
1263Bull. Pol. Ac.: Tech. 68(6) 2020

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 68, No. 6, 2020
DOI: 10.24425/bpasts.2020.135386

Abstract. The aim of the paper is to present the implementation of a PLC designed in the form of a System-on-a-Chip. The presented PLC is
compatible with the IEC61131‒3 standard. More precisely, the Instruction List language is the native language of the designed CPU, so there
is no need for multiple language transformations. In the proposed solution each instruction of the CPU program written in Instruction List is
directly translated to machine code. The designed CPU is capable of performing logic operations up to 32-bit Boolean data types. However, the
developed CPU is very flexible due to its architecture: data memory can be addressed as bit/byte/word/dword. Moreover, diverse blocks such
as timers, counters, and hardware acceleration blocks, can be connected to the CPU by means of an APB AMBA bus. The designed PLC has
been implemented in an FPGA device and can be used in cyber-physical systems and Industry 4.0.

Key words: PLC, FPGA, AMBA, APB, IEC 61131-3.

PLC implementation in the form of a System-on-a-Chip

P. MAZUR1, R. CZERWINSKI2*, and M. CHMIEL2

1 DisplayLink, ul. Ligocka 103, 40-568 Katowice, Poland
2 Silesian University of Technology, Department of Digital Systems, ul. Akademicka 16, 44-100 Gliwice, Poland

development is moving toward multiprocessor based design. It
is suggested that multiprocessor SoCs will become the predom-
inant class of embedded systems in future [6]. Multiprocessor
designs are also used in the field of industrial control [7]. It
turns out that the hardware approach can be combined with
processor/multiprocessor-based approach and build classical
SoC dedicated to industrial control [8‒10].

The basic parameters of industrial controllers are: pro-
cessing time of one thousand instructions (Scan Time), access
time to internal and external resources, and transition time,
which are closely related [1, 11]. When developing the opti-
mal design of central units designed for operation in control
systems using PLC controllers, all these parameters should
be taken into account. Proposed solutions should execute the
control program as soon as possible, which can be achieved
by reducing the time of execution of individual instructions,
minimizing the time of access to object signals, and optimizing
the response time to changes in the state of process variables.
This is of particular importance if there is a need for rapid
response to emergency situations, as well as when part of the
control system requires a very short response time to input
changes [12].

The way programmable controllers work is defined by the
IEC61131 standard. The third part of the standard describes
the syntax and semantics of programming languages for PLCs
[13, 14]. Some manufacturers offer controllers that can be pro-
grammed using languages compliant with IEC61131‒3 [15‒18].
It seems that very often the hardware structure of the PLC
controller does not comply with the software standard. Manu-
facturers use ,,translators”—programs written in the standard
language are converted into their own language, and then com-
piled [14]. This approach often means that the use of a PLC
is not optimal. In fact, the programmable controller resources
are not compatible with the standard. The best solutions can
be achieved when the IEC61131-3-based Instruction List (IL)
language is the native CPU language [17, 19].

1. Introduction

A Programmable Logic Controller (PLC) is an industrial digital
computer, adapted for the control of manufacturing processes,
such as robotic devices or assembly lines. The main advantage
of PLCs over the classical methods of implementing control
systems is the possibility to change the operating algorithm
without the need to reconstruct the entire control system [1].

Growing requirements caused by the implementation of
cyber-physical systems and Industry 4.0 expose shortcomings in
classical PLCs for different tasks such as classical functionality
(control systems), data acquisition and processing, and com-
munication. That is the reason for building PLC-based systems
where the CPU is one of many modules besides communication
modules, etc. However, Modern PLCs can be built in a Sys-
tem-on-a-Chip (SoC) form—for example to increase safety
[2]. Moreover, programmable SoCs can be implemented using
Field-Programmable Gate Array (FPGA) technology. There
is no need to use external modules for different functionality
in such a system. This saves time (for operation) and money,
because of deep integration of functionalities.

The PLC performance does not always satisfy the recent
requirements in large and highly responsive systems. A con-
trol program can be directly implemented in the FPGA with
hard-wired logic for higher response and reduced implemen-
tation cost/space. In this case PLC instructions are converted
into hardware description language (VHDL/Verilog) code, and
then synthesized and implemented as logic circuit with various
peripheral functions [3‒5]. The problem is that such a solution
requires synthesis and the structure is not universal. Completely
another solution offers modern Systems-on-Chip, where the

*e-mail: rczerwinski@polsl.pl

Manuscript submitted 2020-03-31, revised 2020-07-17, initially accepted
for publication 2020-10-08, published in December 2020

ELECTRONICS, TELECOMMUNICATION
AND OPTOELECTRONICS

1264

P. Mazur, R. Czerwinski, and M. Chmiel

Bull. Pol. Ac.: Tech. 68(6) 2020

Each microprocessor has its own assembly language, so
PLCs՚ central processing units are built on the basis of such
microprocessors. Therefore, when general purpose micro-
processors are used, we deal with the situation of a multi-level
translation of a program written in one of the IEC standard
programming languages, in order to finally get the machine
code (Fig. 1). In general, the IEC instructions are substituted
with a set of microprocessor-based instructions (functions, pro-
cedures or macros). In the presented compilation flow the IL
program is directly translated into machine code, as it is high-
lighted in Fig. 1. When dedicated microprocessor is used, the
IEC-based IL language can be directly translated into machine
code that saves execution time [9, 10]. Moreover, such a micro-
processor can effectively use its resources to perform instruc-
tions. The example of data memory construction is presented
in the paper. Data processing for bit/byte/word/double word data
can be processed in atomic way without masking and other data
long time preprocessing. Simple example is presented in Fig. 2,
where three simple operations LD/AND/ST (Fig. 2a) must be
translated into three macros (Fig. 2b) in order to execute them
by means of CPU.

in Section 6 there are experimental results. Paper closes with
conclusions.

2. PLC general architecture

In general, the Central Processing Unit (CPU) is responsible
for executing programs. However, the CPU must also be pre-
pared to establish communication between particular blocks. If
engaged devices remain in close proximity (on the same chip)
and there is a tight requirement in terms of operating speed, par-
allel buses are used. For cabled communication, a serial bus is
the only reliable option (ProfiBus, MODBUS, ProfiNet, USB,
SPI). The structure of a designed PLC is depicted in Fig. 3. It
utilizes both serial communication in the form of an SPI inter-
face utilized only for CPU programming, and a parallel one
in the form of an AMBA APB interface used for connecting
peripheral blocks to the CPU.

The major advantage of the presented structure is its modu-
larity. Given that the APB interface gives the ability for multi-
slave operation [20], a handful of peripheral devices can be
utilized, extending the capabilities of the PLC according to
specific needs.

A simplified block diagram of the designed CPU is depicted
in Fig. 4. It consists of two communication interfaces:
● SPI-Slave interface for CPU programming,
● the APB-Master interface for connecting specialized periph-

eral blocks like external memory, calculating units, counters,
timers, other function blocks.

Fig. 1. Program translations flow

IEC 61131-3 IL control program

Compilation to
machine code of

dedicated
microprocessor unit

Translation IL program to some programming language
(e.g. C, Pascal, Assembler)

Converting the IL program
using calling of the new
defined functions

Realizing the program code

Fig. 2. Example of simple program and its translation to general
purpose microprocessor

a) b)

Load A into ACCU_A; A -> ACCU_A
Mask bit(nr_A) in ACCU_A;
0000A000 AND ACCU_A -> ACCU_A
Shift right ACCU_A to the right;
0000000A -> ACCU_A
Store ACCU_A into the ACCU_B;
ACCU_A -> ACCU_B

Load B into ACCU_A; B -> ACCU_A
Mask bit(nr_B) in ACCU_A;
00B00000 AND ACCU_A -> ACCU_A
Shift right ACCU_A to the right;
0000000B -> ACCU_A
ACCU_A AND ACCU_B -> ACCU_A;
ACCU_A AND ACCU_B -> ACCU_A (C)

Shift left ACCU_A to the nr_C;
000C0000 -> ACCU_A
Store ACCU_A into the ACCU_B;
ACCU_A -> ACCU_B
Load C into ACCU_A;
C -> ACCU_A
ACCU_A OR ACCU_B -> ACCU_A;
ACCU_A OR ACCU_B -> ACCU_A
ACCU_A -> C;
ACCU_A -> C

LD A (bit)

AND B (bit)

ST C (bit)

Increased requirements in relation to cyber-physical sys-
tems, and further Industry 4.0, require new concepts of PLCs.
Our aim is to present the implementation of a PLC designed in
the form of a System-on-a-Chip. The main contribution is the
design of the PLC structure with atomic operations for different
data widths and a structure that enables implementing dedicated
blocks such as communication interfaces (here: counters and
timers). It is important that the designed PLC is compatible with
the IEC61131-3 standard [13].

The PLC general architecture is presented in Section 2.
The CPU construction is described in details in Section 3. The
most important part ,,Data Memory module” is presented in
Subsection 3.3. AMBA APB interface is shown in Section 4,
while the example application is described in Section 5. Next,

Converting the IL program
using new defined

functions into linear
program description

Compilation of the new program
to machine code of the standard (micro)

processor unit

1265

PLC implementation in the form of a System-on-a-Chip

Bull. Pol. Ac.: Tech. 68(6) 2020

The most important part of the designed CPU is the sequential,
Finite State Machine (FSM)-based Control Unit that controls
both program execution and data flow between the CPU and
peripheral devices connected to the APB bus. The designed
CPU follows the principles of the Harvard, single argument,
microprocessor architecture with Program and Data Memories
separated and single Accumulator register.

3. CPU construction

The fundamental operation of any CPU, regardless of the phys-
ical form they take, is to fetch and decode both the instruc-
tion code and the operand from Program Memory and prepare
the Program Counter for the next instruction. In the designed
CPU, this process is controlled by a sequential module called
the Control Unit. Its principle of operation is to decode the
instruction code fetched from the Program Memory and gener-
ate appropriate control signals for other modules. The Control
Unit consists of two Mealy Finite State Machines: the first for
instruction cycle control and the second for APB-bus control.
The operation of the Control Unit varies depending on the type
of the instruction that is preceded. Moreover, specific instruc-
tions utilize different modules of the CPU. The Control Unit
operations will be discussed in this section, together with other
details of the CPU construction.

The Program Memory module consists of four blocks: Pro-
gramming Controller, Program Memory, Program Counter and

Instruction Register. The instruction fetching process is per-
formed by the Program Counter and Program Memory and is
controlled by the Control Unit. The Program Counter addresses
the Program Memory thus controlling the flow of program exe-
cution. During normal operation, program execution is linear
and the Program Memory output register is updated with the
contents from consecutive addresses. There might however be
some exceptions from that flow in the form of instructions
that can modify the Program Counter content directly (jump
instructions).

3.1. Logic Unit module. The Logic Unit is an integration
module that provides the data path between Program Memory,
Data Memory and Accumulator register (named CR—Current
Result). First of all it consists of two multiplexers: one generates
input data for the Accumulator register, and the other generates
input data for the Data Memory. Its principle of operation is very
straightforward. Based on the instruction code (instr_ code[7:0])
the appropriate input signal is selected, and taken as the output
to the Accumulator register (lu_out_acc[31:0], Fig. 5) or the
Data Memory (lu_out_dm[31:0], Fig. 6). The unit is of 32-bit
width. PLCs are mostly 32 units because it is enough for most
problems in industrial control.

Fig. 3. Structure of the proposed programmable logic controller

CPU

Counters Timers

I/Os ...

PROG APBSPI

Fig. 4. Structure of the Central Processing Unit

Accumulator

SPI

Slave

Interface

APB

Master

Interface
Data

Memory

Unit

Logic Unit

Control

Unit

Program

Memory

Module

SPI
Slave

Interface

Program
Memory
Module

Accumulator

Data
Memory

Unit

Control
Unit

APB
Master

Interface

Logic Unit

Fig. 5. Basic operations for accumulator input

MUX

LD

LDN

LDI

AND

ANDN

ANDI

OR

ORN

ORI

XOR

XORN

XORI

F_TRIG

R_TRIG

NOT

EQU

dm_out [31:0]

in
s
tr

_
c
o
d
e

[7
:0

]

lu_out_acc [31:0]

pm_out [31:0]

acc_out [31:0]

=

1266

P. Mazur, R. Czerwinski, and M. Chmiel

Bull. Pol. Ac.: Tech. 68(6) 2020

Basic operations defined in the IEC 61131‒3 standard are
implemented by means of logic functions connected to the
Accumulator by means of a multiplexer (Fig. 5). It generates
input data for the Accumulator register and can be treated as
load-type. The load-type instructions include: LD/LDN/LDI,
AND/ANDN/ANDI, OR/ORN/ORI, XOR/XORN/XORI, NOT,
EQU and F_TRIG/R_TRIG.

the Program Memory output register is updated with the instruc-
tion code and operand from the consecutive Program Memory
address (pm_en ! pm_out). The Control unit is designed to
access synchronous (Sync) SRAM memories. That is the reason
for one clock cycle delay in memory access.

Load-type instructions with immediate operands heavily
affect the Program Memory architecture. In general there are
two conceptions of operand-placing in the Program Memory
that are common in modern microprocessors: both instruction
code and corresponding operand may have the same, or consec-
utive addresses. These solutions differ in the number of memory
access cycles needed to be performed during a single instruction
cycle. In the designed CPU, both solutions are utilized. In the
cases of instructions where the operand is in the form of a Data
Memory address, both instruction code and corresponding
operand have the same address (Fig. 8). In the cases of imme-
diate addressing, both the instruction code and corresponding
operand are separated (Fig. 8). This approach has been taken
to reduce the design՚s area utilization, while maintaining high
speed of execution of the most common instructions and has
led to the organization of the Program Memory.

Fig. 6. Basic operations for Data Memory input

MUX

ST

STN

R

S

F_TRIG

R_TRIG

acc_out [31:0]

32'h0000_0000

32'hFFFF_FFFF

in
s
tr

_
c
o

d
e

[7
:0

]

lu_out_dm [31:0]

The Data Memory MUX (Fig. 6) provides the signal to be
written at the appropriate memory address. It realizes store-type
operations, that are: ST/STN, R, S, and F_TRIG/R_TRIG. The
F_TRIG/R_TRIG operations must ensure write operations into
the Data Memory because the edge is calculated by means of
memory marker (previous state), so must store the operation
into memory. Instructions S and R provide setting and resetting
operations. The condition from the Accumulator is taken into
account.

In fact, F_TRIG/R_TRIG functions are of load-store type,
so they are represented in Fig. 5 as well as in Fig. 6.

The control unit forms write signals into appropriate mod-
ules. This signal is of course dependent on the realized instruc-
tion.

3.2. Instruction execution. The principle of operation for every
presented instruction is identical, with the exception of instruc-
tions with immediate operands (՚I՚ modifier) which behave dif-
ferently due to the change in source of the data latched into the
Accumulator register or Data Memory.

As presented in Fig. 7, a LD (load-type) instruction takes
two clock cycles to execute (called phases). During the first
phase, the Program Counter is incremented (pc_en ! pc_out)
and the Data Memory output register is updated with the
operand—appropriate memory cell addressed by the Program
Memory (dm_en ! dm_out). During the second phase, the
data generated by the Logic Unit module is registered in the
Accumulator register (acc_en ! acc_out). At the same time,

Fig. 7. LD (load type) instruction timing diagram

LD

1st pfase

LD

2nd pfase

cpu_clk

pc_en

dm_en

acc_en

pm_en

pc_out N N+1

dm_out X DATA

acc_out X DATA

pm_out PM (N)
PM

(N+1)

1267

PLC implementation in the form of a System-on-a-Chip

Bull. Pol. Ac.: Tech. 68(6) 2020

The CPU՚s operation during the execution of an LDI
(load-immediate-type) instruction is presented in the form of
a timing diagram in Fig. 9. In addition to load-type instructions,
the LDI instruction utilizes an Instruction Register. The Instruc-
tion Register is a part of the Program Memory module and its
purpose is to hold the instruction code for the last three phases of
an LDI instruction՚s execution (as the Program Memory output
register is updated with the program constant instead).

(acc_en ! acc_out). At the same time, the Program Counter
is incremented once again (pc_en ! pc_out). During the final,
fourth phase, the Program Memory output register is updated
with the instruction code and operand from the consecutive
Program Memory address (pm_en ! pm_out).

There are several instructions that perform data store into
the Data Memory (store-type instructions). They take two clock
cycles to execute and their process is analogous to load-type
instructions.

As long as load and logic operations are obvious in the Accu-
mulator-source-multiplexer (Fig. 5), then the F_TRIG/R_ TRIG
functions are a significant change compared to classical
PLCs. In classical PLCs edge detectors are realized as func-
tion blocks, that is in the form of a program. This consumes
time for calculating the function block result, because a trig-
ger function requires at least two instructions and a shadow
register for Accumulator (CR՚), as presented in List. 1 and
List. 2. The structure presented in Fig. 5 enables calculation of
F_TRIG/R_ TRIG within one instruction cycle. Edge detectors
are considered in detail in [9].

Listing 1. Trigger function with additional Current Result (CR՚)
memory bit: version 1
LD IN ;IN->CR, CR

,

R_TRIG MEM ;(CR AND MEM) -> CR

 ;not CR
,
 -> MEM

ST Q ;CR -> Q

Listing 2. Trigger function with additional Current Result (CR՚)
memory bit: version 2
LD IN ;IN->CR

R_TRIG MEM ;CR->CR
,

 ;(CR AND MEM) -> CR

 ;not CR
,
 -> MEM

ST Q ;CR -> Q

F_TRIG/R_TRIG instructions consist of both data load into
the Accumulator register and data store into the Data Memory.
As presented in Fig. 10, a R_TRIG instruction takes three clock
cycles to execute. During the first phase, the Program Counter
is incremented (pc_en ! pc_out) and the Data Memory output
register is updated with the operand (appropriate memory cell
addressed by the Program Memory; dm_en ! dm_out). During
the second phase, separate data generated by the Logic Unit
module is registered in the Accumulator register and the Data
Memory (acc_en ! acc_out, dm_en ! dm_out and dm_wr).
During the third phase, the Program Memory output register is
updated with the instruction code and operand from the consec-
utive Program Memory address (pm_en ! pm_out).

There are three jump instructions implemented in the CPU:
JMP, JMPC and JMPCN. Both JMPC and JMPCN are condi-
tional—based on actual state of the Accumulator register— jump
instructions. A jump instruction takes two clock cycles to exe-
cute: during the first phase the Program Counter is loaded with
the operand, while during the second phase the Program Mem-
ory output register is updated with the instruction code and
operand from the previously loaded Program Memory address.

Fig. 8. Program Memory organization

Program

Memory

Address

Program Memory Content

Bits [31:24] Bits [23:0]

0

1

2

3

<instruction code>

<instruction code>

<instruction code>

<operand – DM address>

<operand – DM address>

<empty>

<operand – program constant>

Fig. 9. LDI instruction transaction

LDI

3rd pfase

LDI

4th pfase

cpu_clk

pc_en

ir_en

acc_en

pm_en

pc_out N N+1

acc_out X PM (N+1)

pm_out PM (N)

ir_out X PM (N)

LDI

1st pfase

LDI

2nd pfase

N+2

PM (N+1)
PM

(N+2)

LDI
1st pfase

LDI
2nd pfase

LDI
3rd pfase

LDI
4th pfase

As presented in Fig. 9, an LDI (load-immediate-type)
instruction has four phases of execution. During the first
the Program Counter is incremented (pc_en ! pc_out) and
the instruction code is registered in the Instruction Regis-
ter (ir_ en ! ir_out). Then, during the next phase, the Pro-
gram Memory output register is updated with the program
constant (from the consecutive Program Memory address;
pm_en ! pm_ out). During the third phase, data generated
by the Logic Unit is registered in the Accumulator register

1268

P. Mazur, R. Czerwinski, and M. Chmiel

Bull. Pol. Ac.: Tech. 68(6) 2020

3.3. Data Memory module. The Data Memory module is
a memory block responsible for holding program variables.
Although the designed CPU is of 32-bit architecture, the Data
Memory has been designed to enable 1-bit, 8-bit (byte) and
16-bit (word) access as well, without the need for software
masking. So the particular bit/byte/word can be read/written in
one clock cycle. The output part of the Data Memory module
is depicted in Fig. 11.

As presented in Fig. 11, the Data Memory module consists
of multiplexers and the Data Memory itself. This structure is
similar to modern memories, where data can be written by
means of bytes. However, in the designed memory data can be
written and read by means of bytes as well as words. Moreover,
the memory block consists of four identical dual-port memo-
ries—a single instance of the dual-port memory used in the
design is depicted in Fig. 12.

As presented in Fig. 12, dual-port memory utilized in the
design has two ports, one is 1-bit and the other is 8-bit wide.
Due to utilization of four instances of presented dual-port mem-
ory in the Data Memory block, an 8-bit, 16-bit or 32-bit access
can be performed by simultaneously enabling one, two or four
instances of dual-port memories respectively.

While the control over read and write accesses is carried out
by the Control Unit module (by generating dm_en and dm_wr
signals), the selection of appropriate dual-port memories is

performed by multiplexers (see Fig. 13). The coding of Data
Memory access types is presented in Table 1.

Fig. 10. R_TRIG instruction, timing diagram

R_TRIG

3rd pfase

cpu_clk

pc_en

dm_en

dm_wr

acc_en

pc_out N N+1

acc_out DATA 2 DATA 3

pm_out PM (N)

dm_out X DATA 1

R_TRIG

1st pfase

R_TRIG

2nd pfase

PM

(N+1)

pm_en

DATA 2

Fig. 11. Data Memory block diagram: output part

1

8

M

U

XRAM 1

1

8

RAM 2

1

8

RAM 3

1

8

RAM 4

M

U

X

M

U

X

M

U

X

1

8

16

B7 B6

B4 B3

B4

B9 B8

31

1

24

8

16

16

32

0

0

0

8

8

8

8

Fig. 12. Dual-port memory

RAM

DI_BIT

ADDR_BIT

EN_BIT

WR_BIT

DI_BYTE

ADDR_BYTE

EN_BYTE

WR_BYTE

DO_BIT

DO_BYTE

MEMx

memx_byte_out [7:0]

memx_bit_outmemx_bit_in

memx_bit_addr [DM_ADDR_W-3:0]

memx_bit_en

memx_bit_wr

memx_byte_in

memx_byte_addr [DM_ADDR_W-6:0]

memx_byte_en

memx_byte_wr

cpu_clk

1269

PLC implementation in the form of a System-on-a-Chip

Bull. Pol. Ac.: Tech. 68(6) 2020

Table 1
Data Memory access types

Data Memory access type Binary Code

BIT 00

BYTE 01

WORD 10

DWORD 11

An example of the Data Memory address frame for a con-
figuration with the Data Memory address being 8-bit wide is
presented in Fig. 14. As presented, the Data Memory is very
straightforward. For example, to access the specific bit of
a given byte in the Data Memory, bits B7–B3 of a BIT address
shall mirror the given BYTE address and by appropriate (binary
coded) setting of bits B2–B0 each BIT of a given byte can be
accessed separately. This rule applies to every access type. Two
MSBs denote the access type (bit/byte/word/dword). The exam-
ple is shown.

Fig. 13. Data Memory block diagram: input part

8

A

RAM 1

RAM 2

RAM 3

RAM 4

8

B

C

8

8

8

B9

0

1

0

1

0

1

2

IN

A

WE

IN

A

WE

IN

A

WE

IN

A

WE

IN

A

WE

IN

A

WE

IN

A

WE

IN

A

WE

B [5:0]

8

8

8

8

8

IN
[3

1
:2

4
]

IN
[2

3
:1

6
]

IN [15:8]

IN
[7

:0
]

IN
[0

]

B [7:5]

WE

B7

B6

B8
B9

WE

B7

B6

B8
B9

WE

B7

B6

B8
B9

WE

B7

B6

B8
B9

WE_RAM1 = WE*

[(/B9*B8*/B4*/B3)+

(B9*/B8*/B4)+

(B9*B8)]

WE_RAM2 = WE*

[(/B9*B8*/B4*B3)+

(B9*/B8*/B4)+

(B9*B8)]

WE_RAM3 = WE*

[(/B9*B8*B4*/B3)+

(B9*/B8*B4)+

(B9*B8)]

WE_RAM4 = WE*

[(/B9*B8*B4*B3)+

(B9*/B8*B4)+

(B9*B8)]

B9*/B8*B7+B9*B8

B9*B8

B9*/B8*B7

Fig. 14. Data Memory address frame

0x1B0

Access Type

B0

0

0

1

1

BIT address0

0

1

1

Address

B1B2B3B4B5B6B7B8B9

BYTE address ---

WORD address ----

-----DWORD address

DWORD

Address

0

0

0

0

0

1

0

1

Example

B6B7

0

0

1

1

B5

1 0 0

1

1

1

0 1

1 0

1 1

0x240

0x3C0

0x012

0x1B0

Access Type

B0

0

0

1

1

BIT address0

0

1

1

Address

B1B2B3B4B5B6B7B8B9

BYTE address ---

WORD address ----

-----DWORD address

DWORD

Address

0

0

0

0

0

1

0

1

Example

B6B7

0

0

1

1

B5

1 0 0

1

1

1

0 1

1 0

1 1

0x240

0x3C0

0x012

1270

P. Mazur, R. Czerwinski, and M. Chmiel

Bull. Pol. Ac.: Tech. 68(6) 2020

Fig. 15. AMBA 3 APB Multi-Slave operation mode

APB

Master

APB

Slave

APB

Slave

M

U

X

M

U

X

psel1

psel0

pcd

paddr[15:0]

prdata[31:0]

prdata1[31:0]

prdata0[31:0]

4. AMBA APB Master interface

The designed CPU has been equipped with an AMBA 3 APB
Master interface as primary bus to communicate with peripheral
devices. This is a new idea in constructing PLCs and gives the
significant advantage that modules, including function blocks,
can be connected to the CPU in a very flexible way. For exam-
ple function blocks like timers, counters or bistable functions
may be used by means of the APB bus. Moreover, it is not
necessary to design standard function blocks. The most interest-
ing are custom (application specific) blocks. A constructor can
design for example a hardware module that supports some sig-
nal processing, artificial neural networks [21], dedicated time
interval measurement module [22], a module for data interface
or other dedicated module [4].

The APB Master Interface implemented in the CPU fully
supports the AMBA 3 APB standard and does not utilize the
optional PSLVERR pin [20]. The AMBA 3 APB standard allows
for Multi-Master operation. If there are two or more APB-Slave
devices connected to the bus, there is a need of an additional
decoding module that would generate separate PSELx signals
for each APB-Slave device. The exemplary system that consists
of one APB-Master and two APB-Slave devices is presented
in Fig. 15.

The APB transfer is initiated if one of two APB-related
instructions have been decoded: APB_WR or APB_RD. These
instructions are extensions to those compatible with the IEC
61131-3 standard. Thanks to simple instructions APB_WR or
APB_RD a programmer can exchange data between modules
connected to the APB bus and CPU. Such a program can be
included as part of the operating system of the designed PLC.
This makes this PLC very flexible.

Control over the APB Write or APB Read transaction is
then taken by the APB FSM located in the Control Unit. After
a successful transaction, the APB FSM relinquishes the con-
trol, and the CPU returns to normal operation. This process
is presented by the examples of both APB_WR and APB_RD
instructions depicted in Fig. 16 and 17 respectively. In both Fig. 16. APB_WR instruction timing diagram

cpu_clk

pc_en

apb_en

pm_en

pwrite

paddr

pwdata

APB_WR

1st phase

APB_WR

2nd phase

penable

APB

IDLE

pclk

APB

IDLE

APB

SETUP

APB

ACCESS

pready

psel

1271

PLC implementation in the form of a System-on-a-Chip

Bull. Pol. Ac.: Tech. 68(6) 2020

cases APB transfer is presented as without wait states. If there
are wait states forced by the APB-Slave, the only difference is
the length of the APB_ACCESS phase.

5. Timer module

A timer module will be used as the example of a hardware mod-
ule used as the peripheral unit connected via APB interface. In
a classical PLC timers are designed as software modules. This
means that a timer is a fragment of program that operates on
the memory structure. In the proposed design timers can be
built as hardware blocks and persist independently. There is
no need to spend time operating on data. The block diagram

of the timer module is depicted in Fig. 18, where: TYPE is
Timer Type (TP, TON, TOF), PT is Preset Time with the reso-
lution of 1 millisecond, IN is Input and holds the Input (Start),
RUN–holds the information about which timer has been started
(if whatever timer has been started appropriately for its type,
the corresponding field in this memory will be set High) and
ST–Start Time holds the information about the state of the Real-
Time Clock at which the given timer has been started; it is used
for generating both ET and Q outputs (as per the IEC 61131-3
specification). Each timer consume five consecutive addresses
from ABP Address map: TYPE, PT, IN, Q, and ET.

Another example of this type of module, however simpler,
is a counter module.

6. Experimental results

The CPU՚s Verilog source code is fully synthesizable and can
be implemented in any FPGA device of a sufficient size. Both
the device utilization and the timing reports depend heavily on
the CPU՚s configuration. Results for an exemplary configura-
tion for a Xilinx Kintex7 FPGA are presented in Table 2. The
address width for data memory as well as for the program mem-
ory was 6 for the first implementation and 16 for the second.

Table 2
Synthesis report

Parameter width = 6 width = 16

Slice Registers 458 234

Slice LUTs 664 577

IOs 92 92

Block RAMs 3 66

Minimum cpu_clk period 4.648 ns 3.976 ns

Maximum cpu_clk frequency 215.128 251.484 MHz

Fig. 17. APB_RD instruction timing diagram

cpu_clk

pc_en

apb_en

acc_en

paddr

pwdata

APB_RD

1st phase

APB_RD

2nd phase

penable

APB

IDLE

pclk

APB

IDLE

APB

SETUP

APB

ACCESS

pready

psel

pm_en

cr_out Fig. 18. Timer module block diagram

APB

Slave

Interface

TYPE

Memory

Output

Generation

Logic

PT

Memory

IN

Memory

RUN

Memory

ST

Memory

Real-Time

Clock

1272

P. Mazur, R. Czerwinski, and M. Chmiel

Bull. Pol. Ac.: Tech. 68(6) 2020

Both device utilization reports show that the design can
be successfully implemented using a small FPGA device. The
design with address width 6 was based on Distributed-RAM,
while the second (width = 16) is based on Block-RAM. The
comparison of both timing reports shows that the increase in
Block RAM utilization in comparison with the Register and
LUT utilization has a positive impact on timing parameters of
the design. Summarizing, the LD (or bit operations) can be
executed within 8 ns.

The results of synthesis are comparable for example to Vex
RISC-V implementation [23] (considered to be very small due
to implementation by means of Spinal HDL).

The most important comparison is with vendor PLCs. How-
ever, it is a difficult comparison, because for the newest CPUs
only sample data about execution times are published. In the
S7‒1217 CPU (Siemens S7‒1200 family) Boolean instructions
are executed in 80 ns [24]. The most powerful PLC family
by Siemens is the S7‒1500 [25]. The execution time for a bit
instruction is 10 ns for the S7‒1516 and 60 ns for the S7‒1511
CPU. An extremely fast (and most expensive) example is the
S7‒1518 CPU with 1ns execution time for bit instructions and
2 ns for word operations and fixed arithmetic type operations.
The Quantum CPU53414B Controller by Schneider Electric
times differ from 100 ns up to 500 ns [26]. The VIPA Sie-
mens-compatible PLCs (e.g. 314‒6CF02) can execute instruc-
tions on bit variables in a minimum 10 ns [27], while General
Electric PAC Systems RX3i gives a CPU that executes one
Boolean instruction from 29 ns (for CRE040 type) to 253 ns
(for CPU310 type) [28].

One of the most important difference between the designed
unit and vendor CPUs is that the unit presented in the paper
can execute bit/byte/word/double word operations in two clock
cycles. This is not normal practice. Generally, one data size is
privileged and data processing for such data is done directly,
while for other data sizes particular data is processed for exam-
ple by masking (logical operations). This takes a lot of time,
e.g. in Siemens S7‒312 LD for a byte takes twice as long as
for a bit [29], for S7‒1217 Boolean instructions are executed
in 80 ns, while move word 137 ns [24].

Two more advantages must be indicated for the CPU
presented in this paper. First, the trigger function is consis-
tently realized in three clock cycles (even in 12 ns). This is
faster than in the very quick CPU Siemens S7‒319, where
the R_ TRIG/F_ TRIG operations take 40 ns [29]. The second
advantage concerns access and control times to timers and
counters. It always takes less than 8 ns (for the quicker units),
while in the S7‒300 it takes 100 ns. The reason is that in the
presented CPU, timers and counters are implemented as hard-
ware blocks with APB access time. Moreover, the presented
CPU can be reworked to achieve even faster R_TRIG/F_TRIG
operations [9].

7. Conclusions

The aim of the paper was to present the implementation of
a PLC, compatible with the IEC61131‒3 standard. The presented

CPU is capable of performing logic operations on 32-bit Boolean
data types specified by the IEC 61131‒3 standard. Of course,
the presented solution is not developed with the same depth of
complexity as the commercial solutions. However, the results
achieved are very promising. The form of System-on-a-Chip is
used to implement the PLC.

The most important advantage is that the developed CPU
is very flexible due to its architecture: data memory can be
addressed as bit/byte/word/dword and different blocks can be
connected to the CPU by means of an APB AMBA bus.

The access time to bit/byte/word/dword is not dependent on
data width. The access to memory is by means of the designed
hardware and not by means of data processing (masking oper-
ations); so it is done in atomic way. This is very important in
some applications because it increases the system security and
system speed. Moreover, such a solution is compatible with the
IEC61131‒3 standard, where CR has no defined width.

The APB AMBA bus application gives a real possibil-
ity to implement a PLC in the form of a System-on-a-Chip.
A timer application is shown in this paper. This is a hard-
ware timer that works concurrently with the CPU. Commu-
nication with blocks is performed during the system com-
munication in the PLC scan cycle. To perform more experi-
ments the dedicated HMI panel was applied and the example
programs were visualized. Instructions that enable communi-
cation with the APB AMBA bus are not included in the IEC
61131‒3 standard, but enable building systems with hard-
ware aided dedicated blocks (timers, counters, interfaces,
etc.). Such a structure can be used in modern cyber-physical
systems or Industry 4.0.

The designed CPU and proposed PLC architecture has
been simulated and widely tested by UVM methodology and
by means of hardware laboratory set. The CPU was the core of
the system presented in Digilent Design Contest 2018.

Acknowledgements. This work was supported by the Polish
Ministry of Science and Higher Education funding for statutory
activities.

References
 [1] W. Bolton, Programmable Logic Controllers. Newnes, 2009.
 [2] W. Halang and M. Sniezek, “A safe programmable electronic

system”, Bull. Pol. Ac.: Tech. 58(3), 423–434 (2010).
 [3] S. Ichikawa, M. Akinaka, H. Hata, R. Ikeda, and H. Yamamoto,

“An FPGA implementation of hard-wired sequence control sys-
tem based on PLC software”, IEEJ Trans. Electr. Electron. Eng.
6(4), 367–375 (2011).

 [4] E. Monmasson, L. Idkhajine, M. Cirstea, I. Bahri, A. Tisan, and
M. Naouar, “FPGAs in industrial control applications”, IEEE
Trans. Ind. Inform. 7(2), 224– 243 (2011).

 [5] A. Milik and E. Hrynkiewicz, “Synthesis and implementation of
reconfigurable PLC on FPGA platform”, Int. J. Electron. Tele-
commun. 58(1), 85–94 (2012).

 [6] T. Dorta, J. Jimenez, J. Martin, U. Bidarte, and A. Astarloa,
“Overview of FPGA-based multiprocessor systems”, in Inter-
national Conference on Reconfigurable Computing and FPGAs,
2009, pp. 273–278.

1273

PLC implementation in the form of a System-on-a-Chip

Bull. Pol. Ac.: Tech. 68(6) 2020

 [7] A. Milik, “Multiple-core PLC CPU implementation and pro-
gramming”, J. Circuits Syst. Comput. 27, 1850162 (2018).

 [8] Z. Hajduk, B. Trybus, and J. Sadolewski, “Architecture of FPGA
embedded multiprocessor programmable controller”, IEEE
Trans. Ind. Electron. 62(5), 2952–2961 (2015).

 [9] R. Czerwinski and M. Chmiel, “Hardware-based single-clock-cy-
cle edge detector for a PLC central processing unit”, Electronics
(MDPI) 8(12), 1529 (2019).

 [10] M. Chmiel, “FPGA-based implementation of bistable function
blocks defined in the IEC 61131”, Microprocess. Microsyst. 65,
37–46 (2019).

 [11] J. Kasprzyk, Industrial controllers programming. WNT, 2006,
[in Polish].

 [12] Y. Birbir and H. Nogay, “Design and implementation of PLC-
based monitoring control system for three-phase induction
motors fed by PWM inverter”, Int. J. Syst. Appl. Eng. Dev. 2,
128– 135 (2008).

 [13] International Electrotechnical Commission, “EN 611313:2013,
programmable controller–Part 3: Programming languages”,
European Committee for Electrotechnical Standardization, Tech.
Rep., 2013.

 [14] K. John and M. Tiegelkamp, IEC 61131-3: Programming Indus-
trial Automation Systems. Springer, 2010.

 [15] Z. Hajduk, J. Sadolewski, and B. Trybus, “FPGA-based execu-
tion platform for IEC 61131‒3 control software”, Prz. Elektro-
techniczny (Electrical Review) 87(8), 187–191 (2011).

 [16] Rockwell Automation, “Logix5000 controllers IEC 61131-3
compliance”, Rockwell Automation Publication 1756-PM018C-
EN-P, Tech. Rep., 2003.

 [17] S. Rudrawar and M. Patil, “Design and implementation of FPGA
based high performance instruction list (IL) processor”, IOSR J.
Electron. Commun. Eng. 1(4), 38–45 (2012).

 [18] J.-H. Huang, Y.-C. Li, Z. Luo, X.-X. Liu, and K.-F. Nan, “The
design of new-type PLC based on IEC 61131‒3”, in Proceedings
of the Second International Conference on Machine Learning
and Cybernetics, 2003, pp. 809–813.

 [19] M. Okabe, “Development of processor directly executing IEC
61131‒3 language”, in SICE Annual Conference, The University
of Electro-Communications, Tokyo, Japan, 2008, pp. 2215–2218.

 [20] ARM Limited, AMBA 3 APB Protocol, 2004.
 [21] Z. Hajduk, “Hardware implementation of hyperbolic tan gent

and sigmoid activation functions”, Bull. Pol. Ac.: Tech. 66(5),
563–577 (2018).

 [22] G. Grzeda and R. Szplet, “Time interval measurement module
implemented in SoC FPGA device”, Int. J. Electron. Telecom-
mun. 62(3), 237246 (2016).

 [23] “VexRISC-V, An FPGA friendly 32 bit RISC-V CPU imple-
mentation”, https://github.com/SpinalHDL/VexRiscv, (Access:
14.07.2020).

 [24] Siemens AG, Simatic S7-1200 Programmable Controler. System
Manual, 2019.

 [25] Siemens AG, S7-1500, S7-1500R/H, ET 200SP, ET 200pro Cycle
and Reaction Times. Function Manual, 2018.

 [26] Schneider Electric, Modicon Quantum automation platform, Hot
standby system Unity Pro, 2013.

 [27] VIPA GmbH, VIPA System 300S SPEED7-CPU 314-6CF02,
2014.

 [28] General Electric Company, Intelligent Platforms, Programma-
ble Control Products, PACSystems, RX7i&RX3i CPU Reference
Manual, GFK-2222W, 2015.

 [29] Siemens AG, Simatic S7‒300 Instruction List, CPU312,
CPU314, CPU315‒2DP, CPU315‒2PN/DP, CPU317‒2PN/DP,
CPU319‒3PN/DP, IM151‒8PN/DP CPU, IM 154‒8 PN/DP
CPU, 2015.

