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1. Introduction

Full flight simulators are large-scale devices that imitate cock-
pit design and the behavior of a particular aircraft. They can
be used to perform numerous tasks e.g. pilot training, mili-
tary operation planning, aircraft accident investigation or ob-
ject redesign. According to regulations, those devices contain
a dynamical model of the aircraft that must be obtained from
the flight test campaign [1, 2]. This makes full flight simulator
development very costly, because the data cannot be gathered
during scheduled flights (specific experiments are required) and
the dedicated flight tests last multiple flight hours [3]. Despite
the high cost in aeronautics, the system identification is widely
used for airplanes [4,5], rotorcrafts [6,7], projectiles [8,9] or pi-
lot modelling [10, 11] as it delivers very accurate mathematical
models of these objects.

The flight campaign time can be shortened by performing
parameter identification in near-real time e.g. by using method
described in [4]. Another approach is to design a flight plan
in which multiple experiments are performed at the same time
i.e. various flight controls are deflected simultaneously. It was
already shown that this can be done without degrading the ac-
curacy of the obtained model when multi-step [12, 13] or mul-
tisine experiments are used [14]. When multi-step signals are
selected for a maneuver with simultaneous flight controls de-
flections their application must be proceeded by a time con-
suming optimization. Therefore, those inputs cannot be used
for redesigning experiments during the flight campaign (e.g. for
flight envelope expansion).

Multisine inputs do not have those limitations and were al-
ready widely investigated. When multisine signals are used
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their frequency resolution must be properly selected to ex-
cite all significant modes of the dynamical object. The as-
pect of multisine frequency resolution was discussed in [15].
The number of harmonics (which is a related feature when
bandwidth is fixed), was shown in [16] for pilot modelling
and path tracking. Manoeuvres with combined multisine and
pilot inputs for aircraft system identification were used in
[17]. Skipping selected harmonics of the multisine signals
can be used to reduce nonlinear distortions. In [18] a system
identification hardware for designing odd-multisines was pre-
sented. No interharmonic distortion multisines were used in
[19] for the best linear approximation of a system with fric-
tion. The improved method for quasi-logarithmic multisines de-
sign was shown in [20]. Multisine energy content is defined
also by power stored at certain frequencies. Thus, it is possi-
ble to optimize harmonic components amplitudes. In [21] D-
optimality criterion and genetic algorithm were used to de-
sign multisines power spectrum. In [22] a technique for en-
ergy content design based on D-optimality and frequency re-
sponses was presented. Maximizing multisines efficiency is
possible through phase angles selections. Direct numerical for-
mulas that outperform the Schroeder approach for phase an-
gles selection [23] were shown in [24]. An optimization algo-
rithm for synthesizing multisines with arbitratry power spec-
trum was shown in [25]. Complexity and the cost of the
measurement and processing equipment for multisine signals
can be lowered by using algorithms that enable output under-
sampling shown in [26]. In [27] the spectral estimation ap-
proach and using those signals in noise presence was analyzed.
This was also done for simultaneous multisine inputs in [28],
where additionally the time domain approach was used for
validation.

As multisine signals consist of summed harmonic sinusoids,
their application may be limited when it is not possible to faith-
fully reproduce their shape. Thus, it was decided to investi-
gate if it is possible to use quantized multisines (allowed to
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accept only a certain number of states) for aircraft system iden-
tification.

The multi-step signals have continuous power spectrum,
whereas the multisines energy is discrete. This makes the iden-
tification with multisine inputs less robust than when step in-
puts are used due to spectral leakage and noise presence. The
quantized multisine input can be viewed as a multi-step input
that was designed in a novel way. It has a continuous power
spectrum that increases the input robustness and is obtained in
almost real time. The optimization time is approximately 3 min-
utes whereas for the D-optimal design providing comparable
accuracy it takes approximately 2 hours when the design pro-
cess shown in [12] is used. Thus, the quantized multisine sig-
nals would be useful, e.g. in online experiment design. More-
over, due to their ease in application they can also be used when
it is not possible to generate input signals by flight management
system or autopilot, e.g. in pilot model system identification
tasks. Thus, quantized multisine inputs allow to combine best
features of multi-step and multisines signals – ease of applica-
tion and robustness of the multi-step signals with the multisines
possibility of simultaneous flight controls deflections without
long-lasting input design process (required when multi-step sig-
nals are optimized [12]). Analysis of the quantized multisines
used for aircraft system identification is the main novelty of this
paper.

The paper is organized as follows. In Section 2 multisine
inputs and their quantization is described. In Section 3 model
under test and its linear representation that is used for system
identification are presented. The parameter estimation process
is described in Section 4. The outcomes obtained for various
numbers of quantization levels for clean data and data with
measurement noise are presented in Section 5. To validate the
outcomes relative standard deviations of the estimates and data
not used in the system identification were used. Moreover, to
verify the results, identification was also performed from fre-
quency responses. Additionally, the measurement noise effect
was considered for both – measurement noise in the outputs
and in the inputs. The paper finishes with a short summary of
conclusions.

The novelty of the paper comes from the consideration of
using quantized multisines for aircraft system identification. It
was investigated not only if it is possible to obtain accurate re-
sults when simultaneous flight controls are excited with quan-
tized multisines signals, but at what quantization level the es-
timates would still be of high accuracy. This was assessed for
an ideal case with no noise present, for typical aircraft system
identification case, i.e. when measurement noise is present in
the outputs and for a case when the noise is observed in the in-
puts (what represents unmodelled effects in input application).
Results obtained with the time-domain output error method for
the noise-free case were verified through identification from
frequency responses. A simulation model of F-16 aircraft was
used in the study as it faithfully represents the object dynamic
vehicle responses. This allowed to avoid large costs of the study,
what would happen in case of performing a dedicated flight
campaign.

This article focuses on the quantized multisine inputs ap-
plication for aircraft system identification. This study was ap-
proached as follows: design the inputs and identify aircraft pa-
rameters that allow to assess the pros and cons of the quantized
multisines inputs when referred to other excitations. The iden-
tification method description is shown to give context to the
reader and allow for results comparison when applying the ap-
proach.

2. Multisines

A multisine is a harmonic sum of sinosoids. If each flight con-
trol has a unique set of harmonics assigned, then the signal is
mutually orthogonal in time and frequency domain. Thus, it is
possible to deflect flight controls simultaneously without low-
ering information content in the output signals. In this study the
SIDPAC package [14] was used to design those inputs.

Each flight control deflection was given as:

δ j = δ j0 + ∑
k∈Mj

Ak sin(2π fkt +φk) , (1)

where δ j0 is the flight control deflection at trim point, k is the
harmonic number from the Mj set assigned to a specific flight
control, j is the flight control index, whilst Ak, fk and φk are
k-th harmonic amplitude, its frequency and phase shift.

The frequency resolution results from the excitation time T ,
i.e. f0 = 1/T . To reduce costs and complexity of the measure-
ment equipment used in aircraft system identification under-
sampling can be used. Unfortunately, when multisine signals
are used this increases the complexity of proper determination
of the original signal. To prevent interference between excited
frequencies (and thus lowered information in the data) the fre-
quency spacing must be linear and double the frequency reso-
lution [29]. Thus, the first harmonic is skipped. The harmon-
ics are evenly spaced within the frequency range of interest
〈 fmin, fmax〉, where fmin ≤ 2 f0.

If the same emphasis is put on all frequencies the amplitudes
A j are:

Ak = A jmax

√
1/n j , (2)

where A jmax is the expected maximum amplitude increment for
a specific flight control and n j is the number of harmonics in
the Mj set.

In order to ensure maximum energy of the input (represented
by the input RMS) with minimum excitation range for each
flight control, the Relative Peak Factor RPF is minimized

RPF(δ j) =
max(δ j)−min(δ j)

2
√

2rms(δ j)
(3)

to determine phase shifts φk. After the optimization, it is also
required to shift the excitations with respect to time, as they
need to start and end with trim value.

In this research the excitation time was set to T = 20 s and
the upper frequency bound was resulting from the aircraft rigid
body dynamics fmax = 2 Hz. The harmonic frequencies were
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assigned alternately to elevator (δE ), ailerons (δA) and rudder
(δR). The expected maximum amplitude increment A jmax was
set to 1 deg for each flight control. The input trim values δ j0
were 0 deg for ailerons and rudder and −3.68 deg for elevator
as it was required to be in straight symmetric steady flight be-
fore performing the excitation. Moreover, two 5 s lasting flight
data segments (one before and one after the excitation) were
included in the registered signals to allow for static terms esti-
mation.

Designed input harmonic components are presented in Ta-
ble 1 and the signals are shown in Fig. 1 (blue line). The RPF

Table 1
Multisine input components

Elevator Ailerons Rudder

fk, Hz φk, rad fk, Hz φk, rad fk, Hz φk, rad

0.10 2.3515 0.15 −2.7835 0.20 0.7438
0.25 −0.1658 0.30 −1.4683 0.35 −2.2255
0.40 −2.7168 0.45 −0.6368 0.50 1.1458
0.55 −1.1792 0.60 −1.3347 0.65 1.8536
0.70 −2.1643 0.75 1.3458 0.80 0.4552
0.85 2.2099 0.90 −2.8503 0.95 −1.9192
1.00 0.5996 1.05 −1.3418 1.10 2.3372
1.15 1.1178 1.20 −2.6574 1.25 2.3409
1.30 2.0734 1.35 1.9800 1.40 2.7837
1.45 1.8409 1.50 −1.0806 1.55 2.1700
1.60 −0.5518 1.65 0.6659 1.70 −0.9612
1.75 0.7950 1.80 −1.1664 1.85 0.2534
1.90 2.3004 1.95 −1.6331 2.00 1.0095

Fig. 1. Input signals

was 1.1453, 1.0621 and 1.1606 for elevator, ailerons and rudder
respectively.

In this research, designed multisine excitations were quan-
tized i.e. allowed to accept only certain values. The uniform
mid-rise quantization was used for that purpose. The bound-
aries for the quantized signals were ±(A jmax −A jmax/m), where
m is the number of quantization levels. The values that can be
accepted by the signal were evenly spaced within those bound-
aries. Before and after the excitation the inputs were hold at
their trimmed values.

The multisine inputs were quantized for 16, 14, 12, 10, 8, 6,
4 and 2 levels. The odd quantization levels were not used as
excitation did not hold zero value.

The quantized input with 6 possible states is presented in
Fig. 1 (red line). From the plot it can be seen that in general
the quantized input matches well the non-quantized one. Due
to the quantized signals boundaries they cannot accept maxi-
mum values of the multisine signals. Moreover, the quantized
inputs have problems with recapturing selected harmonics (e.g.
at the thirteenth second for elevator deflection).

This can be also observed when looking at the power spec-
trum of the inputs in Fig. 2, where the non-quantized signal is
denoted as ∞. It can be seen that when the quantization was per-
formed for 6, 4 and 2 levels, the power (representing possibility
to obtain information at specified frequency) drops, which can
result in less accurate estimates of the model parameters.

Fig. 2. Input power spectrum

If the multisine components had been represented as pulse
signals and their phase angles were optimized then it still would
be possible to deflect flight controls simultaneously. However
this would mean that the signals are quantized at 2n j levels,
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where n j is the number of harmonics in the Mj set. Limiting
quantization levels by including additional constrains would in-
crease the computational time. As the motivation was to com-
bine features of the multi-step and multisine signals (ease in
application and robustness with simultaneous deflections and
fast design) this was not considered as a suitable approach to
achieve present investigations aim.

3. Model

In order to assess the quality of quantized inputs a simulation
model was used to represent a real aircraft. This approach is
widely used in flight dynamics tasks in order to limit flight cam-
paign costs when new developments or modifications are to be
tested [30–32].

3.1. Nonlinear model. Inputs described in Section 2 were
used to excite a nonlinear F-16 aircraft model.

The equations of motion were derived in body axes coordi-
nate system Oxyz, origin of which was located at the aircraft
centre of gravity. The coordinate system is presented in Fig. 3.
The Ox axis lays in the symmetry plane and is parallel to wing
mean aerodynamic chord. The Oy axis is directed towards the
right wing and the Oz axis complements the right-handed set.

In Fig. 3, Earth fixed frame O1x1y1z1 and inertial system
Oxgygzg are presented as well. The inertial coordinate system
is moving with the aircraft and is parallel to Earth-fixed frame.
Tait-Bryan angles (bank angle φ , pitch angle θ , yaw angle ψ)
describe orientation of the body axes reference frame with re-
spect to gravitational system. The aircraft linear velocity V
components (u – longitudinal velocity, v – side velocity, w –
vertical velocity) and angular velocity ΩΩΩ components (p – roll
rate, q – pitch rate, r – yaw rate) are shown in Fig. 3 as well.

Fig. 3. Coordinate systems

Equations of motion were obtained from Newton second law
of motion. Momentum ΠΠΠ and angular momentum KO change
theorems in the rotating frame were as follows:

Π̇ΠΠ+ΩΩΩ×ΠΠΠ = F ,

K̇O +ΩΩΩ×KO = MO ,
(4)

where F and MO stand for external force and moment, that de-
pend on aerodynamics, thrust and gravitation. The dot symbol
denotes time derivative.

For rigid body the momentum and angular momentum are
given as:

ΠΠΠ = mVO ,

KO = IΩΩΩ,
(5)

where I is the inertia matrix. Due to vertical symmetry plane (in
terms of geometry and mass) inertia product Ixy = 0 and Iyz = 0.

This led to the following equations of motion:

q̄SCX +T −mgsinθ = m(u̇+qw− rv),

q̄SCY +mgsinφ cosθ = m(v̇+ ru− pw),

q̄SCZ +mgcosφ sinθ = m(ẇ+ pv−qu),

Clq̄Sb = Ixx ṗ− Ixzṙ+(Izz − Iyy)qr− Ixz pq,

Cmq̄Sc̄− rHT = Iyyq̇+(Ixx − Izz)pr+ Ixz(p2 − r2),

Cnq̄Sb+qHT = Izzṙ− Ixz ṗ+(Iyy − Ixx)pq+ Ixzqr,

(6)

where q̄ is the dynamic pressure, S is the wing area, c̄ is the
mean aerodynamic chord and b is the wingspan. CX , CY and
CZ are longitudinal, side and vertical aerodynamic force nondi-
mensional coefficients, and Cl , Cm and Cn are roll, pitch and
yaw aerodynamic moment coefficients, respectively:

CX =CX0 +CXα α +CXqq∗+CXδE
δE ,

CY =CY0 +CYβ β +CYp p∗+CYr r
∗+CYδA

δA +CYδR
δR ,

CZ =CZ0 +CZα α +CZβ β +CZqq∗+CZδE
δE ,

Cl =Cl0 +Clβ β +Clp p∗+Clr r
∗+ClδA

δA +ClδR
δR ,

Cm =Cm0 +Cmα α +Cmqq∗+CmδE
δE ,

Cn =Cn0 +Cnβ β +Cnp p∗+CYr r
∗+CnδA

δA +CnδR
δR .

(7)

The aerodynamic force and moment components were ex-
pressed through nondimensional aerodynamic coefficients that
were dependent on perturbations of flight controls deflections:
ailerons δA, elevator δE , rudder δR and motion parameters: lon-
gitudinal velocity u, sideslip angle β = v/VO, angle of attack
α = w/u, roll rate p, pitch rate q and r yaw rate, where v and
w stand for side and vertical velocity and VO is the total ve-
locity. The ∗ symbol denotes nondimensional motion parame-
ter, i.e p∗ = pb/(2V ), q∗ = qc̄/(2VO), r∗ = rb/(2VO). Aero-
dynamic forces and moments were modeled according to [33].
The longitudinal force and vertical force dimensional coeffi-
cients for fixed configuration (no speed brakes and leading edge
flaps deflections) and the aircraft at the trim (equilibrium) point
is shown in Figs. 4 and 5.

The thrust force T was described as a first order spline with
two intervals:

T =

{
Tidle +0.02(Tmil −Tidle)Pa Pa < 50,

Tmil +0.02(Tmax −Tmil)(Pa −50) Pa ≥ 50,
(8)
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Fig. 4. Longitudinal force coefficient

Fig. 5. Vertical force coefficient

where Tidle, Tmil and Tmax are idle, military and maximum thrust
force. The actual engine power level Pa was modelled as a first
order lag with respect to commanded power level Pc:

Ṗa =
1

τeng
(Pc −Pa) , (9)

where commanded power level Pc(δth) depends on the throttle
setting δth and τeng is the engine time constant. Thrust force was
modeled according to [33].

The equations of motion set was completed by including
kinematic relationships between angular rates and attitude an-
gles:

φ̇ = p+qsinφ tanθ + r cosφ tanθ ,

θ̇ = qcosφ − r sinφ .
(10)

Because the experiment lasted for a short period of time, fuel
consumption was neglected and thus mass m was constant dur-
ing the manoeuvre. It was also assumed that the flight control
deflections do not influence inertia moments, so each Ii j (mo-
ment of inertia around j axis when object is rotated about i
axis), was also constant. Engine angular rate was constant dur-
ing the experiment leading to constant engine angular momen-
tum HT .

Atmosphere thermodynamic parameters were obtained from
International Standard Atmosphere model [34] and the grav-
itational acceleration was obtained from the WGS-84 system

documentation [35].
As previously stated, the nonlinear model was excited with

the sets of inputs described in Section 2 and its response was
registered. From this point, the nonlinear model parameters
(e.g. aerodynamic coefficients) were treated as unknown. On
the basis of inputs and outputs of the nonlinear aircraft model
a parameter estimation was performed. The system was identi-
fied as a linear model described by the equations presented in
Subsection 3.2.

3.2. Linear model. The nonlinear equations of motion given
in Eqs. (6) and (10) were linearized by using small perturba-
tions theorem. This means that when a perturbation occurred
each motion parameter was equal to its value in the equlib-
rium (0 subscript) and a small perturbation (denoted by ∆), e.g.
u = u0 +∆u.

In the equilibrium the aircraft was in steady straight symmet-
ric flight. This implies that only u0 �= 0, w0 �= 0 and Θ0 �= 0. Sub-
tracting equations given for the the trim point from the equa-
tions of the perturbed motion and neglecting small terms lead
to the following:

∆X = m(∆u̇+∆qw0),

∆Y = m(∆v̇+∆ru0 −∆pw),

∆Z = m(∆ẇ−∆qu0),

∆L = Ixx∆ṗ− Ixz∆ṙ,

∆M = Iyy∆q̇,

∆N = Izz∆ṙ− Ixz∆ṗ,

∆φ̇ = ∆p+∆r tanθ0,

∆θ̇ = ∆q,

(11)

where X , Y and Z are the longitudinal, lateral and vertical force,
while L, M and N are rolling, pitching and yawing moment.
Forces and moments were given by using first order Taylor se-
ries expansion around the trim point.

Forces and moment related to the longitudinal motion (X , Z,
M) were dependent on flight parameters and control surfaces
deflections that act in the aircraft vertical symmetry plane (u,
w, q, δE ):

∆X = Xu∆u+Xw∆w+Xq∆q+XδE ∆δE ,

∆Z = Zu∆u+Zw∆w+Zq∆q+ZδE ∆δE ,

∆M = Mu∆u+Mw∆w+Mq∆q+MδE ∆δE .

(12)

Stability and control derivatives for ξ parameter were de-
fined as:

Xξ =
1
m

∂X
∂ξ

,

Zξ =
1
m

∂Z
∂ξ

,

Mξ =
1

Iyy

∂M
∂ξ

.

(13)
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Fig. 4. Longitudinal force coefficient

Fig. 5. Vertical force coefficient

where Tidle, Tmil and Tmax are idle, military and maximum thrust
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Ṗa =
1

τeng
(Pc −Pa) , (9)
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deflections do not influence inertia moments, so each Ii j (mo-
ment of inertia around j axis when object is rotated about i
axis), was also constant. Engine angular rate was constant dur-
ing the experiment leading to constant engine angular momen-
tum HT .

Atmosphere thermodynamic parameters were obtained from
International Standard Atmosphere model [34] and the grav-
itational acceleration was obtained from the WGS-84 system

documentation [35].
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(e.g. aerodynamic coefficients) were treated as unknown. On
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fied as a linear model described by the equations presented in
Subsection 3.2.

3.2. Linear model. The nonlinear equations of motion given
in Eqs. (6) and (10) were linearized by using small perturba-
tions theorem. This means that when a perturbation occurred
each motion parameter was equal to its value in the equlib-
rium (0 subscript) and a small perturbation (denoted by ∆), e.g.
u = u0 +∆u.

In the equilibrium the aircraft was in steady straight symmet-
ric flight. This implies that only u0 �= 0, w0 �= 0 and Θ0 �= 0. Sub-
tracting equations given for the the trim point from the equa-
tions of the perturbed motion and neglecting small terms lead
to the following:

∆X = m(∆u̇+∆qw0),

∆Y = m(∆v̇+∆ru0 −∆pw),

∆Z = m(∆ẇ−∆qu0),
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∆M = Iyy∆q̇,

∆N = Izz∆ṙ− Ixz∆ ṗ,

∆φ̇ = ∆p+∆r tanθ0,

∆θ̇ = ∆q,

(11)

where X , Y and Z are the longitudinal, lateral and vertical force,
while L, M and N are rolling, pitching and yawing moment.
Forces and moments were given by using first order Taylor se-
ries expansion around the trim point.

Forces and moment related to the longitudinal motion (X , Z,
M) were dependent on flight parameters and control surfaces
deflections that act in the aircraft vertical symmetry plane (u,
w, q, δE ):

∆X = Xu∆u+Xw∆w+Xq∆q+XδE ∆δE ,

∆Z = Zu∆u+Zw∆w+Zq∆q+ZδE ∆δE ,

∆M = Mu∆u+Mw∆w+Mq∆q+MδE ∆δE .

(12)

Stability and control derivatives for ξ parameter were de-
fined as:

Xξ =
1
m

∂X
∂ξ

,

Zξ =
1
m

∂Z
∂ξ

,

Mξ =
1

Iyy

∂M
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Similarly, force and moments related to lateral-directional mo-
tion (Y , L, N) were dependent only on the non-symmetrical
flight parameters and controls (v, p, r, δA, δR):

∆Y = Yv∆v+Yp∆p+Yr∆r+YδA∆δA +YδR∆δR ,

∆L = Lv∆v+Lp∆p+Lr∆r+LδA∆δA +LδR∆δR ,

∆N = Nv∆v+Np∆p+Nr∆r+NδA∆δA +NδR∆δR .

(14)

Stability and control derivatives for ξ parameter were de-
fined as:

Yξ =
1
m

∂Y
∂ξ

,

Lξ =
Izz

IxxIzz − I2
xz

∂L
∂ξ

+
Ixz

IxxIzz − I2
xz

∂N
∂ξ

,

Nξ =
Ixz

IxxIzz − I2
xz

∂N
∂ξ

+
Ixx

IxxIzz − I2
xz

∂L
∂ξ

.

(15)

The above definition for lateral-directional moments stability
and control derivatives allowed to decouple rolling and yawing
rates in (11).

Additionally, angle of attack perturbation ∆α = ∆w/u0 was
used instead of vertical velocity perturbation ∆w. Sideslip an-
gle perturbation ∆β = ∆v/V0 was used instead of side velocity
perturbation ∆v.

During the experiment the aircraft remained at almost the
same altitude, thus the gravitational acceleration was constant
and it was possible to decouple linearized equations of motion
into longitudinal and lateral-directional sets:

ẋlon = Alonxlon +Blonulon ,

ẋlat = Alatxlat +Blatulat .
(16)

The state matrices were given as:

Alon =




Xu Xα −u0α0 Xq −gcosΘ0

Zu Zα Zq +1 −gsinΘ0/u0

Mu Mα Mq 0
0 0 1 0


 ,

Alat =




Yβ Yp +α0 Yr −1 gcosΘ0/V0

Lβ Lp Lr 0
Nβ Np Nr 0
0 1 tanΘ0 0




(17)

and the control matrices as:

Blon =




XδE

ZδE

MδE

0


 , Blat =




YδA YδR

LδA NδR

LδA NδR

0 0


 . (18)

For the longitudinal motion the state and control vectors were

xlon =
[
∆u ∆α ∆q ∆θ

]T
and ulon = ∆δE . In the case of

the lateral-directional motion, the corresponding vectors were

xlat =
[
∆β ∆p ∆r ∆φ

]T
and ulat =

[
∆δA ∆δR

]
.

Linear model outputs were evaluated from:

y = Cx+Du+y0 , (19)

where state x and control u vectors consist of components re-

lated to longitudinal and lateral motion i.e. x =
[
xlon xlat

]T
,

u =
[
ulon ulat

]T
, C is the output matrix (identity matrix) and

D is the feedforward matrix (zero matrix).

4. Output error method

To perform the system identification a time domain output error
method was used [3]. Therefore, the difference between regis-
tered outputs of the nonlinear aircraft model (measurements) z
and model outputs obtained from parameter estimation ŷ was to
be minimized as shown in Fig. 6.

Fig. 6. Identification method scheme

This was achieved by applying the maximum likelihood prin-
ciple i.e. finding a set of model parameters Θ̂ΘΘ for which the
probability p of observing measurements z is maximized

Θ̂ΘΘ = arg{max
ΘΘΘ

p(z|ΘΘΘ)}. (20)

For multidimensional normal distribution the conditional
probability can be expressed as:

p(z|ΘΘΘ) = ((2π)n|R|)−N/2 exp

(
−1

2

N

∑
k=1

e(tk)T R−1e(tk)

)
, (21)

where e(tk) = z(tk)− ŷ(tk) is the output error at discrete time
point tk, n is the number of model outputs and R is the noise
covariance matrix and |R| denotes its determinant.

Due to the exponential function in Eq. (21) its maximization
was replaced by negative log-likelihood minimization

L (ΘΘΘ|z) =− ln p(z|ΘΘΘ) , (22)

L (ΘΘΘ|z) = 1
2

N

∑
k=1

eT R−1e+
nN
2

ln(2π)+
N
2

ln(|R|). (23)
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The covariance matrix R was estimated from

R̂ =
1
N

N

∑
k=1

e(tk)e(tk)T . (24)

It is often assumed that the elements in output errors e(tk) are
independent (both, within the vector and in time) and only the
diagonal elements of the covariance matrix R are used. When
this is assumed, substituting covariance matrix R into Eq. (23)
and neglecting constant terms allows to reduce cost function to:

J(ΘΘΘ) = |R|. (25)

The measurement noise covariance matrix R is computed in
each iteration.

For uncorrelated measurement errors the covariance matrix
R is diagonal, thus the cost function is:

J(ΘΘΘ) =
n

∏
l=1

1
N

N

∑
k=1

(zl(tk)− ŷl(tk))
2 . (26)

Gauss-Newton algorithm was used to minimize the cost
function. The parameters were updated according to the for-
mula:

Θ̂ΘΘi = Θ̂ΘΘi−1 +F−1
i−1Gi−1 . (27)

The Fisher Information matrix F was given as

F =
N

∑
k=1

[
∂ ŷ(tk)

∂ΘΘΘ

]T

R−1
[

∂ ŷ(tk)
∂ΘΘΘ

]
. (28)

To evaluate gradients ∂ ŷ/∂ΘΘΘ central difference formula was
used. Fisher Information matrix diagonal elements were used
to determine relative standard deviations of the estimated pa-
rameters, i.e. σrel =

√
Fii/Θ̂i. The gradient matrix G was

G =
N

∑
k=1

[
∂ ŷ(tk)

∂ΘΘΘ

]T

R−1e(tk). (29)

5. Results

In the study, the output vector consists of all longitudinal

and lateral motion states y =
[
xlon xlat

]T
. Stability and con-

trol derivatives were the estimated parameters and their ini-
tial values ΘΘΘ0 were obtained from previous studies [9]. For
model structure determination, backward elimination method
was used.

5.1. Noise-free. A noise free-case was investigated to evalu-
ate the best possible accuracy of the system identification for
experiments with multisine signals quantized at various levels.
A nonlinear aircraft model described in Subsection 3.1 was ex-
cited with inputs shown in Section 2 and its response was reg-
istered. On the basis of this data, output error method presented
in Section 4 was used to identify a linear system described in
Subsection 3.2.

The time histories of the nonlinear model response and esti-
mated outputs are shown in Figs. 7 and 8.

Fig. 7. Time histories – longitudinal motion variables

Fig. 8. Time histories – lateral motion variables

In Figs. 7 and 8 the blue lines represent the nonlinear model
response, whereas black and red lines denote estimated model
response. Black lines represent the linear model (obtained from
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The covariance matrix R was estimated from

R̂ =
1
N

N

∑
k=1

e(tk)e(tk)T . (24)

It is often assumed that the elements in output errors e(tk) are
independent (both, within the vector and in time) and only the
diagonal elements of the covariance matrix R are used. When
this is assumed, substituting covariance matrix R into Eq. (23)
and neglecting constant terms allows to reduce cost function to:

J(ΘΘΘ) = |R|. (25)

The measurement noise covariance matrix R is computed in
each iteration.

For uncorrelated measurement errors the covariance matrix
R is diagonal, thus the cost function is:

J(ΘΘΘ) =
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∏
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1
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2 . (26)

Gauss-Newton algorithm was used to minimize the cost
function. The parameters were updated according to the for-
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To evaluate gradients ∂ ŷ/∂ΘΘΘ central difference formula was
used. Fisher Information matrix diagonal elements were used
to determine relative standard deviations of the estimated pa-
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G =
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In the study, the output vector consists of all longitudinal

and lateral motion states y =
[
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]T
. Stability and con-

trol derivatives were the estimated parameters and their ini-
tial values ΘΘΘ0 were obtained from previous studies [9]. For
model structure determination, backward elimination method
was used.

5.1. Noise-free. A noise free-case was investigated to evalu-
ate the best possible accuracy of the system identification for
experiments with multisine signals quantized at various levels.
A nonlinear aircraft model described in Subsection 3.1 was ex-
cited with inputs shown in Section 2 and its response was reg-
istered. On the basis of this data, output error method presented
in Section 4 was used to identify a linear system described in
Subsection 3.2.

The time histories of the nonlinear model response and esti-
mated outputs are shown in Figs. 7 and 8.

Fig. 7. Time histories – longitudinal motion variables

Fig. 8. Time histories – lateral motion variables

In Figs. 7 and 8 the blue lines represent the nonlinear model
response, whereas black and red lines denote estimated model
response. Black lines represent the linear model (obtained from
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non-quantized multisines) response when excited with non-
quantized multisines inputs. Red lines denote the linear model
(obtained from multisine signals quantized at 6 levels) response
when excited with quantized multisines inputs.

A very good visual match can be observed for the model es-
timated from non-quantized multisine inputs. This match drops
with lower number of states that the input signal can accept. For
the presented model, obtained from the quanized inputs, a good
match can be observed for selected flight parameters. However,
one must bear in mind that for the decoupled models all longitu-
dinal or lateral-directional flight parameters must be considered
jointly as the state variables influence one another.

Moreover, it can happen that a good visual match can be ob-
served even when parameters were not accurately estimated e.g.
due to overdetermined model structure. Thus, a common indi-
cator of the system identification accuracy are the relative stan-
dard deviations σrel that express uncertainty of the estimates.
A rule of thumb is that the relative standard deviation below
10% indicates accurate estimate [3]. The relative standard devi-
ations of the identified stability and control derivatives when the
multisine inputs were quantizied at various levels are presented
in Table 2. In Table 2 the ∞ symbol denotes the non-quantized
inputs.

Table 2
Relative standard deviations – noise free

Quantization levels
Θ

∞ 16 14 12 10 8 6 4 2

Xu 0.85 0.87 0.89 0.96 0.90 0.83 0.86 0.77 2.04

Xα 8.60 9.87 9.76 9.47 9.27 8.05 19.21 20.17 19.02

Xq 9.56 7.41 7.20 7.83 8.12 9.37 12.39 21.64 31.67

XδE
6.63 8.29 8.08 8.70 8.21 9.48 13.95 17.06 18.18

Zα 0.22 0.29 0.28 0.25 0.29 0.29 0.38 0.47 1.15

Zq 0.13 0.17 0.16 0.15 0.17 0.17 0.19 0.22 0.45

Mα 0.10 0.14 0.14 0.12 0.14 0.14 0.17 0.20 0.42

Mq 0.20 0.27 0.26 0.24 0.27 0.27 0.31 0.35 0.67

MδE
0.08 0.12 0.11 0.10 0.12 0.12 0.15 0.17 0.37

Yβ 5.98 6.97 7.64 7.57 8.35 8.32 8.90 11.34 28.76

Yp 3.16 4.22 4.23 4.12 4.49 4.48 4.74 5.37 7.73

Yr 0.83 1.15 1.14 1.12 1.24 1.23 1.32 1.55 2.88

Lβ 0.32 0.34 0.34 0.34 0.35 0.35 0.37 0.40 0.77

Lp 0.24 0.26 0.26 0.25 0.26 0.27 0.28 0.30 0.54

Lr 8.07 8.44 8.20 8.16 8.48 8.70 9.04 10.54 38.44

LδA
0.15 0.16 0.16 0.15 0.16 0.16 0.17 0.19 0.41

LδR
0.75 0.78 0.77 0.76 0.79 0.80 0.83 0.92 2.07

Nβ 0.95 1.33 1.32 1.30 1.44 1.43 1.54 1.83 3.82

Np 4.49 5.76 5.84 5.65 6.13 6.04 6.37 6.95 8.17

Nr 5.19 7.29 7.35 7.15 8.01 7.83 8.42 9.38 14.06

NδA
4.05 5.42 5.45 5.28 5.76 5.74 6.02 6.77 8.54

NδR
0.85 1.19 1.18 1.16 1.29 1.28 1.38 1.62 3.20

From Table 2 it can be seen that the inputs quantized at 8 or
more levels allow to obtain accurate estimates. The inaccurate

estimates were observed first in the longitudinal motion param-
eters. The inaccuracies in lateral-directional stability and con-
trol derivatives started to occur when the multisine inputs were
quantized at 4 levels. Generally, it can be said that the rela-
tive standard deviations increase when the signals are quantized
with fewer levels. Due to the complex relation between system
parameters, it may happen that for a lower quantization level a
particular estimate is more accurate than when signal is quan-
tizied at lower level. However, this will be reflected in increased
relative standard deviations of other estimated parameters.

For validation, a set of inputs that was not used in the iden-
tification was selected. The nonlinear model was excited with
multi-step inputs. This could allow to find unmodelled dynam-
ics in the estimated models, as e.g. the multi-step signals have
continuous power spectrum and multisines have discrete spec-
trum. Conventional multi-step inputs were used for that pur-
pose: 3211 elevator input, 121 a ilerons deflection and rudder
doublet. According to [36], RMS can be used to assess the accu-
racy for the data not used in parameter estimation and for fixed-
wing aircraft RMS < 1.0 denote accurate results. The RMS is
presented in Table 3. It can be seen that this supports previ-
ous conclusions. The RMS increases when inputs are quantized
with less levels. For elevator input the model was accurate when
signals were quantized at least at 8 levels and for ailerons or
rudder input it was accurate for at least 6 quantization levels.

Table 3
Model verification (RMS) – noise free

Quantization levels

∞ 16 14 12 10 8 6 4 2

Ailerons 0.31 0.32 0.32 0.33 0.349 0.39 0.56 1.04 1.45

Elevator 0.38 0.39 0.40 0.42 0.55 0.72 1.062 1.41 1.87

Rudder 0.29 0.32 0.34 0.36 0.40 0.45 0.69 1.06 1.41

The validation was also done by using Theil inequality co-
efficient (T IC) that presents estimated model predicting capa-
bilities. According to [36], T IC < 0.3 denotes good forecast
for fixed wing aircraft. To evaluate T IC the same inputs were
used as for RMS, and the results are presented in Table 4. It
can be seen that predicting capabilities are good for the models
estimated with high accuracy. The predicting capabilieties drop
for models estimated when inputs with less quantization levels
were used. In longitudinal motion, the forecasts would be good
for the models obtained with multisines with at least 8 possi-
ble states. In lateral-directional motion, models obtained with
at least 6 quantization levels provide good prediction.

Table 4
Model verification (TIC) – noise free

Quantization levels

∞ 16 14 12 10 8 6 4 2

Ailerons 0.06 0.06 0.07 0.09 0.13 0.18 0.21 0.31 0.39

Elevator 0.10 0.10 0.12 0.16 0.21 0.24 0.31 0.48 0.62

Rudder 0.06 0.06 0.07 0.09 0.14 0.19 0.22 0.31 0.38
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5.2. Identification from frequency responses. The system
was identified from frequency responses to verify the results
obtained with output error method time domain approach. It
was already shown in [15, 28] that this method provides accu-
rate estimates when the system is excited with multisine inputs.
The CIFER software [36] was used for that purpose.

The input autospectrum Ŝxx, output autospectrum Ŝyy and
cross spectrum Ŝxy for a Single-Input/Single-Output system
were evaluated from:

Ŝxx( f ) =
1

Unr

nr

∑
k=1

2
T
|X( f )|2,

Ŝyy( f ) =
1

Unr

nr

∑
k=1

2
T
|Y ( f )|2,

Ŝxy( f ) =
1

Unr

nr

∑
k=1

2
T
|X†( f )Y ( f )|,

(30)

where X( f ) and Y ( f ) are input and output Fourier transforms,
nr is the number of time segments, U is the correction factor and
† symbol denotes complex conjugate. The half sine-windows
were used to reduce spectral leakage, thus U = 0.707.

The frequency response function H( f ) was evaluated from
the Single-Input/Single-Output system spectra estimates:

Ĥ( f ) =
Ŝxy( f )
Ŝxx( f )

. (31)

On the basis of the Single-Input/Single-Output solution, fre-
quency responses for the Multiple-Input/Single-Output system
estimates were found:

Ĥ( f ) = Ŝ−1
xx ( f )Ŝxy( f ), (32)

where Ŝxx is the matrix of estimated auto-spectra between the
inputs and outputs and Ŝxy is the estimated cross-spectra matrix
between each input and single output. Multiple-Input/Multiple-
Output solution was obtained by gathering the Multiple-Input/
Single-Output results.

The frequency responses were obtained for various windows
length and then conditioned to obtain accurate results in the
whole bandwidth.

Stability and control derivatives of the linear model were
found by minimizing the cost function:

J =
nT

∑
k=1

(
20
nω

∑
ω

Wγ(Wm
(
|Tm|− |T̂m|

)2

+ Wp
(
∠Tm −∠T̂m)

2)
)
, (33)

where Tm and T̂m are transfer functions, (1, . . . ,nT ), obtained
from the data (nonlinear model) and for the estimated linear
model. Each function was fitted for frequencies ω , (1, . . . ,nω ),
at which sufficient amount of information for modelling was

present, i.e. magnitude squared coherence γ̂2
xy > 0.6 [36]:

γ̂2
xy( f ) =

|Ŝxy( f )|2

|Ŝxx( f )||Ŝyy( f )|
. (34)

The magnitude and phase weights were Wm = 1.0 and Wp =
0.01745, respectively. The coherence weighting Wγ was set to
emphasize the most reliable data:

Wγ =
[
1.58(1− e−γ2

xy)
]2

. (35)

Stability and control derivatives were estimated from fre-
quency responses by using the same data set and linear model
equations as in the noise-free case. Their relative standard devi-
ations for manoeuvres with multisine excitations with various
quantization levels are shown in Table 5.

Table 5
Relative standard deviations – frequency responses identification

Quantization levels
Θ

∞ 16 14 12 10 8 6 4 2

Xu 0.84 0.87 0.80 0.95 0.93 0.80 0.84 0.80 2.14
Xα 8.69 9.73 9.97 9.22 8.59 7.70 18.67 20.91 18.63
Xq 9.47 6.84 6.51 7.97 8.33 8.70 11.54 21.30 31.36
XδE

6.41 7.51 7.93 8.99 8.46 9.60 14.01 15.53 17.20
Zα 0.20 0.27 0.27 0.23 0.30 0.29 0.36 0.49 1.08
Zq 0.13 0.16 0.15 0.15 0.16 0.18 0.18 0.23 0.42
Mα 0.10 0.13 0.15 0.12 0.14 0.14 0.16 0.21 0.39
Mq 0.19 0.25 0.26 0.23 0.27 0.27 0.31 0.34 0.64
MδE

0.08 0.12 0.11 0.09 0.12 0.13 0.14 0.18 0.36
Yβ 5.67 6.66 7.99 7.40 8.25 8.25 9.30 11.53 27.79
Yp 3.22 3.80 4.30 4.22 4.16 4.16 4.86 5.53 7.93
Yr 0.85 1.07 1.12 1.08 1.27 1.22 1.29 1.56 2.91
Lβ 0.33 0.32 0.35 0.35 0.32 0.37 0.36 0.42 0.77
Lp 0.25 0.24 0.25 0.23 0.26 0.27 0.25 0.28 0.49
Lr 8.26 8.32 7.60 8.42 8.34 8.90 9.45 10.71 38.20
LδA

0.16 0.16 0.15 0.15 0.15 0.14 0.16 0.18 0.38
LδR

0.77 0.72 0.69 0.77 0.72 0.72 0.87 0.93 1.92
Nβ 0.90 1.30 1.19 1.35 1.35 1.37 1.47 1.66 3.60
Np 4.59 5.52 5.98 5.88 6.30 5.46 6.12 6.75 8.19
Nr 5.27 7.38 6.73 7.04 7.93 7.99 7.72 8.99 13.59
NδA

4.01 5.13 4.97 5.15 5.28 5.42 5.54 6.88 8.07
NδR

0.83 1.18 1.20 1.10 1.27 1.16 1.26 1.48 3.16

It can be seen that the outcomes are in good agreement with
the results obtained when output error method was used. The
accuracy of the estimated stability and control derivatives drops
for models identified with multisine inputs with less quantiza-
tion levels. Similarly to the output error outcomes, in the longi-
tudinal motion the estimates are acceptable for multisines quan-
tized at 8 or more levels. In lateral-directional motion accurate
results were obtained when inputs were quanized at 6 or more
levels. It can be observed that generally, identification from fre-
quency responses allowed to obtain slightly better results. This
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5.2. Identification from frequency responses. The system
was identified from frequency responses to verify the results
obtained with output error method time domain approach. It
was already shown in [15, 28] that this method provides accu-
rate estimates when the system is excited with multisine inputs.
The CIFER software [36] was used for that purpose.

The input autospectrum Ŝxx, output autospectrum Ŝyy and
cross spectrum Ŝxy for a Single-Input/Single-Output system
were evaluated from:

Ŝxx( f ) =
1

Unr

nr

∑
k=1

2
T
|X( f )|2,

Ŝyy( f ) =
1

Unr

nr

∑
k=1

2
T
|Y ( f )|2,

Ŝxy( f ) =
1

Unr

nr

∑
k=1

2
T
|X†( f )Y ( f )|,

(30)

where X( f ) and Y ( f ) are input and output Fourier transforms,
nr is the number of time segments, U is the correction factor and
† symbol denotes complex conjugate. The half sine-windows
were used to reduce spectral leakage, thus U = 0.707.

The frequency response function H( f ) was evaluated from
the Single-Input/Single-Output system spectra estimates:

Ĥ( f ) =
Ŝxy( f )
Ŝxx( f )

. (31)

On the basis of the Single-Input/Single-Output solution, fre-
quency responses for the Multiple-Input/Single-Output system
estimates were found:

Ĥ( f ) = Ŝ−1
xx ( f )Ŝxy( f ), (32)

where Ŝxx is the matrix of estimated auto-spectra between the
inputs and outputs and Ŝxy is the estimated cross-spectra matrix
between each input and single output. Multiple-Input/Multiple-
Output solution was obtained by gathering the Multiple-Input/
Single-Output results.

The frequency responses were obtained for various windows
length and then conditioned to obtain accurate results in the
whole bandwidth.

Stability and control derivatives of the linear model were
found by minimizing the cost function:

J =
nT

∑
k=1

(
20
nω

∑
ω

Wγ(Wm
(
|Tm|− |T̂m|

)2

+ Wp
(
∠Tm −∠T̂m)

2)
)
, (33)

where Tm and T̂m are transfer functions, (1, . . . ,nT ), obtained
from the data (nonlinear model) and for the estimated linear
model. Each function was fitted for frequencies ω , (1, . . . ,nω ),
at which sufficient amount of information for modelling was

present, i.e. magnitude squared coherence γ̂2
xy > 0.6 [36]:

γ̂2
xy( f ) =

|Ŝxy( f )|2

|Ŝxx( f )||Ŝyy( f )|
. (34)

The magnitude and phase weights were Wm = 1.0 and Wp =
0.01745, respectively. The coherence weighting Wγ was set to
emphasize the most reliable data:

Wγ =
[
1.58(1− e−γ2

xy)
]2

. (35)

Stability and control derivatives were estimated from fre-
quency responses by using the same data set and linear model
equations as in the noise-free case. Their relative standard devi-
ations for manoeuvres with multisine excitations with various
quantization levels are shown in Table 5.

Table 5
Relative standard deviations – frequency responses identification

Quantization levels
Θ

∞ 16 14 12 10 8 6 4 2

Xu 0.84 0.87 0.80 0.95 0.93 0.80 0.84 0.80 2.14
Xα 8.69 9.73 9.97 9.22 8.59 7.70 18.67 20.91 18.63
Xq 9.47 6.84 6.51 7.97 8.33 8.70 11.54 21.30 31.36
XδE

6.41 7.51 7.93 8.99 8.46 9.60 14.01 15.53 17.20
Zα 0.20 0.27 0.27 0.23 0.30 0.29 0.36 0.49 1.08
Zq 0.13 0.16 0.15 0.15 0.16 0.18 0.18 0.23 0.42
Mα 0.10 0.13 0.15 0.12 0.14 0.14 0.16 0.21 0.39
Mq 0.19 0.25 0.26 0.23 0.27 0.27 0.31 0.34 0.64
MδE

0.08 0.12 0.11 0.09 0.12 0.13 0.14 0.18 0.36
Yβ 5.67 6.66 7.99 7.40 8.25 8.25 9.30 11.53 27.79
Yp 3.22 3.80 4.30 4.22 4.16 4.16 4.86 5.53 7.93
Yr 0.85 1.07 1.12 1.08 1.27 1.22 1.29 1.56 2.91
Lβ 0.33 0.32 0.35 0.35 0.32 0.37 0.36 0.42 0.77
Lp 0.25 0.24 0.25 0.23 0.26 0.27 0.25 0.28 0.49
Lr 8.26 8.32 7.60 8.42 8.34 8.90 9.45 10.71 38.20
LδA

0.16 0.16 0.15 0.15 0.15 0.14 0.16 0.18 0.38
LδR

0.77 0.72 0.69 0.77 0.72 0.72 0.87 0.93 1.92
Nβ 0.90 1.30 1.19 1.35 1.35 1.37 1.47 1.66 3.60
Np 4.59 5.52 5.98 5.88 6.30 5.46 6.12 6.75 8.19
Nr 5.27 7.38 6.73 7.04 7.93 7.99 7.72 8.99 13.59
NδA

4.01 5.13 4.97 5.15 5.28 5.42 5.54 6.88 8.07
NδR

0.83 1.18 1.20 1.10 1.27 1.16 1.26 1.48 3.16

It can be seen that the outcomes are in good agreement with
the results obtained when output error method was used. The
accuracy of the estimated stability and control derivatives drops
for models identified with multisine inputs with less quantiza-
tion levels. Similarly to the output error outcomes, in the longi-
tudinal motion the estimates are acceptable for multisines quan-
tized at 8 or more levels. In lateral-directional motion accurate
results were obtained when inputs were quanized at 6 or more
levels. It can be observed that generally, identification from fre-
quency responses allowed to obtain slightly better results. This
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is because in the presented frequency domain approach greater
emphasis was put on more accurate data. In the output error
method all data points were equally weighted.

5.3. Noise in the outputs. In order to investigate how the mea-
surement noise affects the identification for quantized inputs, a
white noise with 5% noise to signal ratio was added to the out-
puts after the nonlinear model response was generated. The rest
of the procedure was the same as for parameter estimation in
the noise free-case. The outcomes are presented in Table 6.

Table 6
Relative standard deviations – noise in the outputs

Quantization levels
Θ

∞ 16 14 12 10 8 6 4 2

Xu 1.19 1.65 1.89 1.59 2.13 4.83 4.80 4.73 5.94

Xα 8.84 8.81 8.79 9.13 9.73 15.87 19.68 19.46 20.29

Xq 9.08 9.98 9.08 8.78 9.04 17.71 17.21 26.88 27.92

XδE
6.28 8.22 8.03 9.83 9.34 18.96 15.78 14.16 22.90

Zα 0.56 0.91 2.28 2.31 2.34 2.33 2.32 2.41 2.82

Zq 0.33 0.93 1.16 1.38 1.19 1.40 1.44 1.46 1.59

Mα 0.27 0.46 1.14 1.16 1.16 1.16 1.19 1.20 1.26

Mq 0.55 1.20 1.26 2.40 2.31 2.44 2.53 2.53 2.58

MδE
0.21 0.93 0.11 0.90 0.13 0.91 0.93 0.93 1.01

Yβ 6.40 7.10 7.64 7.63 7.84 9.77 10.06 12.25 30.01

Yp 3.34 3.10 4.24 4.44 4.22 6.74 6.97 7.06 8.17

Yr 0.87 0.89 1.14 1.67 1.61 1.76 1.83 1.94 3.06

Lβ 0.55 2.15 2.34 2.05 2.37 2.07 2.10 2.07 2.23

Lp 0.44 0.41 0.46 1.51 1.28 1.52 1.53 1.53 1.54

Lr 8.67 8.80 8.05 9.06 9.65 18.81 20.91 24.73 36.84

LδA
0.32 0.75 1.16 1.33 0.18 1.35 1.37 1.36 1.34

LδR
1.63 1.89 1.77 3.72 4.47 4.51 4.51 4.98 5.70

Nβ 0.99 1.06 1.32 1.85 1.36 1.96 2.05 2.21 3.92

Np 4.71 5.69 5.86 7.99 8.73 9.15 9.36 9.14 9.07

Nr 5.27 7.12 7.36 8.47 9.48 10.18 10.66 11.42 15.73

NδA
4.17 4.87 5.45 7.43 7.41 7.83 8.08 8.19 9.08

NδR
0.91 1.04 1.18 1.80 1.92 1.93 2.01 2.11 3.55

It can be seen that the noise lowered the accuracy of the es-
timated parameters regardless of the quantization level. When
noise was present in the outputs the estimates were considered
not accurate enough when the quantization level was 8. In this
case it was related to both – longitudinal and lateral directional
motion.

The estimated models responses were analyzed for data that
was not used in parameter estimation. The same inputs were
used as in the noise-free case. RMS for models obtained with
various inputs quantization levels is shown in Table 7. It can be
seen that the RMS confirms previous conclusions. The accuracy
is lower than for the noise-free case and it drops when signals
are quantized with less levels as can be expected. When noise
was present in the outputs the results were found accurate for

Table 7
Model verification (RMS) – noise in the outputs

Quantization levels

∞ 16 14 12 10 8 6 4 2

Ailerons 0.32 0.33 0.35 0.45 0.62 1.05 1.16 1.31 1.59

Elevator 0.40 0.42 0.47 0.50 0.68 1.13 1.34 1.54 2.01

Rudder 0.31 0.33 0.35 0.48 0.75 1.06 1.25 1.48 1.63

models obtained with multisines quantized with more than 8
states.

The T IC for the models validated with inputs not used in sys-
tem identification is shown in Table 8. Similar conclusions can
be made as for the RMS – predicting capabilities are lower than
for the noise-free case and they decreased when estimates were
obtained for inputs with fewer quantization levels. For both,
longitudinal and lateral motion, multisines with more than 8
states allow for good forecasting.

Table 8
Model verification (TIC) – noise in the outputs

Quantization levels

∞ 16 14 12 10 8 6 4 2

Ailerons 0.08 0.09 0.12 0.16 0.22 0.30 0.35 0.41 0.51

Elevator 0.11 0.11 0.13 0.16 0.24 0.31 0.37 0.52 0.64

Rudder 0.06 0.09 0.12 0.17 0.23 0.30 0.31 0.33 0.40

The presented output-error equations are valid under white
noise measurement assumption. Thus, including coloured noise
would be introducing modelling error. The aim of the paper was
to asset quanitized multisine inputs and not to check the output-
error sensitivity to noise type. Therefore, only white noise was
present in the data.

5.4. Noise in the inputs. The same process was performed
when measurement noise was available in the input data only.
The outcomes of the parameter estimation are presented in Ta-
ble 9.

Similarly to the case when noise was present in the outputs,
the accuracy of the estimates was lowered. The input provided
the object response that did not contain sufficient amount of in-
formation when multisines were quantized with 8 discrete states
for longitudinal and 10 for lateral-directional motion. This hap-
pened because the system identification algorithm was unable
to distinguish between the noise and high frequency compo-
nents that should be present in the input. Noise presence in the
inputs lead to increased error in all estimates as can be seen
when comparing average relative standard deviation for all es-
timates presented in Fig. 9.

The RMS for the models validated with inputs not used in
system identification is shown in Table 10. Again, it can be seen
that the accuracy drops when fewer levels are used for quantiza-
tion. However, this time it is possible to observe that the RMS
is above the threshold for ailerons and elevator when 8 levels
are used and for 10 levels for rudder deflection. Lower RMS
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Table 9
Relative standard deviations – noise in the inputs

Quantization levels
Θ

∞ 16 14 12 10 8 6 4 2

Xu 1.56 1.59 1.59 2.33 3.02 6.12 10.96 9.57 5.24

Xα 9.18 9.27 9.42 9.65 9.81 18.57 18.17 21.26 37.46

Xq 8.32 8.36 9.19 8.9 9.32 17.48 17.49 22.15 25.12

XδE
8.41 8.7 8.67 9.3 9.86 18.81 20.19 25.23 41.77

Zα 0.52 1.07 2.47 2.48 2.5 2.49 2.46 2.49 3.03

Zq 0.33 0.76 1.03 1.26 1.28 1.27 1.26 1.28 1.51

Mα 0.28 0.41 1.03 1.21 1.21 1.23 1.2 1.22 1.49

Mq 0.53 0.87 1.05 2.36 2.4 2.38 2.38 2.43 2.87

MδE
0.12 1.11 0.2 1.11 0.23 1.13 1.13 1.17 1.44

Yβ 6.78 7.99 8.45 8.59 10.37 10.34 10.93 16.39 31.74

Yp 4.05 5.23 4.85 5.3 5.5 5.49 5.76 6.39 8.78

Yr 0.89 1.16 1.18 1.17 1.29 1 .34 1.38 1.65 3.12

Lβ 0.61 2.37 2.37 2.36 2.36 2.38 2.37 2.41 2.79

Lp 0.44 0.47 0.45 1.26 1.27 1.28 1.3 1.31 1.53

Lr 8.25 9.09 9.57 9.76 10.06 17.33 20.69 21.43 37.38

LδA
0.36 0.67 1.02 1.16 1.17 1.17 1.18 1.2 1.45

LδR
1.73 1.79 2.16 3.77 3.8 3.82 3.85 4.94 6.05

Nβ 0.92 1.34 1.98 2.38 2.57 2.57 3.55 3.85 6.83

Np 4.53 5.65 5.81 6.54 7.02 6.94 8.27 8.84 9.15

Nr 5.97 7.21 8.14 8.08 9.94 10.76 11.34 12.29 16.99

NδA
4.88 5.39 6.03 6.26 6.73 7.71 8.01 8.75 9.6

NδR
0.83 1.2 1.79 2.24 2.35 2.37 2.46 2.77 4.21

Fig. 9. Average relative standard deviation

for the rudder validation input can be explained by Yβ and Lr
relative standard deviations that dropped below 10% when in-
puts were quantized at 10 levels (observing those parameters is
related mostly to rudder deflection).

The T IC for the models validated with inputs not used in
system identification is shown in Table 11. Again, lower fore-
casting capabilities can be observed for models estimated for
inputs with less states. It can be seen that predicting capabili-
ties for the rudder were good enough when more than 10 levels

Table 10
Model verification (RMS) – noise inputs

Quantization levels

∞ 16 14 12 10 8 6 4 2

Ailerons 0.33 0.33 0.36 0.46 0.68 1.12 1.25 1.47 1.73

Elevator 0.42 0.44 0.49 0.48 0.71 1.07 1.41 1.69 2.20

Rudder 0.31 0.34 0.36 0.59 1.02 1.25 1.46 1.65 1.79

Table 11
Model verification (TIC) – noise inputs

Quantization levels

∞ 16 14 12 10 8 6 4 2

Ailerons 0.09 0.09 0.12 0.16 0.22 0.31 0.38 0.45 0.56

Elevator 0.12 0.13 0.14 0.18 0.24 0.32 0.38 0.54 0.66

Rudder 0.06 0.10 0.12 0.18 0.31 0.32 0.34 0.36 0.46

were used for quantization. For ailerons and elevator this was
true for 8 quantization states.

Again, only white noise was present in the data.

6. Conclusions

In this paper an experiment with simultaneous multisine
ailerons, elevator and rudder excitations was presented. The in-
puts were quantized at various levels and used to excite a non-
linear aircraft model. The response of the object was registered
and used to estimate a linear model by using time domain out-
put error method.

It was shown that the linear model provided representative
aircraft response. When measurement noise was not in the data,
quantized inputs allowed to obtain accurate stability and control
derivatives from system identification when the the inputs were
quantized at 8 levels or more. Results with slightly higher ac-
curacy were obtained when identification was performed from
frequency responses.

When noise was present in the outputs, the accuracy was low-
ered and more quantization levels were required to obtain accu-
rate estimates. This was even more visible when measurement
noise was present in the inputs.

In future steps, quantized inputs should be applied on a real
aircraft during flight campaign. Moreover, it should be investi-
gated how the values of the quantized steps and the switching
times selection influence the accuracy of the system identifica-
tion results.
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Table 9
Relative standard deviations – noise in the inputs

Quantization levels
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for the rudder validation input can be explained by Yβ and Lr
relative standard deviations that dropped below 10% when in-
puts were quantized at 10 levels (observing those parameters is
related mostly to rudder deflection).

The T IC for the models validated with inputs not used in
system identification is shown in Table 11. Again, lower fore-
casting capabilities can be observed for models estimated for
inputs with less states. It can be seen that predicting capabili-
ties for the rudder were good enough when more than 10 levels
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were used for quantization. For ailerons and elevator this was
true for 8 quantization states.

Again, only white noise was present in the data.

6. Conclusions

In this paper an experiment with simultaneous multisine
ailerons, elevator and rudder excitations was presented. The in-
puts were quantized at various levels and used to excite a non-
linear aircraft model. The response of the object was registered
and used to estimate a linear model by using time domain out-
put error method.

It was shown that the linear model provided representative
aircraft response. When measurement noise was not in the data,
quantized inputs allowed to obtain accurate stability and control
derivatives from system identification when the the inputs were
quantized at 8 levels or more. Results with slightly higher ac-
curacy were obtained when identification was performed from
frequency responses.

When noise was present in the outputs, the accuracy was low-
ered and more quantization levels were required to obtain accu-
rate estimates. This was even more visible when measurement
noise was present in the inputs.

In future steps, quantized inputs should be applied on a real
aircraft during flight campaign. Moreover, it should be investi-
gated how the values of the quantized steps and the switching
times selection influence the accuracy of the system identifica-
tion results.
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