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Abstract. In this paper, a new dynamic model was proposed for identifying the rock hardness during the process of roadway tunnelling, thereby 
regulating the speed of the driving motor and the torque of the cutting head. The presented identification model establishes a multi-information 
feature database containing vibration signals in the y-axis, acoustic emission signals, cutting current signals, and temperature signals. Subse-
quently, we obtain the membership functions (MFs) of the given multiple signals with the amount of feature samples according to the principle 
of minimum fuzzy entropy. Furthermore, a rock hardness identification model was established based on multi-sensor information fusion and 
Dempster-Shafer (D-S) evidence theory. To prove the accuracy of the proposed model, an identification experiment was carried out through 
the cutting of a poured mixed rock specimen with five grades of hardness. As a result, the proposed identification model recognizes the rock 
hardness accurately for fifteen sampling points, which indicates the significance of the method with regard to the dynamic identification of 
rock hardness during the process of roadway tunnelling, and further provides data support for adjusting the speed of the cutting head adaptively, 
thereby achieving high efficiency tunnelling.
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1. Introduction

Road headers applied to urban traffic and mine roadways, 
railways, and highways are widely used to tunnel straight 
underground roadways. A road header mainly contains of 
four separate mechanisms for walking, working, shipping, 
and trans-shipping [1]. During the process of tunnelling, the 
road header cuts rock through the reciprocating oscillation of 
a cutting head [2]. Thus, the tunnelling rate has a significant 
relation with the hardness of rock. Many previous researches 
have shown that an increasing tunnelling rate always accom-
panies a decrease in rock hardness under different rock prop-
erties [3]. Rock characteristics and geological environment of 
a long-distance tunnelling face are influenced by a variety of 
factors, and therefore the hardness of rock in different driv-
ing positions is significantly different. A traditional tunnelling 
method with a constant feed speed is unable to be adaptively 
regulated for different degrees of rock hardness. For example, 
the tooth of a cutting head will be seriously worn or even broken 
when the rock is too hard, as shown in Fig. 1. Thus, the speed 
of the cutting head while tunnelling should be reduced under 
a high hardness condition, and in contrast, the speed should 
be increased along with a decrease in hardness to improve the 
working efficiency of the road header, thereby accelerating the 
construction progress. All previous analyses have indicated that 

a method for monitoring the hardness of rock online during the 
tunnelling process is an urgent issue.

Several related researches have been presented to solve the 
above issues. Yang et al. presented a hardness identification 
model for both coal and rock based on the frequency-domain 
energy characteristics of vibration signals [4]. They extracted 
the frequency-domain indexes under different cutting conditions, 
indirectly determining the hardness of the cutting medium. In 
addition, they utilised the weighted averages method to solve the 
fuzzy membership functions (MFs) of the cutting hardness, and 
combined with the defined cutting hardness factor, the coal and 
rock properties were finally identified [5]. Utt used measure-
ments taken while a layer is being drilled, one can convert the 
data to suitably scaled features and classify the strength of the 
layer with a neural network [6]. Improvement made by Kahra-
man and Rostami in characterization of rock and rock mass fea-

Fig. 1. Worn and broken tooth of the cutting head: a) Worn tooth; 
b) Broken tooth

(a) (b)
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ing of ground conditions and rock mass classifications [7]. Us-
ing MATLAB, Li et al. established a load mathematical model
for the cutting head, and further analysed the load of a road
header under different rock hardness conditions. The load char-
acteristics and a change in the rules of power were obtained [8].
Szwedzicki used an indentation testing method for characteri-
sation of the hardness of rock materials, which reflects a rela-
tionship between the values of the indentation hardness index
and the uniaxial compressive strength, and thus the value of the
calculated index can be used to classify the hardness of rock [9].
Yaar et al. focused on the statistical relations between physico-
mechanical properties and rock hardness, and further found that
such properties can be estimated using hardness methods, as
well as through a comparison with the calculated values from
different empirical equations [10]. Shalabi et al. studied dif-
ferent types of rocks encountered in engineering projects and
found that there are good relationships between the engineering
properties of intact rock and its hardness [11]. With normalised
MWD data, van Eldert found it was possible to mimic the tun-
nel contour mapping, and the results showed good correlation
with mapped Q-value and installed rock support. MWD tech-
nology can improve the accuracy of forecasting the rock mass
ahead of the face [12].

However, the abovementioned previous studies placed par-
ticular emphasis on theoretical research and recognition with
a single signal, and thus the recognition accuracy is relatively
low. Therefore, a new method for identifying the hardness of
rock is urgent to improve the accuracy of coal-rock recognition,
and thereby adjust the speed of the cutting head in an adaptive
manner.

This paper presented a new method to identify hardness of
rock accurately by multiple information fusion. The remain-
der of this paper is organized as follows. First, we tested the
feature signals used for fusion during the process of roadway
tunnelling. Next, five kinds of rock specimens with different
hardness were poured, and five group cutting experiments were
carried out on poured specimens to obtain the databases of each
feature signal. Moreover, according to the rule of minimum
fuzzy entropy, the membership functions of each feature sig-
nal were optimized. Combined with an AND decision rule, a
multi-information fusion model was established to identify the
hardness of rock. Finally, the accuracy of the proposed rock
hardness identification model based on multi-information fu-
sion are provided through experiments.

2. Feature signal testing and analysis

2.1. Multi-feature signal analysis of tunnelling. During the
process of tunnelling, the tangential force, radial force, and lat-
eral force have significantly different tooth owing to their differ-
ent installation angles. Furthermore, the tangential force, radial
force, and lateral force can be separately decomposed into the
three axes, namely, fxi , fyi , and fzi [13], as shown in Fig. 2, n
represent the number of teeth installed in a cutting head. In ad-
dition, Fx, Fy, and Fz indicate the resultant forces in the axes of
x, y, and z, respectively.

Fig. 2. Force analysis of a cutting head

The cutting vibrations are consistent with the direction of the
beard 3D force, which contains a transverse vibration along the
x-axis, a longitudinal vibration along the y-axis, and an axial
vibration along the z-axis. We obtained tri-axial vibration ac-
celeration curves of the cutting head while cutting hard rock by
installing a tri-axial vibration acceleration sensor on a swivel
lug. As shown in Fig. 3, clear vibrations were generated in

a)

b)

c)

Fig. 3. Tri-axial vibration acceleration signals: a) x-axis; b) y-axis;
c) z-axis
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along x-, y-, and z-axes. The maximum absolute values of the
vibration accelerations in the x-, y-, and z-axes are 11.35, 23.62,
and 17.24 m·s−2, respectively. Furthermore, lots of tests vali-
date that the amplitude degree of vibrations in the process of
cutting hard rock is in order of the y-, z-, and x-axes. Consider-
ing that plethoric signals will lead to larger dimensions of the
recognition system, thereby reducing the response speed of the
system, the vibration in the y-axis was applied as a feature sig-
nal of the presented identification system.

During the course of tunnelling hard rock, the cutting cur-
rents change dramatically along with the change in cutting re-
sistance owing to the varying hardness of the rock, as shown
in Fig. 4. In addition, sharp collisions and friction occur be-
tween the picks and hard rock while tunnelling, which gener-
ates both a significant acoustic emission phenomenon and an
instantaneous flash temperature zone on the surface of the pick,
namely, the flash temperature [14], as shown in Figs. 5 and 6,
separately. Thus, tests regarding the changes in cutting current,
acoustic emissions, and flash temperature while tunnelling rock
with different degrees of hardness are capable of reflecting the
changes in rock hardness.

Fig. 4. Tunnelling current

Fig. 5. Acoustic emission signal while tunnelling

Fig. 6. Instantaneous flash temperature while tunnelling

2.2. Extraction and recognition of multi-feature signals.
The hardness of rock can be divided into five grades, as listed in
Table 1. The hardness of rock is generally represented through a

Table 1
Hardness of rock of different grades

Hardness
grade

Representative rock
Protodyakonov

coefficient

G1 argillaceous rock 4

G2 sandstone 6

G3 conglomerate 10

G4 granite 15

G5 quartzite, basalt 20

Protodyakonov coefficient. The Protodyakonov coefficient rep-
resents the relative value of rock resistance to crushing. As
the rock has the strongest compressive strength, ten percent
of uniaxial compressive strength limit is defined as the Pro-
todyakonov coefficient, which is expressed as

f = R/100, (1)

where f is the hardness of rock, R is the one-way uniaxial ul-
timate compressive strength of a standard sample of rock in
kg·cm−2.

A test-bed was established for testing the multi-feature sig-
nals, as shown in Fig. 7. The test-bed of a road header should
comprehensively consider the mechanical structure of road
header, cutting theory, similarity theory and similarity coeffi-
cient. However, this paper is devoted to recognizing the rock
hardness effectively according to the differences of multi-
feature signals in the cutting process. Thus, the test-bed should
realize the similar functions of walking and cutting, capable to
obtain the signals with similar regularity. The vibration signals
were tested using a vibration sensor. A thermal infrared imager
was used to collect the flash temperature signal, and we ob-
tained the current signal of the cutting motor through an elec-
trical parameter acquisition module. In addition, the acoustic
emission signals were tested and extracted using an acoustic
emission sensor and its acquisition system.

Fig. 7. Test-bed for hard rock cutting
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The rock specimens with different hardness grades have cor-
responding proportion of sand and cement. The proportion of
sand and cement with different hardness grades is determined
through a large number of experiments and tests. Then, five
kinds of rock specimens with different hardness were poured
in a laboratory, and we tested the Protodyakonov coefficient of
each, as listed in Table 2.

Table 2
Protodyakonov coefficients of rock specimens

Hardness grade G1 G2 G3 G4 G5

Protodyakonov coefficient 3.8 6.4 10.3 14.6 18.8

Several cutting experiments were carried out to test the mul-
tiple signals of hard rock with five given tested Protodyakonov
coefficients. The features of each signal were extracted as fol-
lows:
1. Signals of vibration and acoustic emission. Both vibration

signals and acoustic emission signals were decomposed and
reconstructed through a wavelet packet analysis. The energy
levels of the vibration signals and acoustic emission signals,
which change regularly with the change in hardness, were
extracted as feature samples.

2. Flash temperature signals. During the process of cutting, in-
frared thermal images were taken using a thermal infrared
imager, and the flash temperature feature was obtained us-
ing IRBIS3 Plus analysis software.

3. Cutting current signals. An electricity parameter acquisi-
tion module was used to test the cutting current signals and
then the root mean square (RMS) values were obtained by
analysing the tested current signals.

Table 3
Sample values of vibration signals

Serial
number

Vibration energy

G1 G2 G3 G4 G5

1 105.8 118.6 131.6 144.5 162.8

2 106.3 119.2 132.5 145.9 164.2

3 107.9 120.3 133.4 147.6 165.8

4 109.2 121.5 134.6 149.2 167.5

5 110.5 122.0 135.8 150.8 169.4

6 112.3 123.1 137.2 152.9 171.6

7 113.4 125.3 138.9 154.3 173.2

8 114.7 126.7 140.1 155.8 175.8

9 116.2 128.2 142.3 157.5 178.5

10 117.5 129.6 143.8 159.2 180.6

11 118.8 130.5 144.9 161.0 183.1

12 119.6 131.4 146.2 162.7 185.9

13 121.1 132.6 147.5 164.3 187.4

14 122.3 133.9 148.9 166.2 189.2

15 122.9 134.4 149.4 167.2 191.5

The samples of each feature signal while cutting the given
rock specimens were organized, as shown in Tables 3 and 6.

Table 4
Sample values of acoustic emission signals

Serial
number

Acoustic emission energy

G1 G2 G3 G4 G5

1 50.8 57.6 64.8 72.3 82.9

2 51.6 58.1 65.4 72.9 83.7

3 52.1 58.6 66.2 73.8 84.6

4 52.9 59.3 66.8 74.6 85.8

5 53.7 59.9 67.5 75.7 87.1

6 54.3 60.6 68.4 76.4 89.0

7 54.8 61.4 69.2 77.8 90.5

8 55.6 62.1 69.8 78.6 91.3

9 56.1 62.9 70.5 79.4 92.7

10 56.7 63.6 71.2 80.7 93.5

11 57.4 64.1 71.8 81.5 95.4

12 58.0 65.2 72.6 82.3 96.5

13 58.5 65.9 73.4 83.1 97.4

14 58.9 66.7 73.9 84.2 98.3

15 59.6 67.6 74.6 84.9 99.7

Table 5
Sample values of temperature signals

Serial
number

Temperature (◦C)

G1 G2 G3 G4 G5

1 25.6 29.5 33.9 39.2 44.9

2 25.9 29.8 34.3 39.6 45.6

3 26.1 30.2 34.6 40.1 46.7

4 26.4 30.7 35.1 40.8 47.2

5 26.8 31.1 35.8 41.5 47.8

6 27.1 31.6 36.4 41.9 48.5

7 27.6 32.0 36.9 42.6 49.3

8 27.9 32.4 37.3 43.1 49.9

9 28.1 32.7 37.7 43.5 50.6

10 28.5 33.1 38.2 44.2 51.1

11 29.0 33.5 38.8 44.7 51.9

12 29.4 33.7 39.2 45.3 52.8

13 29.6 34.2 39.9 45.8 53.9

14 30.1 34.8 40.3 46.5 55.4

15 30.4 35.2 40.7 47.2 56.1
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Table 6
Sample values of current signals

Serial
number

Current (A)

G1 G2 G3 G4 G5

1 1.026 1.151 1.302 1.428 1.590

2 1.038 1.170 1.313 1.435 1.604

3 1.054 1.183 1.626 1.449 1.617

4 1.067 1.196 1.341 1.461 1.628

5 1.088 1.205 1.352 1.475 1.644

6 1.095 1.218 1.359 1.489 1.656

7 1.109 1.229 1.371 1.503 1.667

8 1.117 1.243 1.388 1.517 1.682

9 1.126 1.258 1.395 1.529 1.688

10 1.139 1.274 1.407 1.544 1.695

11 1.148 1.289 1.419 1.567 1.699

12 1.156 1.306 1.436 1.579 1.702

13 1.172 1.317 1.448 1.593 1.706

14 1.194 1.326 1.462 1.611 1.711

15 1.203 1.340 1.476 1.623 1.713

3. Multi-information fusion model

3.1. Optimal combination algorithm of Dempster-Shafer.
An identification framework Θ of the rock hardness consists
of five proposed hardness grades of G1 to G5, and is expressed
as {Q1, Q2, Q3, Q4, Q5} [15, 16]. The basic probability as-
signments of each feature signal are represented as m1, m2, m3,
m4 and m5, respectively. In addition, set Bel1 and Bel2 to be
the belief functions in identification framework 2Θ, and their
basic probability assignments and kernels are respectively ex-
pressed as m1 and m2, {A1,A2, . . . ,Aq} and {B1,B2, . . . ,Bq}.
If ∑

i= j,Ai∩B j= /0
m1(Ai)m2(B j) < 1, while the fusion was finished

based on D-S, the equation of basic probability assignment is
expressed as

m(A) =




0 A = /0

(1− k)−1 ∑
Ai∩B j=A

m1(Ai)m2(B j) A �= /0 (2)

where m(A) is the basic probability assignment, k re-
flects the levels of conflict among varying evidence, k =

∑
Ai∩B j= /0

m1(Ai)m2(B j).

According to Eq. (2), the evidence combination rule of mul-
tiple belief functions is deduced as

m = (((m1 ⊕m2)⊕m3)⊕·· ·)⊕mn , (3)

where m1, m2, . . . , mn represent the basic probability assign-
ments of belief functions Bel1, Bel2, . . . , Beln in the same iden-
tification framework, 2θ , respectively.

During the process of multiple information fusion, the evi-
dence of various types of information may conflict with each
other owing to the diversity and uncertainty of the feature sam-
ples. In general, the greater the degree of evidence supported
by other types of evidence, the more credible the evidence will
be otherwise, a lower credibility is considered. If the credibil-
ity Crd(mi) of the evidence is regarded as a weight, the con-

dition
q

∑
i=1

Crd(mi) = 1 should be satisfied. Thus, conflicting

data can be processed based on the weight of all evidence ob-
tained. The D-S combination rules are then used for identifi-
cation and fusion, thereby modifying and optimizing the tradi-
tional Dempster-Shafer model.

Given βi = Crd(mi), i = 1,2, . . . ,q, the pre-treatment of the
conflicting evidence mi, (i = 1,2, . . . ,q) is expressed as

m′
i = βimi , i = 1,2, . . . ,q . (4)

The optimized combination rules are then revised as follows:



m(A) =
1

1− k′ ∑
Ai∩A j=A

m′
1(Ai)m′

2(A j), A �= /0

m( /0) = 0
(5)

where k′ = ∑
Ai∩A j= /0

m1(Ai)m2(A j).

3.2. Membership function optimization model. A multi-
information fusion model for hardness identification of rock
was established based on the probability distribution function.
However, the probability distribution function is merely an in-
ference for the reliability of the targets. Thus, the probability
distribution formula of a reliability function was constructed
based on the MFs [17]. There are several categories of MFs,
but trapezium and triangular MFs among them are most widely
used owing to their simplicity and convenience. Thus, in this
paper, trapezium and triangular MFs are used to establish an
MFs model of each cutting feature signals for identifying the
hardness of rock, which is shown in Fig. 8.

Fig. 8. MF model of hardness identification

A fuzzy entropy is capable to describe the fuzziness degree
of a fuzzy set. If a fuzziness of a fuzzy set is small, its fuzzy
entropy must be very small. Otherwise, a large fuzziness of a
fuzzy set always leads to a large fuzzy entropy [18]. Specifi-
cally, the fuzzy entropy of a definite set is zero, namely, without

Bull. Pol. Ac.: Tech. 68(6) 2020 5
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Table 6
Sample values of current signals

Serial
number

Current (A)

G1 G2 G3 G4 G5

1 1.026 1.151 1.302 1.428 1.590

2 1.038 1.170 1.313 1.435 1.604

3 1.054 1.183 1.626 1.449 1.617

4 1.067 1.196 1.341 1.461 1.628

5 1.088 1.205 1.352 1.475 1.644

6 1.095 1.218 1.359 1.489 1.656

7 1.109 1.229 1.371 1.503 1.667

8 1.117 1.243 1.388 1.517 1.682

9 1.126 1.258 1.395 1.529 1.688

10 1.139 1.274 1.407 1.544 1.695

11 1.148 1.289 1.419 1.567 1.699

12 1.156 1.306 1.436 1.579 1.702

13 1.172 1.317 1.448 1.593 1.706

14 1.194 1.326 1.462 1.611 1.711

15 1.203 1.340 1.476 1.623 1.713

3. Multi-information fusion model

3.1. Optimal combination algorithm of Dempster-Shafer.
An identification framework Θ of the rock hardness consists
of five proposed hardness grades of G1 to G5, and is expressed
as {Q1, Q2, Q3, Q4, Q5} [15, 16]. The basic probability as-
signments of each feature signal are represented as m1, m2, m3,
m4 and m5, respectively. In addition, set Bel1 and Bel2 to be
the belief functions in identification framework 2Θ, and their
basic probability assignments and kernels are respectively ex-
pressed as m1 and m2, {A1,A2, . . . ,Aq} and {B1,B2, . . . ,Bq}.
If ∑

i= j,Ai∩B j= /0
m1(Ai)m2(B j) < 1, while the fusion was finished

based on D-S, the equation of basic probability assignment is
expressed as

m(A) =




0 A = /0

(1− k)−1 ∑
Ai∩B j=A

m1(Ai)m2(B j) A �= /0 (2)

where m(A) is the basic probability assignment, k re-
flects the levels of conflict among varying evidence, k =

∑
Ai∩B j= /0

m1(Ai)m2(B j).

According to Eq. (2), the evidence combination rule of mul-
tiple belief functions is deduced as

m = (((m1 ⊕m2)⊕m3)⊕·· ·)⊕mn , (3)

where m1, m2, . . . , mn represent the basic probability assign-
ments of belief functions Bel1, Bel2, . . . , Beln in the same iden-
tification framework, 2θ , respectively.

During the process of multiple information fusion, the evi-
dence of various types of information may conflict with each
other owing to the diversity and uncertainty of the feature sam-
ples. In general, the greater the degree of evidence supported
by other types of evidence, the more credible the evidence will
be otherwise, a lower credibility is considered. If the credibil-
ity Crd(mi) of the evidence is regarded as a weight, the con-

dition
q

∑
i=1

Crd(mi) = 1 should be satisfied. Thus, conflicting

data can be processed based on the weight of all evidence ob-
tained. The D-S combination rules are then used for identifi-
cation and fusion, thereby modifying and optimizing the tradi-
tional Dempster-Shafer model.

Given βi = Crd(mi), i = 1,2, . . . ,q, the pre-treatment of the
conflicting evidence mi, (i = 1,2, . . . ,q) is expressed as

m′
i = βimi , i = 1,2, . . . ,q . (4)

The optimized combination rules are then revised as follows:



m(A) =
1

1− k′ ∑
Ai∩A j=A

m′
1(Ai)m′

2(A j), A �= /0

m( /0) = 0
(5)

where k′ = ∑
Ai∩A j= /0

m1(Ai)m2(A j).

3.2. Membership function optimization model. A multi-
information fusion model for hardness identification of rock
was established based on the probability distribution function.
However, the probability distribution function is merely an in-
ference for the reliability of the targets. Thus, the probability
distribution formula of a reliability function was constructed
based on the MFs [17]. There are several categories of MFs,
but trapezium and triangular MFs among them are most widely
used owing to their simplicity and convenience. Thus, in this
paper, trapezium and triangular MFs are used to establish an
MFs model of each cutting feature signals for identifying the
hardness of rock, which is shown in Fig. 8.

Fig. 8. MF model of hardness identification

A fuzzy entropy is capable to describe the fuzziness degree
of a fuzzy set. If a fuzziness of a fuzzy set is small, its fuzzy
entropy must be very small. Otherwise, a large fuzziness of a
fuzzy set always leads to a large fuzzy entropy [18]. Specifi-
cally, the fuzzy entropy of a definite set is zero, namely, without
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fuzziness. Conversely, [1/2] has a maximum fuzzy entropy, and
the fuzzy entropy decreases from [1/2] to the definite set [19].

Let µ(x) be a MF of a fuzzy set X , which is expressed as
X = {x1,x2, . . . ,xn}. The fuzzy entropy of X is shown as below

S(Q j) =




0 α = 0

− 1
n ln2

n

∑
i=1

[α lnα+(1−α) ln(1−α)] α ⊂ (0,1)

0 α = 1

,

(6)
where α = µ j(xi).

An ideal MF is capable to reflect the fuzziness of a fuzzy
set as well as the actual hardness of rock by the obtained evi-
dence, accurately. Therefore, ensuring that the MF can correctly
reflect the fuzziness, and then minimized the value of fuzzy en-
tropy to effectively reflect the true rock tunnelling conditions
[20]. According to the established MFs shown in Fig. 5, calcu-
lating the thresholds ϕi by Eq. (7) based on the minimum fuzzy
degree [21].

Smin (Q1,Q2, . . . ,Q5) =− 1
n ln2

n

∑
i=1

5

∑
j=1

{
µ j (xi) ln µ j (xi)

+ (1−µ j (xi)) ln(1−µ j (xi))
}
,

(7)

where n is the sample size of the fuzzy set, and xi denotes the
i-th sample.

According to the obtained samples of each feature signal
shown in Tables 3 to 6, the thresholds corresponding to dif-
ferent signals are used as independent variables, and then solve
the minimum value of the equation based on principle of mini-
mum fuzzy entropy. Meanwhile, the optimized thresholds cor-
responding to each signal are obtained.

When j = 1 or j = 5, a trapezium MF is used, and the formula
of µ(x) is

µ1(x) =




1 (x ≤ ϕ1)

ϕ2 − x
ϕ2 −ϕ1

(ϕ1 < x < ϕ2)

0 (else)

;

µ5(x) =




1 (ϕ5 ≤ x)
ϕ5 − x

ϕ5 −ϕ4
(ϕ4 < x < ϕ5)

0 (else)

.

Otherwise, when j = 2, 3, or 4, a triangular MF is used, and
the formula of µ(x) is

µ j(x) =




x−ϕ j−1

ϕ j −ϕ j−1
(ϕ j−1 < x < ϕ j)

ϕ j+1 − x
ϕ j+1 −ϕ j

(ϕ j < x < ϕ j+1)

0 (else)

.

The feature samples in Tables 3 and 4 possess definite fuzzi-
ness [22]. Thus, according to Eq. (7), a solver based on MAT-
LAB was adopted to calculate the values of thresholds ϕi and
optimize the MFs. Then, each optimized membership function
of each feature signal was obtained, as shown in Fig. 9.

(a)

(b)

(c)

(d)

Fig. 9. The optimized MFs: a) Vibration signal; b) Acoustic emission
signal; c) Temperature signal; d) Current signal

3.3. Basic probability assignments functions. According to
the given definition, m1, m2, m3, and m4 represent the basic
probability assignments of each feature signal, respectively.
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Thus, the formulas of the basic probability assignment func-
tions mi(Q j) of each fuzzy subset, and the non-determinacy
mi(Θ) given to the evidence bodies, are expressed as

mi(Q j) =
µi(Q j)

∑
j

µi(Q j)+1−κi ·ϑi ·δi
, (8)

mi(Θ) =
1−κi ·ϑi ·δi

∑
j

µi(Q j)+1−κi ·ϑi ·δi
, (9)

where κi is the difference value between the maximum and sec-
ond largest membership degrees of the i-th evidence, as shown
in Formula (10), which is capable to express the reliability of
the identification. ϑi, expressed in Formula (11), is the variance
of membership degree that the i-th evidence belongs to the rest
rock hardness except the maximum membership degree. which
reflects the reliability of the decision, and δi denotes the weight
of the i-th evidence. In addition, 1−κi ·ϑi ·δi denotes the total
uncertainty during the identification process.

κi = µi(Qm)−max
j �=m

{
µi(Q j)

}
, (10)

ϑi =

√√√√ 1
N −1

M

∑
j=1

(µi(Q j)−ξi)
2, (11)

where µi(Qm) denotes the maximum value of the fuzzy de-
gree, in which the i-th evidence belongs to the m-th proposition,
which is expressed as max

j

{
µi(Q j)

}
. In addition, ξi denotes the

mean value of the fuzzy degree with the exception of the maxi-

mum, which is expressed as
1

M−1

M

∑
j=0, j �=m

µi(Q j).

3.4. Basic decision rules of information fusion. To recog-
nize the hardness of rock accurately while tunnelling, the recog-
nition results of rock’s hardness should possess the maximal
reliability [23–25], as well as reducing the non-determinacy of
the recognition results to minimum. Thus, an AND decision
method, contains multiple rules, was proposed to ensure the ef-
fectiveness of decision results. The AND decision method con-
sist of three rules:

Rule 1: Bel (Am) = max
j

{
m(A j)

}
,

Rule 2: Bel (Am)−Bel (A j)> τ1,
Bel (Am)−mi(θ)> τ (τ > 0 and τ ∈ R),

Rule 3: mi(θ)< λ (λ > 0 and λ ∈ R).
Rule 1 requires the hardness identification results of rock

possess the maximal reliability. Rule 2 ensures that the dif-
ference value of reliability between the recognition result and
other propositions be greater than the threshold τ . According
to rule 3, the uncertainty of the identification result is limited
with λ . The thresholds τ and λ are mainly determined by ex-
perience or number of experiments. An effective recognition
result of hardness must satisfy three rules of AND decision si-
multaneously. Once one among three decision rules is not sat-

isfied, it indicates that the recognition system has no correct
result, namely, the hardness recognition results of rock cannot
be obtained.

4. Experiments

A mixed rock specimen consisting of five hardness grades was
poured to verify the recognition accuracy and reliability of the
hardness identification model for rock, as shown in Fig. 10. Fif-
teen sampling points were estimated in total and were equally
distributed among rocks with different hardness levels. Cutting
experiments were then carried out to test the multiple signals
and extract the feature data on the vibration, current, tempera-
ture, and acoustic emissions, as shown in Table 7. Finally, the
hardness of the rock samples was identified using the multi-
information fusion model based on the D-S theory and AND
decision method. According to the previous experimental re-
sults and experience, the threshold value of τand λ should be

Fig. 10. Mixed rock specimen and sampling points

Table 7
The feature signals of 15 sampling points

Sampling
point

Vibration
energy

Acoustic
emission

Temperature/◦C Current/A

1 130.6914 64.2952 31.92 1.4941

2 130.4216 63.5213 31.17 1.3114

3 130.1662 64.4443 31.97 1.4903

4 182.3487 86.5384 48.191 1.5045

5 183.8138 86.5749 48.31 1.4985

6 185.6588 79.4488 48.88 1.3483

7 124.3064 60.8397 30.28 1.3324

8 124.3064 60.6977 30.39 1.3324

9 123.7467 70.2102 25.56 1.4916

10 150.3770 63.4965 37.06 1.5895

11 136.6077 77.5363 35.99 1.5909

12 150.3494 64.0581 36.79 1.5946

13 157.8939 85.4157 41.19 1.3593

14 169.1415 85.4672 46.06 1.4987

15 168.6635 85.4232 46.10 1.5051
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Thus, the formulas of the basic probability assignment func-
tions mi(Q j) of each fuzzy subset, and the non-determinacy
mi(Θ) given to the evidence bodies, are expressed as

mi(Q j) =
µi(Q j)

∑
j

µi(Q j)+1−κi ·ϑi ·δi
, (8)

mi(Θ) =
1−κi ·ϑi ·δi

∑
j

µi(Q j)+1−κi ·ϑi ·δi
, (9)

where κi is the difference value between the maximum and sec-
ond largest membership degrees of the i-th evidence, as shown
in Formula (10), which is capable to express the reliability of
the identification. ϑi, expressed in Formula (11), is the variance
of membership degree that the i-th evidence belongs to the rest
rock hardness except the maximum membership degree. which
reflects the reliability of the decision, and δi denotes the weight
of the i-th evidence. In addition, 1−κi ·ϑi ·δi denotes the total
uncertainty during the identification process.

κi = µi(Qm)−max
j �=m

{
µi(Q j)

}
, (10)

ϑi =

√√√√ 1
N −1

M

∑
j=1

(µi(Q j)−ξi)
2, (11)

where µi(Qm) denotes the maximum value of the fuzzy de-
gree, in which the i-th evidence belongs to the m-th proposition,
which is expressed as max

j

{
µi(Q j)

}
. In addition, ξi denotes the

mean value of the fuzzy degree with the exception of the maxi-

mum, which is expressed as
1

M−1

M

∑
j=0, j �=m

µi(Q j).

3.4. Basic decision rules of information fusion. To recog-
nize the hardness of rock accurately while tunnelling, the recog-
nition results of rock’s hardness should possess the maximal
reliability [23–25], as well as reducing the non-determinacy of
the recognition results to minimum. Thus, an AND decision
method, contains multiple rules, was proposed to ensure the ef-
fectiveness of decision results. The AND decision method con-
sist of three rules:

Rule 1: Bel (Am) = max
j

{
m(A j)

}
,

Rule 2: Bel (Am)−Bel (A j)> τ1,
Bel (Am)−mi(θ)> τ (τ > 0 and τ ∈ R),

Rule 3: mi(θ)< λ (λ > 0 and λ ∈ R).
Rule 1 requires the hardness identification results of rock

possess the maximal reliability. Rule 2 ensures that the dif-
ference value of reliability between the recognition result and
other propositions be greater than the threshold τ . According
to rule 3, the uncertainty of the identification result is limited
with λ . The thresholds τ and λ are mainly determined by ex-
perience or number of experiments. An effective recognition
result of hardness must satisfy three rules of AND decision si-
multaneously. Once one among three decision rules is not sat-

isfied, it indicates that the recognition system has no correct
result, namely, the hardness recognition results of rock cannot
be obtained.

4. Experiments

A mixed rock specimen consisting of five hardness grades was
poured to verify the recognition accuracy and reliability of the
hardness identification model for rock, as shown in Fig. 10. Fif-
teen sampling points were estimated in total and were equally
distributed among rocks with different hardness levels. Cutting
experiments were then carried out to test the multiple signals
and extract the feature data on the vibration, current, tempera-
ture, and acoustic emissions, as shown in Table 7. Finally, the
hardness of the rock samples was identified using the multi-
information fusion model based on the D-S theory and AND
decision method. According to the previous experimental re-
sults and experience, the threshold value of τand λ should be

Fig. 10. Mixed rock specimen and sampling points

Table 7
The feature signals of 15 sampling points

Sampling
point

Vibration
energy

Acoustic
emission

Temperature/◦C Current/A

1 130.6914 64.2952 31.92 1.4941

2 130.4216 63.5213 31.17 1.3114

3 130.1662 64.4443 31.97 1.4903

4 182.3487 86.5384 48.191 1.5045

5 183.8138 86.5749 48.31 1.4985

6 185.6588 79.4488 48.88 1.3483

7 124.3064 60.8397 30.28 1.3324

8 124.3064 60.6977 30.39 1.3324

9 123.7467 70.2102 25.56 1.4916

10 150.3770 63.4965 37.06 1.5895

11 136.6077 77.5363 35.99 1.5909

12 150.3494 64.0581 36.79 1.5946

13 157.8939 85.4157 41.19 1.3593
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Table 8
Identification results of hardness based on three information fusions without temperature

Actual
hardness

grade
m j(Q1) m j(Q2) m j(Q3) m j(Q4) m j(Q5) m j(θ)

Identification
result

G2 0.1412 0.7377 0.0421 0.0373 0 0.0417 G2

G2 0.0942 0.8505 0.0283 0 0 0.0270 G2

G2 0.1668 0.6781 0.0583 0.0465 0 0.0502 G2

G5 0 0 0.0225 0.2269 0.7265 0.0241 —
G5 0 0 0.0176 0.1656 0.7971 0.0196 G5

G5 0 0.0293 0.0870 0.1206 0.7302 0.0327 G5

G1 0.8173 0.1542 0.0138 0 0 0.0147 G1

G1 0.8371 0.1378 0.0122 0 0 0.0129 G1

G1 0.6272 0.1563 0.1316 0.0405 0 0.0442 —
G3 0.0379 0.0461 0.6221 0.2138 0.0391 0.0411 —
G3 0 0 0.7064 0.2430 0.0244 0.0261 —
G3 0.0358 0.0604 0.6961 0.1384 0.0329 0.0364 G3

G4 0 0.0280 0.0371 0.7952 0.1098 0.0299 G4

G4 0 0 0.0224 0.8663 0.0863 0.0250 G4

G4 0 0 0.0171 0.8994 0.0652 0.0183 G4

Table 9
Identification results of hardness based on four information fusions

Actual
hardness

grade
m j(Q1) m j(Q2) m j(Q3) m j(Q4) m j(Q5) m j(θ)

Identification
result

G2 0.1127 0.8460 0.0143 0.0127 0 0.0142 G2

G2 0.0994 0.8737 0.0137 0 0 0.0131 G2

G2 0.1339 0.8134 0.0198 0.0158 0 0.0170 G2

G5 0 0 0.0085 0.1816 0.8008 0.0091 G5

G5 0 0 0.0062 0.1253 0.8615 0.0070 G5

G5 0 0.0083 0.0247 0.0821 0.8756 0.0093 G5

G1 0.8623 0.1264 0.0055 0 0 0.0058 G1

G1 0.8716 0.1179 0.0051 0 0 0.0054 G1

G1 0.8368 0.1043 0.0358 0.0110 0 0.0120 G1

G3 0.0136 0.0498 0.8307 0.0768 0.0140 0.0147 G3

G3 0 0.0146 0.8107 0.1446 0.0145 0.0155 G3

G3 0.0145 0.0638 0.8378 0.0559 0.0132 0.0147 G3

G4 0 0.0133 0.0476 0.8726 0.0522 0.0142 G4

G4 0 0 0.0087 0.9061 0.0756 0.0096 G4

G4 0 0 0.0067 0.9290 0.0572 0.0071 G4

set to 0.5 and 0.05 to obtain the highest accuracy of recogni-
tion. The identified grades of hardness are listed in Tables 8
and 9.

Table 8 shows the identification results of hardness based on
three information fusions without temperature. Obviously, four
groups cannot obtain the right identification result according to
the settled threshold value of τ and λ . As shown in Table 9, the
identification results of the settled sampling points are consis-

tent with the actual hardness of rock. The minimum value of re-
liability that represents the recognition result is 0.8008, which is
larger than that of other propositions, and the difference value of
reliability between the recognition result and other propositions
be greater than 0.5. Moreover, the uncertainty of each identifi-
cation result is smaller than 0.05. Thus, the proposed hardness
identification model of rock has a high identification accuracy
and a good reliability.
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5. Conclusions

According to the hardness identification results of rock by ex-
periment, the proposed identification model has been proved to
possess several advantages, which can be summarized as fol-
lows:
• Multiple signals, consisting of vibration, acoustic emis-

sions, temperature, and current, were tested and extracted to
obtain the feature samples of the information fusion model.

• According to the obtained feature sample database of multi-
ple signals, the MFs were optimized based on the minimum
fuzzy entropy.

• A basic probability assignment and decision rules were es-
tablished to modify and optimize the traditional D-S model,
and an optimization algorithm, which contains a combina-
tion of conflicting evidence, was used to improve the accu-
racy of identification.

• The fifteen identification results are consistent with the ac-
tual hardness of rock, which proves that the identification
model has higher recognition accuracy and reliability.
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5. Conclusions

According to the hardness identification results of rock by ex-
periment, the proposed identification model has been proved to
possess several advantages, which can be summarized as fol-
lows:
• Multiple signals, consisting of vibration, acoustic emis-

sions, temperature, and current, were tested and extracted to
obtain the feature samples of the information fusion model.

• According to the obtained feature sample database of multi-
ple signals, the MFs were optimized based on the minimum
fuzzy entropy.

• A basic probability assignment and decision rules were es-
tablished to modify and optimize the traditional D-S model,
and an optimization algorithm, which contains a combina-
tion of conflicting evidence, was used to improve the accu-
racy of identification.

• The fifteen identification results are consistent with the ac-
tual hardness of rock, which proves that the identification
model has higher recognition accuracy and reliability.
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