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1. Introduction

Vibrations in rolling bearings have three sources: structural,
production and operating. Structural sources of vibration oc-
currence result from the very nature of a rolling bearing oper-
ation. The number of rolling elements transmitting the load re-
currently changes while the bearing works. As a result of this,
variable elastic deformation develops in ball-raceway contact
zones. Considerable self-excited vibrations may occur as a con-
sequence of recurrent changes in the position of an imposed
load. The causes of the development of vibrations in rolling
bearings are related to the shape and size deviations, appearing
at the stage of production or assembly. These include the fol-
lowing: excessive shape inaccuracies, roughness, or waviness
of working surfaces of individual bearing components, and af-
ter assembly - bearing and basket slackness, as well. Moreover,
the causes include point defects of a rolling element and race-
way and bearing, and grease impurities formed during the pro-
duction process. Operating causes for the generation of vibra-
tions are related to the use of bearings and abrasive and fatigue
wear processes. Existing deviations and the condition of sur-
faces of mating components in a rolling bearing change during
operations. Also, new point and surface defects (e.g. pitting)
appear [1, 2].

In general, the latest research on the measurement of rolling
bearing vibrations can be divided into two groups: practical is-
sues (publications on rolling bearing diagnostics) and theoreti-
cal issues (regarding mathematical modelling of bearing vibra-
tions).
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A significant part of scientific articles on practical issues is
devoted to the assessment of the technical condition of a bearing
operating in a specific mechanical structure. The high popular-
ity of this issue resulted in numerous papers represented by such
articles as [3–8]. Articles of this type discuss diagnostic meth-
ods based on the analysis of real vibrations so as to precisely
determine the specific reasons of a defect. The papers related
to theoretical issues (described in Sections 2 and 3) are mostly
of mathematical equations. However, some of these models are
validated and were omitted in this article. In most cases, arti-
cles on modelling provide a historical overview of modelling,
and then they discuss just one new model. This article has been
written to demonstrate different viewpoints, and to show which
factors are omitted in the latest studies.

During its service life, a rolling bearing is exposed to nu-
merous and very complex physical phenomena, which make
its mathematical model much more complicated if considered
thoroughly. If it is necessary to model simultaneous defor-
mations within a ball-raceway contact zone, lubrication, fric-
tion processes or geometrical structure of working surfaces, it
becomes apparent that the use of analytical methods is very
difficult or just impossible. It may even happen that the an-
alytical solution of the equation is possible only when us-
ing approximations that make this solution practically use-
less. Numerical methods are applied in other cases [9]. Nu-
merical methods used to solve differential equations are based
on a geometrical interpretation of a differential equation. The
essence of numerical methods is to replace usually labour-
intensive calculations with other methods. Indeed, the majority
of currently introduced mathematical models of a rolling bear-
ing include models developed as a result of using numerical
methods.

At least a dozen or so factors affect the dynamic condition of
any manufactured bearing free from operating and/or assembly
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defects. First of all, they concern the manufacturing accuracy
and obtained geometrical structure of surfaces of major bearing
components, basic parameters of any completed bearing (ra-
dial and axial clearance, frictional moment and rotation accu-
racy), and factors related to auxiliary bearing components (lu-
bricant, cage and seals). The authors search for a model, which
would facilitate predicting vibrations in all manufactured bear-
ings subject to quality control.

Considering that to some extent even the most accurate
model (taking into account many factors) will always depart
from the real conditions, and taking into account the specific
character of industrial vibration measurements in rolling bear-
ings (brief measurement of a new bearing without operating de-
fects, examination of an unmounted bearing, sometimes also
without grease), the authors intend to develop a bearing model
based on the principle of multicriteria statistics. Numerous
studies on theoretical modelling of rolling bearing vibrations,
including [10-16] have been reviewed for this purpose. There
are models used for experimental studies; however, they do
not often include all the factors affecting vibrations and typi-
cally do not refer to quality control in industrial plants. More-
over, the available literature occasionally discusses empirical
models [17, 18], although those are incomplete. One can also
find comparative studies showing differences in simulations be-
tween two models only [19].

This article is intended to compare several different models
and to show factors which are included in the most recent theo-
retical models. Descriptions provided by the authors facilitate
finding those factors, which are often omitted. For this pur-
pose, besides a general description of some models, five con-
cepts representing different approaches to the problem have
been demonstrated here in detail. The discussed models are
also selected to demonstrate different numbers of degrees of
freedom.

2. Industrial measurement of rolling bearing
vibrations in quality control

Industrial measuring systems for rolling bearing vibrations be-
long to the most critical equipment in production plants. Larger
companies have even tens of devices of this type. Most often,
three devices measuring vibrations are located at the end of
each production line. Two of them are operated continuously
to measure vibrations in all finished products. Any bearing that
leaves production line is automatically placed in one device,
and after completing the measurement of one bearing side, it is
put in the second one, the other way round. The measurement
automation is less complicated if two bearing sides are mea-
sured at two different stations. Also, time required for a check
becomes shorter. The third device at the production line end
is used for a recheck (manual) of products possibly rejected
by automatic control. Moreover, the laboratories of industrial
companies are equipped with manually operated extra equip-
ment used for thorough bearing checks, testing new solutions
and performing statistical analyses. Figure 1 shows one of these
devices.

Fig. 1. The industrial testing stand used to measure rolling bearing
vibrations: 1 – spindle, 2 – electric motor, 3 – positioning set including

vibration sensor, 4 – pusher, 5 – monitor, 6 – loudspeaker

A spindle (1) driven by an electric motor (2) is the central
element of the testing equipment. The positioning set includ-
ing a vibration sensor (3) is located above the spindle. Axial
load is exerted on the bearing through the pusher (4). Apart
from a display panel or monitor (5) allowing us to read out
the result, the system is also provided with a loudspeaker (6)
for audio monitoring of the received measuring signal. Often,
very experienced factory workers are able to diagnose a bear-
ing defect on the basis of the signal. The methods used to mea-
sure rolling bearing vibrations are based on the internal proce-
dures, which must comply with the official standards [20–22].
According to the measuring principle, the tested rolling bear-
ing is set on a shaft spinning inside the spindle. The spindle
has a multi-purpose seat for shafts adapted to different bearing
types. The rotational speed of the shaft, and thus the inner ring
of the bearing, is precisely defined – 1800 rpm. If agreed by
the manufacturer and the buyer, in justified cases the rate of ro-
tation can be altered to 3600 rpm, 900 rpm, or 700 rpm. The
tested bearing requires axial load to ensure the correct mea-
surement of vibrations. The load is applied by way of pushing
the outer ring by a force dependent on a bearing type. Usu-
ally, pushers have adequate adjustment, and are replaceable or
to some extent versatile so as to match the tested bearing size.
Radial vibrations of working and loaded bearing are registered
by an electrodynamic vibration velocity sensor, in direct con-
tact with fixed outer ring. The sensor is mounted in a clamp,
which can move it along two axes. Figure 2 shows the dis-
cussed principle of operation. Minimum measurement duration
should be 0.5 s (for 1800 rpm). The measurement should be
quick enough not to reduce the production output (each manu-
factured bearing undergoes a vibration measurement at the pro-
duction plant, without any exceptions), and slow enough for
readings to stabilize. Changes in the results may arise due to
random factors only. The measurement procedure should also
consider minimizing the effect of the unstable dynamic condi-
tion of a bearing, connected with the beginning of the inter-
action between the bearing balls and raceway, or still insuffi-
ciently spread lubricant. In most cases, production plants check
bearing vibrations with applied target grease. The measurement
of lubricated bearings represents actual behavior of the manu-
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factured bearing during regular service. However, some com-
panies test bearing vibrations before applying grease. In this
case, interacting surfaces are covered with a thin film of oil.
Then, it is assumed that if the vibration level in unlubricated
bearings does not exceed a critical value, all the more it will
not exceed it after applying the lubricant, since grease dampens
vibrations.

Fig. 2. Schematic presentation of industrial measurement of rolling
bearing vibrations [23]

3. The development of mathematical models of
rolling bearing vibrations and general review
of the most recent publications

The first mathematical model of rolling bearing vibrations was
presented by Sunnersjo in 1978 [24]. Published studies were fo-
cusing on vibrations of bearings with positive slackness, loaded
radially. Self-excited vibrations (occurring independently of the
bearing quality and precision) were analysed. The model had
two degrees of freedom (displacement of inner ring in two per-
pendicular directions). Displacement of vibrations was mod-
elled using contact theory according to Hertz equations, omit-
ting mass and inertia of rolling elements. Generally, the foun-
dations for the models discussed today were developed in the
1980s and 1990s. The essential studies on the discussed topic
are described below.

In 1979, Gupta published a cycle of four articles describ-
ing the dynamics of a rolling bearing motion (determining the
forces and moments generated at rolling contact). The first two
studies [25, 26] concern a mathematical description of interac-
tions between rolling components and raceways in roller bear-
ings, whereas the next two [27, 28] contain a description of
mechanical phenomena occurring in ball bearings. Moreover,
these studies also include the effect of lubrication and interac-
tions of rolling elements with the cage. In 1980, Meyer, Ahlgren
and Weichbrodt presented in [29] the method used to predict
vibrations in a ball bearing with imperfections including the
misalignment of rings and wrong ball size. Lagrange equa-
tions were solved for bearing raceway moving in time under
rotation forces of balls. Authors McFadden and Smith mod-
elled vibrations in a ball bearing containing one- (1984) and
multi-point (1985) defects, located on an inner raceway [30,

31]. The signal model is based on a generation of a series
of pulses induced by ball surface impacts with a defect lo-
cated on the raceway. These pulses appear recurrently, depend-
ing on the rotational speed of the inner ring. In 1985, Rahne-
jat and Gohar presented a theoretical analysis of vibrations in
a setup consisting of two bearings supporting a rotating shaft
[32]. In this study, operation of bearings with grease is mod-
elled as a nonlinear system of springs and dampers, and the
analysis includes the case of imbalance or changing structure
of an inner raceway. In 1990, Aini presented the study on the
analysis of motion for precise grinding spindle with rolling
bearings. Ball contact with raceway was shown as nonlinear
springs simulating elastic strain. Additionally, the model ver-
sion was demonstrated, which included lubrication of bear-
ings as well. The model was put to validation, proving good
correlation of both theoretical and empirical results. In 1993,
the same author (with Gohar) presented an extended analy-
sis of this problem [33], and in 1995 (with Rahnejat and Go-
har) demonstrated a wide range of experimental works used
for comparison with the results of previous simulations [34].
Frequently referenced work [35] by Yhland from 1992 demon-
strates the model of a rolling bearing motion considering the
waviness of both raceways and the ball and uneven distribu-
tion of cage pockets. In 1997, Tandodn and Choudhury pro-
posed an analytical model of a bearing with 3 degrees of free-
dom (expanded in 2006). The model was used inter alia to
predict frequencies and amplitudes of vibration components
in rolling bearings (for vibrations resulting from a defect lo-
cated either on an outer raceway, inner raceway, or on one of
the rolling elements [36, 37]. An ordinary ball bearing under
radial and axial load was modelled. The demonstrated model
simulates a spectrum of vibrations that contains peaks with
characteristic frequencies of defects and their harmonics. In
2002, Liew, Feng and Hahn demonstrated four different mod-
els of bearing vibrations [38]. The most versatile model has
5 degrees of freedom and includes the following: loading in-
duced by a centrifugal force of the rolling element, working
angle, or radial play. A bearing model with five degrees of
freedom not only contains radial displacement of inner race-
way in two directions, but also axial displacement and rota-
tion around radial axes. In 2003, Sopanen and Mikkola were
the first to present the model of a bearing with six degrees
of freedom [39, 40]. Additional sixth degree of freedom of
a rolling bearing (rotation around a bearing axis) is gener-
ated by friction forces. However, an empirical approach has
been applied due to the high complexity of this added equa-
tion. The discussed model includes a lot of factors, inter alia,
basic rolling bearing kinematics, elastic deformation of bear-
ing components, elastohydrodynamic lubrication, waviness and
roughness of working surfaces, or single-point and scattered de-
fects.

The majority of present-day scientific articles on mathemati-
cal modelling of rolling bearing vibrations are the continuation
and gradual improvement of the first models. Authors around
the world are involved in the discussed issue, and below there
is a review of the most recent scientific works from the last few
years.
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Authors of study [41] present a mathematical model of bear-
ing vibrations, derived on the basis of a rotor system analy-
sis. Various defects are simulated, including faults related to
the loading of a bearing, and inner or outer ring defects. Then,
a model verification is shown at the test stand containing a
three-axial vibration acceleration sensor. On the other hand, ar-
ticle [42] presents an analytical model simulating an interac-
tion between rolling elements and a raceway, based on a model
from 1984. This model considers the bearing geometry, relative
sliding forces, and resultant normal and tractive forces. More-
over, the model considers strictly defined geometrical defect lo-
cated on the outer raceway. Verification tests were carried out
at two test stands, containing the tested bearings with fault re-
sembling the modelled defect, and vibrations were registered
by an accelerometer installed in the test area. Then, the au-
thors of the other study [43] modelled bearing vibrations us-
ing the HOSTSMO {higher-order super-twisting sliding mode
observation} technique expected to improve prediction accu-
racy for the effects of the operation of a bearing with a specific
defect. The model developed in this way was verified at the
test stand containing a vibration acceleration sensor. The tests
included bearings with an outer or inner raceway or ball de-
fects, and bearings without any defects. Article [44] discusses
a numerical model of rolling bearing vibrations embodying the
loading distribution in a bearing, elasticity of individual bear-
ing elements, oil film properties and, also, a signal transmis-
sion between the bearing and vibration sensor. The verifica-
tion of the diagram with vibrations measured at the test stand
is carried out using many parameters characteristic for rolling
bearings, including arithmetic mean, effective value, peak fac-
tor, shape factor, kurtosis, or impulsivity factor. Spectra of vi-
brations are directly compared, as well. Study [45] proposes a
scheme applicable primarily in the analysis of the impact of
shell rigidity and defect size on vibrational characteristics of
the bearings in a rotor system. The mathematical formula of
the model contains defects on both the inner and outer ring.
The obtained results are compared on the basis of an effective
value derived from the vibration acceleration signal. A more
complex problem is discussed in study [46]. Its authors do not
model point defect anymore, but faults distributed along the
perimeter of both the outer and inner ring. Most often, defects
of this type appear as a result of electro-erosion or propaga-
tion of point defects. The discussed paper contains a compar-
ison of vibration spectrum for a bearing with a natural race-
way defect with the vibration spectrum simulated using a bear-
ing model with defects distributed evenly at specific angles
along the perimeter of rings, among other things. An interest-
ing line for further research is outlined in study [47], where
authors focus on the discrepancies between the vibration signal
of a bearing damaged as a result of its prolonged operation (or
time-consuming durability tests), and the signal from a delib-
erately damaged bearing [48] (e.g. using an electric engraver,
by means of drilling, or electro-abrasive treatment). The dis-
cussed algorithm is expected to predict the signal of vibrations
in a rolling bearing damaged naturally on the basis of the signal
of vibrations obtained for the bearing with a deliberately made
defect.

4. Specification of selected latest models of rolling
bearing vibrations

The models presented below are understood as a system of
equations, the number of which depends on the assumed de-
grees of freedom. Due to highly complicated formulas, this pa-
per is limited only to the general formulation of the modelling
of bearing subassemblies and phenomena occurring during its
operation. The analysis shown below concerns five different
models considering various factors affecting the vibration level
generated by a rolling bearing. Symbols of unambiguous pa-
rameters, e.g. the mass of the outer ring or the angular position
of the rolling element, have been unified for all models. In other
cases, when the parameter symbol is specific for a given model
only, original designation has been left in order to make it easy
to find a certain parameter in the reference material.

4.1. Basic model of a ball bearing with four degrees of free-
dom . The first of the described models presents a standard
dynamic model of a ball bearing with four degrees of freedom.
Apart from self-excited vibrations derived on the basis of defor-
mations generated as a result of applying Hertz contact theory,
publication [49] from 2016, written by Shi, Su, and Han, in-
cludes in its equations local rectangle-shaped defects located on
an inner or outer raceway, or a ball. In the demonstrated exam-
ple, the contact between the ball and raceway is modelled as a
simple system of spring and damper connected in parallel. This
induces a nonlinear relation between the force and deforma-
tion. The outer raceway is installed on a rigid support, whereas
the inner raceway is stiffly fixed to a rotating shaft. Permanent
radial loading is applied to the shaft. The analyzed model is
shown in Fig. 3.

Fig. 3. Basic model of a rolling bearing with four degrees of freedom
[49]

Four differential equations that form mathematical model of
rolling bearing vibrations are shown by the formulas (1)–(4):

m1ẍ1 + c1ẋ1 − c1ẋ2 + k1xx1 − k1xx2 = Fx , (1)

m1ÿ1 + c1ẏ1 − c1ẏ2 + k1yy1 − k1yy2 = Fy −Ws , (2)

m2ẍ2 +(c1 + c2x)ẋ2 − c1ẋ1 + k2xx2 = Fx , (3)

m2ÿ2 +(c1 + c2y)ẏ2 − c1ẏ1 + k2yy2 = Fy , (4)
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where: m1, m2 are the mass of the inner ring and the shaft {1}
and mass of the outer ring {2}; x1, x2, y1, y2 are the radial dis-
placements in horizontal {x} and vertical {y} direction of the
inner ring {1} and the outer ring {2}; c1, c2x, c2y are damping
coefficients for the ball {1} and bearing housing in a radial di-
rection: horizontal {2x} and vertical {2y}; k1x, k1y, k2x, k2yare
the radial stiffness coefficient for the shaft {1} in horizontal {x}
and vertical {y} direction, for housing {2} in horizontal {x} and
vertical {y} direction; Ws denotes the radial load applied to the
shaft; Fx, Fy are components of generated forces in the radial di-
rection: horizontal {x} and vertical {y}, given by the following
formula:

Fx =
z

∑
j=1

K
[
(x1 − x2)cosθ j+

+(y1 − y2)sinθ j −Cr − ς j
]3/2 cosθ j , (5)

Fy =
z

∑
j=1

K
[
(x1 − x2)cosθ j+

+(y1 − y2)sinθ j −Cr − ς j
]3/2 sinθ j , (6)

z denotes the number of balls; K is the deflection factor or con-
stant for elastic deformation of Hertz contact; θ j is the angular
position of the ball relative to axis x; Cr denotes internal radial
clearance; ς j is the deformation due to a faulty location in an
angular position of the j-th rolling element.

As mentioned above, this model also considers the defect in
a form of a simple rectangle with sharp edges, visible in Fig. 4.

Fig. 4. Modelling of basic defect in a form of a rectangle with sharp
edges: a) defect location on outer raceway, b) defect location on inner

raceway [49]

The inclusion of a single defect on the outer and/or inner
ring raceway in the simulated signal is connected with satis-
fying conditions derived on the basis of geometrical relations
shown in Fig. 4. In the model, element ς j is responsible for
an additional motion induced by the defect. This element can
get additional amplitude dr (when ball falls into the defect) or

0 value (in any other case). Depending on the condition to be
satisfied, for both raceways parameter ς j is:

ς j =





dr,
∣∣∣mod

[
θ j −

(
ϕd +

ϕb

2

)
, 2π

]∣∣∣< ϕb

2
,

0, any other case.
(7)

On the other hand, deformation resulting from the location fault
in an angular position of the ith rolling element ς j for the ball is:

ς j =





0, j �= k,

dr, 0 < ϕd < ϕb , π < ϕd < (π +ϕb), j = k,

0, any other case,

(8)

where: for the inner raceway ϕd = ωst+ϕd0; for the outer race-
way ϕd = ϕd0; and for the rolling element ϕd = mod(ωst +
ϕd0, 2π); ϕd denotes the angular position of the defect at a
given moment; ϕb is the angle related to defect width; k is the
number of the ball, on which the defect was modelled; ϕd0 de-
notes the initial angular position of the defect; ωs is the angular
velocity of the shaft; t denotes the time.

The demonstrated dynamic model of a rolling bearing, with
the defect on the outer raceway and/or the inner raceway and/or
the rolling element, can be solved and analyzed, e.g. using the
Runge-Kutta numerical method.

4.2. The model including changing defect topography. The
second model shows the modification of the standard model,
involving inclusion of the changes in the topography of simu-
lated local defects located on the inner and outer raceway. The
dynamic model of a ball bearing from 2014, described by Liu
and Shao [50] has 2 degrees of freedom. They are related to
the displacement of the inner ring with the shaft in two radial
directions perpendicular to each other. The outer ring located
in the housing is considered immovable and non-deformable.
Same as in the case of the model described in 3.1, the work of
the ball with raceways is simulated using a non-linear system
including a spring and a damper, and elastic deflections are de-
rived from the Hertz theory. The model structure includes the
change in defect topography caused by the ball hitting defect
edge. Cyclic strokes induce plastic deformations, as a result of
which edges of local defects become blunt, changing the sharp
edge into small, smooth, and flat surfaces. It is assumed that
both defect edges change symmetrically. The process involving
defect topography modifications is shown in Fig. 5.

Fig. 5. Different types of ball contact with defect edge: a) sharp edge,
b) slightly blunt edge, c) strongly blunt edge [50]
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where: m1, m2 are the mass of the inner ring and the shaft {1}
and mass of the outer ring {2}; x1, x2, y1, y2 are the radial dis-
placements in horizontal {x} and vertical {y} direction of the
inner ring {1} and the outer ring {2}; c1, c2x, c2y are damping
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rection: horizontal {2x} and vertical {2y}; k1x, k1y, k2x, k2yare
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rection: horizontal {x} and vertical {y}, given by the following
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z denotes the number of balls; K is the deflection factor or con-
stant for elastic deformation of Hertz contact; θ j is the angular
position of the ball relative to axis x; Cr denotes internal radial
clearance; ς j is the deformation due to a faulty location in an
angular position of the j-th rolling element.

As mentioned above, this model also considers the defect in
a form of a simple rectangle with sharp edges, visible in Fig. 4.

Fig. 4. Modelling of basic defect in a form of a rectangle with sharp
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The inclusion of a single defect on the outer and/or inner
ring raceway in the simulated signal is connected with satis-
fying conditions derived on the basis of geometrical relations
shown in Fig. 4. In the model, element ς j is responsible for
an additional motion induced by the defect. This element can
get additional amplitude dr (when ball falls into the defect) or

0 value (in any other case). Depending on the condition to be
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On the other hand, deformation resulting from the location fault
in an angular position of the ith rolling element ς j for the ball is:
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where: for the inner raceway ϕd = ωst+ϕd0; for the outer race-
way ϕd = ϕd0; and for the rolling element ϕd = mod(ωst +
ϕd0, 2π); ϕd denotes the angular position of the defect at a
given moment; ϕb is the angle related to defect width; k is the
number of the ball, on which the defect was modelled; ϕd0 de-
notes the initial angular position of the defect; ωs is the angular
velocity of the shaft; t denotes the time.

The demonstrated dynamic model of a rolling bearing, with
the defect on the outer raceway and/or the inner raceway and/or
the rolling element, can be solved and analyzed, e.g. using the
Runge-Kutta numerical method.

4.2. The model including changing defect topography. The
second model shows the modification of the standard model,
involving inclusion of the changes in the topography of simu-
lated local defects located on the inner and outer raceway. The
dynamic model of a ball bearing from 2014, described by Liu
and Shao [50] has 2 degrees of freedom. They are related to
the displacement of the inner ring with the shaft in two radial
directions perpendicular to each other. The outer ring located
in the housing is considered immovable and non-deformable.
Same as in the case of the model described in 3.1, the work of
the ball with raceways is simulated using a non-linear system
including a spring and a damper, and elastic deflections are de-
rived from the Hertz theory. The model structure includes the
change in defect topography caused by the ball hitting defect
edge. Cyclic strokes induce plastic deformations, as a result of
which edges of local defects become blunt, changing the sharp
edge into small, smooth, and flat surfaces. It is assumed that
both defect edges change symmetrically. The process involving
defect topography modifications is shown in Fig. 5.

Fig. 5. Different types of ball contact with defect edge: a) sharp edge,
b) slightly blunt edge, c) strongly blunt edge [50]
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The change in the local defect topography changes both the
trajectory of the ball running on race, and the nature of contact
between the rolling element and race. In the case of the sound
race, deformations are simulated as ball-ball contact. When the
rolling element hits still an unmodified defect edge, the contact
nature changes into ball-line contact, whereas when the bearing
ball rolls on a blunt edge, elastic deformation is simulated as
ball-plane contact. In the described model, the type of the ball
contact with the defect is being identified on the basis of three
geometrical parameters of the defect: ξd is the ratio of defect
length L (defect size in ball motion direction) to defect width
B (defect size in a perpendicular direction to the ball motion
route), ξbd is the ratio of the ball diameter to the smaller of de-
fect sizes: d/min(L;B) and γ (0 < γ < π/2) is the defect edge
cutting angle. This formulation facilitates the simulation of dif-
ferent defect shapes, e.g. point defect or crack. Different defect
shapes and their size designations are demonstrated in Fig. 6.

Fig. 6. Simulation of two types of different defects: a) point defect and
raceway crack, b) crack simulation, c) point defect simulation [50]

The two equations for the described model motion are as fol-
lows:

m1ẍ1 + c1ẋ1 +K
Z

∑
j=1

λ jδ
3/2
j cosθ j = Fx , (9)

m1ÿ1 + c1ẏ1 +K
Z

∑
j=1

λ jδ
3/2
j sinθ j = Fy . (10)

Total deformation resulting from the contact of j-th ball set at
the angle θ j:

δ j = x1cosθ j + y1 sinθ j −Cr −H ′, (11)

where: λ j denotes the loading zone parameter for loading gen-
erated by j-th rolling element (its value can be either 1 or 0, de-
pending if δ j is a positive value, or less or equal to 0). The other
symbols are the same as those described for the first model
shown in 3.1. Element H is a time-varying function of forced
displacement caused by simulated defects. Value H depends on
the values of coefficients ξd and ξed , and takes four different
forms, which are a function of the following geometrical pa-
rameters of the model:

H1, H2, H3, H4 = f (γ, l, Do, Di, H, B, d) , (12)

where: l denotes the blunt edge surface length; Di is the inner
raceway diameter; Do is the outer raceway diameter; H denotes
the defect depth and d is the ball diameter.

The authors of the publication simulate the vibration acceler-
ation signal by way of solving the demonstrated equations us-
ing the Runge–Kutta fourth-order method with a constant time
step.

4.3. The model including outer ring deformation. The third
analyzed model presents a modification of the standard model,
involving the inclusion of the deformation of the outer ring,
built using finite elements. Finite elements are of two-node type
and none of them is stiffly blocked. As a result, the outer ring is
fully deformable in radial direction. Tadina and Boltezar are the
authors of model [51] developed in 2011. The model shown in
Fig. 7 has four degrees of freedom, related to the outer ring dis-
placement in two radial directions perpendicular to each other,
the ball motion, and outer ring deformation.

Fig. 7. The model of bearing vibrations considering deformation of an
outer ring consisting of two-node finite elements [51]

Moreover, the simulation includes the centrifugal force of
balls, sliding between the working surfaces and flexibility of
housing, which can undergo an unsymmetrical deformation. In
the demonstrated model, the ball is modelled as a separate bear-
ing component, which can work both with the inner and outer
raceway. In the two previous models, the ball was simulated
as an interaction between two raceways connected in parallel
by a damper and spring. However, the model does not embody
a whole range of factors, including: lubrication, the ball rota-
tion around own axis, changes in the ball motion path during
operation, temperature changes (change in grease viscosity, ex-
pansion of rolling elements and raceway, and reduced material
strength) as well as the interaction between the basket and other
bearing elements.

m1ẍ1 + k1

Z

∑
j=1

δ 3/2
1 j

ρ jcosθ j + x2 − x1

χ j
=Ws cosθs , (13)

m1ÿ1 + k1

Z

∑
j=1

δ 3/2
1 j

ρ j sinθ j + y2 − y1

χ j
=Ws sinθs , (14)
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mbρ̈ j −ρ jω2 + k2δ 3/2
2 j − kiδ

3/2
i, j

β
χ j

=

− mbgsinθ j −mb (ẍ2 cosθ j + ÿ2 sinθ j) , (15)

M∆̈+C∆̇+K∆ = Fm , (16)

where: β = ρ j + (x2 − x1)cosθ j + (y2 − y1)sinθ j; k1, k2 are
the radial flexibility coefficient for the inner {1} and outer {2}
raceway; δ1 j, δ2 j are the deformations of the ball – inner ring
{1} and the ball – outer ring {2} contact; ρ j denotes the the dis-
tance of j-th ball from the outer ring centre in radial direction;
χ j is the distance of the ball centre from the inner raceway in
the radial direction; θs denotes the angular position of the in-
ner raceway relative to the outer raceway centre; mb is the ball
mass; ω denotes the angular velocity of the shaft; g denotes
the gravitation acceleration; M is the matrix of masses; C is the
damping matrix; K is the rigidity matrix; ∆ denotes the vector
of displacement; Fm is the vector of node forces.

The main purpose of the authors’ model was to study the
bearing behaviour during operation at a time-varying rotational
speed (bearing run-down). The demonstrated differential equa-
tions of motion were solved numerically using the modified
Newmark integration method.

4.4. The model including waviness of rings and lubrication.
In the models discussed so far, the raceways had homogeneous
surfaces and time-varying elastic deformations were based on
the sinusoidal function. In 2015, Liu and Shao demonstrated a
bearing model embodying both race surface waviness and work
of a rolling element with a raceway in a lubricating medium
[52]. The model facilitates a simulation of waviness, which is
the same along the entire perimeter, but it may differ on the in-
ner and outer races. As a result of cyclic changes in the raceway
radii of curvature, the nature of the rolling element and race
work undergoes considerable changes. Moreover, the changes
in the raceway radii of curvature generate changes in time of
lubricating oil film thickness. The discussed model concerns a
rolling bearing, but it can be also effectively used to predict ball
bearing vibrations.

Figure 8 demonstrates how contact rigidity may change de-
pending on the angular position of the outer ring.

The system of equations consists of two dynamic equations
of a motion, and the degrees of freedom are related to the axial
displacement of the outer ring in two perpendicular directions.

m1ẍ1 + cẋ1 +K′
Z

∑
j=1

λ jδ
10/9
j cosθ j = Fx , (17)

m1ÿ1 + cẏ1 +K′
Z

∑
j=1

λ jδ
10/9
j sinθ j = Fy , (18)

K′ – total flexibility coefficient for the contact between rolling
element and races (smooth and with waviness). Coefficient K′

includes all of the following: a total flexibility coefficient for
the contact between one rolling element and two non-lubricated
smooth races, a total flexibility coefficient for the contact be-
tween one rolling element and two non-lubricated races charac-

Fig. 8. Diagram of a rolling bearing model that includes raceway sur-
face waviness [52]

terised by certain waviness, a total flexibility coefficient for the
contact between one rolling element and two lubricated smooth
races, a total flexibility coefficient for the contact between one
rolling element and two lubricated races characterised by cer-
tain waviness.

All other symbols have already appeared in previous descrip-
tions; however, in the case of a problem formulated in this way,
total deformation resulting from the contact of j-th rolling ele-
ment set at the angle θ j relative to the horizontal axis is:

δ j = xcosθ j + ysinθ j −Cr +Π j +hi j +ho j , (19)

where: hi j is the central thickness of the film between the rolling
element and inner race place of j-th roller, ho j is the central
thickness of the film between the rolling element and outer race
in place of j-th roller. Time-varying function driving dislocation
caused by a given case of waviness in place of the j-th rolling
element Π j is given by the following formula:

Π =
Nw

∑
s=1

Πws sin
(

2Lws

λws

)
, (20)

where: Nw denotes the number of waves, Πws amplitude of s-th
is the wave, Lws denotes the angular position of wave, average
length of s-th wave.

The demonstrated equations are solved using the Runge–
Kutta fourth-order method with constant time step.

4.5. Dynamic model of a damaged bearing considering
changes in the viscosity damping coefficient. The last of the
analyzed models was presented by Kong, Huang, Jiang, Wang,
and Zhao in 2019. The model predicts the operation of ball
bearings with a localized defect on the outer race and facili-
tates the examination of the impact of the damping variation on
the vibrations generated by the faulty bearing [53].

The damping of vibration in a rolling bearing depends mainly
on the internal clearance, applied force, rotational speed of the
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where: Nw denotes the number of waves, Πws amplitude of s-th
is the wave, Lws denotes the angular position of wave, average
length of s-th wave.

The demonstrated equations are solved using the Runge–
Kutta fourth-order method with constant time step.

4.5. Dynamic model of a damaged bearing considering
changes in the viscosity damping coefficient. The last of the
analyzed models was presented by Kong, Huang, Jiang, Wang,
and Zhao in 2019. The model predicts the operation of ball
bearings with a localized defect on the outer race and facili-
tates the examination of the impact of the damping variation on
the vibrations generated by the faulty bearing [53].
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shaft and also the type of grease used. For other models, the
damping coefficient is determined empirically and has a con-
stant value. The authors of this paper presented a concept in
which the damping coefficient may change its value. The pre-
sented model allows for the prediction of the value of the em-
pirical damping coefficient depending on various bearing op-
erating conditions, e.g. the shaft rotational speed or applied
load. This model has 5 degrees of freedom and does not con-
sider some very important elements such as: ball slipping, axial
forces, or uneven distance between the balls. In addition, the
authors used the assumption that a lubricating film always ex-
ists. Figure 9 shows a scheme of the model presented in the
discussed paper.

Fig. 9. a) The vibration model of the bearing system with 5 degrees
of freedom, b) Contact model of the ball and the raceway, c) a spring-

damping model [53]

The five equations representing the described model are as
follows:

m1ẍ1 + csẋ1 +Ksx1 +F1x +Fd1y = 0, (21)

m1ÿ1 + csẏ1 +Ksy1 +F1y +Fd1y =−m1g , (22)

m2ẍ2 −F2x −Fd2x = 0, (23)

m2ÿ2 −F2y −Fd2y =−m2g−Wh , (24)

mδ̈2 j =
(
F1 j +Fd1 j

)
cos(θ1 j −θ2 j)

−(F2 j +m1)+mb(2π fc)
2r, (25)

cs is the damping of the shaft; Ks denotes the elastic coefficient
of the rotating shaft F1x, F1y, F2x, F2y are the sum of contact
forces between all the balls and the inner ring {1} and the outer
ring in the horizontal direction {x} and vertical direction {y};
Fd1x, Fd1y, Fd2x, Fd2y are the sum of viscosity damping forces
between all balls and the inner ring {1} and the outer ring in
the horizontal direction {x} and vertical direction {y}; Wh is the
radial load applied to the housing; F1 j, F2 j are the contact forces
of a j-th ball between the inner {1} and outer {2} raceways;
θ1 j and θ2 j are the angular positions of the j-th ball on the
raceways, respectively; fc is the rotation frequency of the ball;
r is the radius of the ball.

The viscosity damping forces appearing in the model are pro-
portional to the cb coefficient, which is the viscosity damping
coefficient between the ball and the raceway. Its value is af-
fected by the viscosity of the lubricant and may change, de-
pending on the operating conditions of the bearing.

5. Conclusions

The result of the industrial measurement of rolling bearing vi-
brations carried out as part of quality control process at indus-
trial plants is of unknown value and very difficult to determine
accurately. There are no reference bearings for which the vol-
ume of the generated vibrations would be precisely known to
provide the basis for determining the tested device efficiency.
Moreover, there are no systems for measuring the rolling bear-
ing vibrations which would show the correct value for the tested
bearing with very high accuracy, and which would be the ref-
erence for other systems. It is possible to calibrate a measure-
ment chain of a sensor, to measure the pusher eccentricity or
the run-out of the measuring system spindle, but representing
the correct value for the vibration level in the tested bearing
will never be guaranteed. Consequently, an attempt can be made
to develop a theoretical model of a newly built rolling bearing
which, considering a considerable number of factors, would al-
low for predicting the vibration level for a real bearing with
known parameters. The analysis shown in the article indicates
that there is no model that would embody all highly compli-
cated factors. The completed analyses show that in most cases
the following factors are excluded: the inhomogeneous real ge-
ometrical structure of the raceway surface, the unsymmetrical
shape of the simulated defect, the impact of temperature on ma-
terial properties of bearing components and grease, the geomet-
rical structure and faults in rolling elements, the deformations
in all mating elements of a bearing, a change in time of the
existing deviations and properties of the surfaces of raceways
and rolling elements, the impurities generated during produc-
tion processes and grease fouling, defect propagation in time,
the interaction of bearing elements with a basket or gaskets,
sliding, change of a rolling element trajectory, etc.

In principle, the article is an overview demonstrating selected
mathematical models of rolling bearing vibrations, which may
possibly be used for industrial purposes. However, as it turns
out, most analytical models focus on a bearing with an obvi-
ous defect, which may appear only after a long time in service
or in wrong service conditions. Therefore, the proposed models
are not versatile. Moreover, thorough analysis of these mod-
els allows for stating that they are developed using far-reaching
simplifications and refer to only a few factors affecting bear-
ing vibrations. There is no mathematical model, which would
include the vast majority of real factors. The article facilitates
finding a new viewpoint and deriving the following conclusion:
in order to create a versatile experimental model, it is required
to carry out tests considering all factors affecting the vibration
level and using multicriteria statistics.

The sought-after model should include discrete imperfec-
tions that affect vibrations (deviations of shape, size and po-
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sition, excessive waviness, micro-waviness and roughness, or
impurities), resulting directly from the production process and
possible technological errors. Moreover, the authors believe
that the final conclusion constitutes their original contribution.
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