ceived CWL, estimated from experimental data on
a sample of 13 operators. Both a physiologic (HRV)
and a subjective (NASA-TLX) method has been
adopted in order to estimate CWL. The assessment
conducted showed good reliability of the adoption of
both experimental methodologies. The application of
the analytical model and the measures of the HRV
and RTLX score on the field showed that is possi-
ble identifying two distinct subsets of data charac-
terized by very different average values of the HRV
and RTLX score for tasks of 1 bit (0-back) rather
than 6 bits (2-back).

This study contributes in answering the first two
research questions raised:
• RQ1. It is possible to identify a mathematical

model that identifies the CWL on the basis of the
information content of a corresponding cognitive
task, under abovementioned limitations;

• RQ2. Detection of physiological parameters (i.e.
HRV) estimated the perceived CWL in accordance
with subjective tests (i.e., RTLX).
Regarding the third question (RQ3), no feedbacks

were provided on the issue related to how the cogni-
tive load affects the workers’ performance in terms of
reliability and safety. From this point of view, there
are no pieces of evidence, on the tests conducted,
on the possible relationship between CWL and the
corresponding human error rate.

Limitations of the proposed study can be out-
lined. In order to obtain more generalized findings,
further field research will be extended to further
groups of subjects differently aged and sexed.

The analytical model is difficult to apply for com-
plex tasks. Although the model can be generalized
for most manufacturing activities, it requires a com-
plex and time-consuming process that cannot ignore
subjective and/or physiologic workload measures di-
rectly detected on the field: the HR and RTLX esti-
mation could be hard to measure in many manufac-
turing systems. The HR is characterized by a signal
that can be easily affected by noise due to frequent
body movements; the RTLX requires the interrup-
tion of work, in order to allow the compilation of the
test by the operator.

Future developments will address the highlighted
limitations and provide a more effective and easy to
use tool to evaluate the CWL and the corresponding
effect on the human performances.

Future research will extend the investigation of
human workload in manufacturing by addressing
work tasks with both cognitive and motor compo-
nents. To complete the estimation of the overall hu-
man workload, the contribution of the motor task to
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the work load will be addressed by breaking-down
complex motor tasks in elementary motor sub-tasks.
Shannon Entropy measures will be adopted to mea-
sure information in ‘trajectory-based’ motor tasks
within the framework of the Fitts’ law. A general
‘trajectory-based’ approach is proposed in [32] for
Human Computer Interface (HCI) studies. The ap-
proach is meaningful as HCI research is very close
to digital work environment of ‘smart operators’ and
human-robot cooperation. In spite of the nature of
motor tasks that will be investigated, which differ
from the NASA TLX tasks, the operators are still
required to process information which contribute to
the cognitive workload. Difficulty index of differently
shaped trajectories will be put into statistical rela-
tion with HR and RTLX estimates. In this way the
influence of HR variability on workload of smart op-
erators engaged to accomplish simple motor tasks in
digital work environment will be investigated under
the same information theory framework.

The research has been supported by the Italian
Ministry of University and Research under the grant
Research Project of National Interest (PRIN-2017)
“Smart Operators 4.0 based on Simulation for In-
dustry and Manufacturing Systems”.
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