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1. Introduction

In the field of modern control systems covering the communi-
cation plants, the MIMO structures play a significant role, espe-
cially in terms of entire process robustification [1–5]. Through
an application of a plethora techniques, strictly related to sys-
tems having different numbers of input and output variables,
we can impact on the detrimental effects, often observed during
various nominal operations [6]. In fact, for square plants with
the same inputs and outputs, we can not effectively decrease the
broadly understood parasitic outcomes, being in relation with,
e.g., energy consumption or unsatisfactory data capacity of dif-
ferent industrial nets [6, 7]. Therefore, in order to fulfill all re-
quirements guaranteeing the proper work of different systems,
the special inverse model control-oriented calculus has recently
been offered and efficiently applied to robust control plants [6]
and telecommunications systems [7] as well as computer net-
works [8]. Thus, the newly proposed generalized inverses can
be employed in various theoretical and practical branches, giv-
ing rise to meet the needed conditions specified by the engineer-
ing design [9–15]. Please note, that in case of nonsquare MIMO
objects, the nonuniqueness property plays the important role,
which usually effects the elimination of any drawbacks [7]. In
the manuscript, the new parameter/polynomial generalized in-
verses are recalled and some connections between two crucial
ones are indicated. The so-called nonunique S-inverse and σ -
inverse are compared, in particular in terms of existing degrees
of freedom [16]. A number of dependencies are formulated,
what certainly proves the partial uselessness of typical Moore-
Penrose inverse. Henceforth, the resulted unified approach can
successfully predefine the robust properties of analyzed plant,
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this advantage is clearly demonstrated in the paper. Indeed, the
application of the new combined method can offer the oppor-
tunities to improve the inverse model control-originated algo-
rithm devoted to any physical nonsquare plants [17–24]. Re-
placing the Moore-Penrose inverse by the S and σ inverses will
certainly impact on the performance indices, directly leading to
design of efficient multivariable control schemes.

Therefore, the manuscript is organized in the following man-
ner. In the Section 2, the nonunique right and left generalized S
and σ inverses are observed. The inverse-oriented background
involving the representative instances associated with the com-
pared degrees of freedom is shown in the Section 3. Two rela-
tionship conjectures of the next section with the accompanying
algorithms constitute the main accomplishment of the paper.
The conclusions with appendices successfully end the innova-
tive investigation proposed in the manuscript.

2. Generalized S and σ inverses of nonsquare
polynomial matrices

Following the notions of the introduction section and, most
importantly, in order to show the main achievement of the
manuscript, the brief descriptions of two recently introduced
nonunique inverses should immediately be discussed. We will
start our investigation with the generalized Smith factorization-
oriented S-inverse being ready to applied to any full normal
rank matrix polynomial.

2.1. S-inverse. For a plant described by the polynomial matrix
of full normal rank as follows

B(q−1) = b 0 +b1q−1 + . . .+b kq−k, (1)

where B ∈ Rm×n(q−1), k = 0,1, . . . and q−1 stands for the
one-step backward shift operator, the first step of finding the
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right/left S-inverse is to perform a matrix decomposition. Since
the nonsquare matrix B(q−1) covers the FIR-type polynomi-
als of different degrees, the Smith factorization should be com-
pleted in the following manner

B(q−1) = U(q−1)Σ(q−1)V(q−1), (2)

under unimodular matrices U ∈ Rm×m(q−1) and V ∈
Rn×n(q−1), as well as, structure Σ ∈ Rm×n(q−1) involving the
eigenvalue(s) of B ∈ Rm×n(q−1).

Remark 1. In the case of B(q−1) employing some IIR-type fil-
ters, we interchangeably use the Smith-McMillan formulation.

Finally, the respective right and left nonunique S-inverse can
be presented as

BR
S(q

−1) = V−1(q−1)ΣR(q−1)U−1(q−1), (3)

and
BL

S(q
−1) = V−1(q−1)ΣL(q−1)U−1(q−1), (4)

where symbol (.)R/L denotes any right/left inverse including the
unique Moore-Penrose one. Naturally, the generalized inverses
implement some so-called degrees of freedom, strictly derived
from the M(q−1) matrix polynomial being in relation with two
corresponding forms (3) and (4) through the

ΣR
n×m(q

−1) =

[
D̃m×m(q

−1)

M(n−m)×m(q
−1)

]
, (5)

and

ΣL
n×m(q

−1) =
[

D̃n×n(q
−1) Mn×(m−n)(q

−1)
]
, (6)

having square diagonal matrix D̃(q−1) possibly arranges the in-
versions of the so-called transmission zeros of B(q−1) [8].

Let us switch now to the generalized polynomial σ -inverse
in the subsequent section.

2.2. σ -inverse. For a system defined in the FIR-related do-
main as in Formula (1), the nonunique right and left σ -inverses
sound in the following way

BR
σ (q

−1) = βββ T(q−1)
[
B(q−1)βββ T(q−1)

]−1
, (7)

and
BL

σ (q
−1) =

[
βββ T(q−1)B(q−1)

]−1
βββ T(q−1), (8)

respectively, considering that the full rank βββ
m×n

(q−1) stands
for the arbitrary (polynomial) degrees of freedom [6].

Remark 2. Note, that in the cases: M(q−1) = 0 and βββ (q−1) =

B(q−1), the right and left-oriented new methods reduce to the
respective minimum-norm and least-squares instances of the
classical Moore-Penrose inverse.

Remark 3. Observe, that two crucial generalized inverses have
often a plethora of different behaviors, efficiently used in the

various engineering tasks associated with the control and sys-
tems theory, as well [6, 7]. Therefore, in order to clarify these
interesting properties, which can interchangeably be applied de-
pending on the context, the unified framework, in particular in
terms of employed degrees of freedom, is effectively postu-
lated here. Although, the new a approach is shown for rather
narrow set of multivariable plants, the conducted relationship
can immediately be extended to a general solution covering all
transfer-function-oriented nonsquare systems in the nearest fu-
ture.

Hence, the next section shows the main goal of the paper
resulted in the existing dependences of two inverses in sense
of the degrees of freedom characteristics for arbitrary selected
matrix polynomial B(q−1).

3. Relationship between S- and σ -inverse:
a motivation study

At the beginning, it should be indicated, that the preliminary in-
vestigation covering the broadly understood union of two com-
pared S- and σ -related structures has been performed under
Ref. [16]. Some similarities have been appointed there, which
are effectively extended in the manuscript. Although, the right-
and left-invertible scenarios seem to rather be identical, some
peculiarities are risen, finally to create the useful compact tool
for the scientific and engineering world societies.

In order to clarify the new issues that have never been seen
before, two representative instances have separately been ex-
plored and explained in detail below.

3.1. Right-invertible scenario. Consider a nonsquare plant
described by the matrix B3×5(q

−1) in the form of

B(q−1) =




b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35


 , (9)

employing the polynomial-related elements reduced to the pa-
rameter ones under some branch-oriented requirements.

Following the notion, after usage of the Smith decomposi-
tion, the generalized right S-inverse sounds as follows

BR
S (q

−1) = V−1(q−1)ΣR(q−1)U−1(q−1) =

=




v11 v12 v13 v14 v15

v21 v22 v23 v24 v25

v31 v32 v33 v34 v35

v41 v42 v43 v44 v45

v51 v52 v53 v54 v55




−1

·




1/s11 0 0
0 1/s22 0
]0 0 1/s33

m11 m12 m13

m21 m22 m23







u11 u12 u13

u21 u22 u23

u31 u32 u33



−1

, (10)
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where expressions: s11, . . . ,s33 constitute the eigenvalues of
B(q−1), whereas: m11, . . . ,m23 are associated with the inverse-
derived degrees of freedom arranged by the pencil M(q−1).

Remark 4. Let us remind, that due to the space limitation rea-
son, the cells of matrix structures represent the polynomials of
different degrees. Naturally, the studies can cover the case in-
volving more general forms – the typical nature of the said de-
grees of freedom. In addition to the parameter and polynomial
modes derived from the S and σ inverses, the degrees of free-
dom can be associated with other structures supported by e.g.
the rational function expressions.

On the other hand, the consideration brought us to the specifi-
cation of a σ -inverse-related example pursuing the matrix poly-
nomial B(q−1), in the following manner

BR
σ (q

−1) = βββ T(q−1)
(

B(q−1)βββ T(q−1)
)−1

=




β11 β21 β31

β12 β22 β32

β13 β23 β33

β14 β24 β34

β15 β52 β35










a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35




·




β11 β21 β31

β12 β22 β32

β13 β23 β33

β14 β24 β34

β15 β52 β35







−1

. (11)

Thus, the fundamental merit of the paper should again be
reappeared. We are trying now to give some formulation allow-
ing to combine two aforementioned right-invertible approaches.
Note, that since these inverses involve structurally different de-
grees of freedom, the operation seems to be rather complex,
in general. Therefore, after solid mathematical way, employing
the crucial expression

BR
S(q

−1) = BR
σ (q

−1), (12)

we receive the essential results integrating two methods in con-
text of arbitrary applied modes. The final observations are as
follows

m11(q
−1) =

C2,1D1,1 +C2,2D1,2 +C2,3D1,3 +C2,4D1,4

s11(C1,1D1,1 +C1,2D1,2 +C1,3D1,3 +C1,4D1,4

+C2,5D1,5 +C2,6D1,6 +C2,7D1,7 + · · ·+C2,10D1,10

+C1,5D1,5 +C1,6D1,6 +C1,7D1,7 + · · ·+C1,10D1,10)
, (13)

m12(q
−1) =

C3,1D1,1 +C3,2D1,2 +C3,3D1,3 +C3,4D1,4

s22(C1,1D1,1 +C1,2D1,2 +C1,3D1,3 +C1,4D1,4

+C3,5D1,5 +C3,6D1,6 +C3,7D1,7 + · · ·+C3,10D1,10

+C1,5D1,5 +C1,6D1,6 +C1,7D1,7 + · · ·+C1,10D1,10)
, (14)

...

m23(q
−1) =

C7,1D1,1 +C7,2D1,2 +C7,3D1,3 +C7,4D1,4

s33(C1,1D1,1 +C1,2D1,2 +C1,3D1,3 +C1,4D1,4

+C7,5D1,5 +C7,6D1,6 +C7,7D1,7 + · · ·+C7,10D1,10

+C1,5D1,5 +C1,6D1,6 +C1,7D1,7 + · · ·+C1,10D1,10)
, (15)

where notation of Ci, j and D1,k, with respect to the subscripts
i = 1, . . . ,7 and j,k = 1, . . . ,10, is formed by the cells in matri-
ces C(q−1) and D(q−1), respectively. Mentioned matrices are
shown in the Appendix A.

Let us switch now to the another interesting case covering the
left-invertible approach. Again, two instances are given subject
to the discussed generalized inverses.

3.2. Left-invertible scenario. Consider a nonsquare polyno-
mial matrix B4×3(q

−1) expressed in the following manner

B(q−1) =




b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43



. (16)

The respective left S-inverse and left σ -inverse for our sys-
tem form as follows

BL
S(q

−1) = V−1(q−1)ΣL(q−1)U−1(q−1) =




v11 v12 v13

v21 v22 v23

v31 v32 v33




−1


1/s11 0 0 m11

0 1/s22 0 m21

0 0 1/s33 m31




·




u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44




−1

, (17)

and

BL
σ (q

−1) =
[
βββ T(q−1)B(q−1)

]−1
βββ T(q−1) =







β11 β12 β13

β21 β22 β23

β31 β32 β33

β41 β42 β43




T


b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43







−1

·




β11 β12 β13

β21 β22 β23

β31 β32 β33

β41 β42 β43




T

. (18)
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Again, similarly to the relation (12), the operation

BL
S(q

−1) = BL
σ (q

−1), (19)

returns us

m11(q
−1) =

E2,1D1,1+E2,2D1,2+E2,3D1,3+E2,4D1,4

s11(E1,1D1,1+E1,2D1,2+E1,3D1,3+E1,4D1,4)
, (20)

m21(q
−1) =

E3,1D1,1+E3,2D1,2+E3,3D1,3+E3,4D1,4

s22(E1,1D1,1+E1,2D1,2+E1,3D1,3+E1,4D1,4)
, (21)

m31(q
−1) =

E4,1D1,1+E4,2D1,2+E4,3D1,3+E4,4D1,4

s33(E1,1D1,1+E1,2D1,2+E1,3D1,3+E1,4D1,4)
, (22)

under Ei, j and D1,k, i, j,k = 1, . . .4, corresponding to the cells
of the matrices E(q−1) and D(q−1), respectively. In this case,
the mentioned structures are expressed in the Appendix B.

Remark 5. It should be emphasized, that in the contrary to
the right-invertible scenario, the left-invertible instance can not
be used in, e.g., the inverse model control-oriented approach
strictly dedicated to the multivariable plants. Although, the such
generalized left inverse seems to be rather impoverished, it can
successfully be applied to other tasks, for instance, related to
the signal reconstruction process observed in the wireless com-
munication technologies [7].

Having the new issues covering the comparison of two
classes of the generalized inverses, let us continue with two al-
gorithms allowing to determine our degrees of freedom. Hence-
forth, the numerical methods can simplify significantly the
calculation process of the complex problem drafted in the
manuscript.

4. Mathematical statements

In this section, we introduce the new methodology in order to
engage any nonsquare right and left inverses, whatever their
sizes and orders. Please note, that the proposed algorithms have
been implemented and verified in a number of simulation runs
using the Matlab environment.

4.1. Right-invertible scenario. As it has already been men-
tioned, the results presented in this section are derived from the
Eqs. (13)–(15), supported by a plethora of the numerical in-
stances. Naturally, the representative illustration has addition-
ally been given in the previous section. Notwithstanding, due
to the complexity of the presented considerations, the formal
proof of the generalized formula guaranteeing the unification
of S and σ inverses does not exist, so far. Hence, the algorithm
to be shown can only be justified on the basis of the new subse-
quent statement in the form of the following

Conjecture 1. Consider the right-invertible polynomial ma-
trices described in the backward shift operator-oriented q−1-
domain. The complete relationship between generalized right

S- and σ -inverse of arbitrary matrix Bm×n(q
−1), as in the For-

mulas (5) and (7), can be represented in the respective form

mi j(q−1) = k C l(q
−1)DT(q−1)

(
s j jC1(q

−1)DT(q−1)
)−1

, (23)

where i ∈ 1,2, . . . ,(n−m), j ∈ 1,2, . . . ,m, l ∈ 2,3, . . . ,m(n−
m)+1, whilst k defines the sign determined by the Algorithm 1,
whereas the matrices C(q−1) and D(q−1) are given in the Ap-
pendix A.

The procedure allowing to obtain the crucial sign sounds as
follows.

Algorithm 1 Algorithm for calculation of the sign k derived
from the Eq. (23)

Require: The filled matrix M(q−1) without the signs
1: r ←number of rows of the M(q−1)

2: c ←number of columns of the M(q−1)

3: k = 1
4: for j = c, j > 0, j−− do
5: for i = 1, i ≤ r, i++ do
6: Mi, j(q

−1) = k ·Mi, j(q
−1)

7: end for
8: k = k · (−1)
9: end for

10: return M(q−1) � The final form of the M(q−1).

In the next section, the left-invertible instance is proposed.
It should be emphasized, that although the nomenclature of the
given relation seems to be rather similar to the notation covering
the right-invertible solution, the two structures have raised from
the different operations.

4.2. Left-invertible scenario. The following conjecture, as
before, has based on a number of simulation tests and the ex-
pressions as in Eqs. (20) to (22).

Conjecture 2. Consider the left-invertible polynomial matrices
described in the backward shift operator-oriented q−1-domain.
The complete relationship between generalized left S- and σ -
inverse of arbitrary matrix Bm×n(q

−1), as in the Formulas (6)
and (8), can be represented in the respective form

mi j(q−1) = k E l(q
−1)DT(q−1)

(
s j jE1(q

−1)DT(q−1)
)−1

, (24)

where i ∈ 1,2, . . . ,n, j ∈ 1,2, . . . ,(m − n), l ∈ 2,3, . . . ,n(m −
n) + 1, whereas k is calculated according to the Algorithm 2.
The appropriate matrices E(q−1) and D(q−1) are shown in the
Appendix B.

Observe, that the crucial operations related to the new ap-
proach given in the manuscript are endorsed by the set of the
complex peculiarities described in detail in the appendix sec-
tions.
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Algorithm 2 Algorithm for calculation of the sign k derived
from the Eq. (24)

Require: The filled matrix M(q−1) without the signs
1: r ←number of rows of the M(q−1)

2: c ←number of columns of the M(q−1)

3: k = 1
4: for i = r, i > 0, i−− do
5: for j = 1, j ≤ c, j++ do
6: Mi, j(q

−1) = k ·Mi, j(q
−1)

7: end for
8: k = k · (−1)
9: end for

10: return M(q−1) � The final form of the M(q−1).

5. Conclusions

The manuscript presents the new analytical results of conducted
studies covering the interesting relationship between two S and
σ inverses, described in the polynomial domain. The compari-
son has been prepared in terms of existing degrees of freedom,
strictly derived from both right and left generalized inverses.
Two new crucial conjectures have been applied, in order to ex-
tend the new methodology given in the paper for all class of the
discrete-time linear multivariable plants. Henceforth, the new
approach can be devoted to any matrix polynomial involving
the polynomials of the different orders. The application of the
discussed control-oriented issues in the practical engineering
tasks is unquestionable. Last, but not least, the generalization
of the methods presented in the manuscript is still waiting for
further intense research investigation.

APPENDIX

A. Right-invertible case. In this section, the crucial com-
ponents of our new algorithmic solution related to the right-
invertible nonsquare polynomial matrices are indicated. There-
fore, in order to obtain the main inverse-oriented structures, the
matrix polynomials C(q−1) and D(q−1), effectively involved in
the Formulas (13)–(15), should be constructed. Naturally, the
inverse operations are strongly supported by the new Conjec-
ture 1.

At the beginning, the matrix C(q−1) as in Eq. (23) should be
calculated from the polynomial matrix V(q−1). In fact, such
scenario constitutes the significant compact extension of the
material given in Ref. [16]. Thus, the difference is only that, we
calculate the minors of the some analyzed square matrix in the
backward shift operator q−1-related domain in different ways.
In contrary to the original solution, where the sliding mech-
anism has appointed the said minors, the minors of the new
approach are created on the basis of the combinations without
repetitions of columns and rows of V(q−1), separately. The new
idea covering this essential method is observed in Fig. 1 and
supported by the new Algorithm 3.

Fig. 1. The graphical objective of the Algorithm 3

Algorithm 3 Algorithm for calculation of the matrix C(q−1)
from the matrix V(q−1)

Require: The matrix V(q−1); The sizes m and n of the matrix
B(q−1)

1: comb_wr[.] ← the table of the combinations without repe-
titions (1:n,m)

2: number_comb ← number of the combinations without rep-
etitions providing by the structure comb_wr[.]

3: for i = 1, i ≤ (n−m) ·m+1, i++ do
4: for j = 1, j ≤ number_comb, j++ do
5: Ci, j(q

−1)= det(choose_rows(V(q−1), . . .

6: comb_wr[.]),choose_column(V(q−1),comb_wr[.]))
7: end for
8: end for
9: return C(q−1) � The final form of the C(q−1).

Finally, based on the aforementioned considerations, the ex-
pected polynomial matrix C(q−1) sounds as follows

C(q−1) =



det(c11) det(c12) det(c13) . . . det(c1,10)

det(c21) det(c22) det(c23) . . . det(c2,10)

det(c31) det(c32) det(c33) . . . det(c3,10)
...

...
...

...
det(c71) det(c72) det(c73) . . . det(c7,10)




=




C1

C2

C3
...

C7



. (25)
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Algorithm 2 Algorithm for calculation of the sign k derived
from the Eq. (24)

Require: The filled matrix M(q−1) without the signs
1: r ←number of rows of the M(q−1)

2: c ←number of columns of the M(q−1)

3: k = 1
4: for i = r, i > 0, i−− do
5: for j = 1, j ≤ c, j++ do
6: Mi, j(q

−1) = k ·Mi, j(q
−1)

7: end for
8: k = k · (−1)
9: end for

10: return M(q−1) � The final form of the M(q−1).

5. Conclusions

The manuscript presents the new analytical results of conducted
studies covering the interesting relationship between two S and
σ inverses, described in the polynomial domain. The compari-
son has been prepared in terms of existing degrees of freedom,
strictly derived from both right and left generalized inverses.
Two new crucial conjectures have been applied, in order to ex-
tend the new methodology given in the paper for all class of the
discrete-time linear multivariable plants. Henceforth, the new
approach can be devoted to any matrix polynomial involving
the polynomials of the different orders. The application of the
discussed control-oriented issues in the practical engineering
tasks is unquestionable. Last, but not least, the generalization
of the methods presented in the manuscript is still waiting for
further intense research investigation.

APPENDIX

A. Right-invertible case. In this section, the crucial com-
ponents of our new algorithmic solution related to the right-
invertible nonsquare polynomial matrices are indicated. There-
fore, in order to obtain the main inverse-oriented structures, the
matrix polynomials C(q−1) and D(q−1), effectively involved in
the Formulas (13)–(15), should be constructed. Naturally, the
inverse operations are strongly supported by the new Conjec-
ture 1.

At the beginning, the matrix C(q−1) as in Eq. (23) should be
calculated from the polynomial matrix V(q−1). In fact, such
scenario constitutes the significant compact extension of the
material given in Ref. [16]. Thus, the difference is only that, we
calculate the minors of the some analyzed square matrix in the
backward shift operator q−1-related domain in different ways.
In contrary to the original solution, where the sliding mech-
anism has appointed the said minors, the minors of the new
approach are created on the basis of the combinations without
repetitions of columns and rows of V(q−1), separately. The new
idea covering this essential method is observed in Fig. 1 and
supported by the new Algorithm 3.

Fig. 1. The graphical objective of the Algorithm 3

Algorithm 3 Algorithm for calculation of the matrix C(q−1)
from the matrix V(q−1)

Require: The matrix V(q−1); The sizes m and n of the matrix
B(q−1)

1: comb_wr[.] ← the table of the combinations without repe-
titions (1:n,m)

2: number_comb ← number of the combinations without rep-
etitions providing by the structure comb_wr[.]

3: for i = 1, i ≤ (n−m) ·m+1, i++ do
4: for j = 1, j ≤ number_comb, j++ do
5: Ci, j(q

−1)= det(choose_rows(V(q−1), . . .

6: comb_wr[.]),choose_column(V(q−1),comb_wr[.]))
7: end for
8: end for
9: return C(q−1) � The final form of the C(q−1).

Finally, based on the aforementioned considerations, the ex-
pected polynomial matrix C(q−1) sounds as follows

C(q−1) =



det(c11) det(c12) det(c13) . . . det(c1,10)

det(c21) det(c22) det(c23) . . . det(c2,10)

det(c31) det(c32) det(c33) . . . det(c3,10)
...

...
...

...
det(c71) det(c72) det(c73) . . . det(c7,10)




=




C1

C2

C3
...

C7



. (25)
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Secondly, in the simpler manner, the polynomial matrix
D(q−1) should be calculated after employing the postulated Al-
gorithm 4 assisted by Fig. 2.

Algorithm 4 Algorithm for calculation of the matrix D(q−1)
from the matrix βββ (q−1)

Require: The matrix βββ (q−1); The sizes m and n of the matrix
B(q−1)

1: comb_wr[.] ← the table of the combinations without repe-
titions (1:n,m)

2: number_comb ← number of the combinations without rep-
etitions providing by the structure comb_wr[.]

3: for i = 1, i ≤ number_comb, i++ do
4: D1,i(q

−1)= det(choose_column(βββ (q−1),comb_wr[i]))
5: end for
6: return D(q−1) � The final form of the D(q−1).

Fig. 2. The graphical objective of the Algorithm 4

In such a case, the matrix polynomial D(q−1), associated
with the degrees of freedom βββ (q−1), is formed as

D(q−1) =
[

det(b11) det(b12) det(b13) . . . det(b1,10)
]
. (26)

Remark 6. Note, that the entire machinery presented here is
strongly connected with the Section 3.1, where selected system
described by the matrix B3×5(q

−1) is considered.

Let us switch now to the second set of left-invertible plants.

B. Left-invertible case. Consequently, in order to receive the
solution concerning the left-invertible polynomial matrices, the
subsequent procedure should certainly be performed. Through
the Formulas (20)–(22), supported by the Conjecture 2, the ex-
pected relationship should immediately be obtained. For this
reason, the matrix polynomial structures E(q−1) and D(q−1)
have to first be calculated. Therefore, the matrix E(q−1) of the
relation (24) is derived from the U(q−1). Hence, the Fig. 3 and
Algorithm 5 reinforce the newly introduced relation-based phe-
nomenon.

In that way, we arrive at the polynomial matrix E(q−1) in the
following manner

E(q−1) =



det(e11) det(e12) det(e13) det(e14)

det(e21) det(e22) det(e23) det(e24)

det(e31) det(e32) det(e33) det(e34)

det(e41) det(e42) det(e43) det(e44)




=




E1

E2

E3

E4


 . (27)

Fig. 3. The graphical objective of the Algorithm 5

Algorithm 5 Algorithm for calculation of the matrix E(q−1)
from the matrix U(q−1)

Require: The matrix U(q−1); The sizes m and n of the matrix
B(q−1)

1: comb_wr[.] ← the table of the combinations without repe-
titions (1:m,n)

2: number_comb ← number of combinations without repeti-
tions providing by the structure comb_wr[.]

3: for i = 1, i ≤ (m−n) ·n+1, i++ do
4: for j = 1, j ≤ number_comb, j++ do
5: Ei, j(q

−1) = det(choose_rows(U(q−1), . . .

6: comb_wr[.]),choose_column(U(q−1),comb_wr[.]))
7: end for
8: end for
9: return E(q−1) � The final form of the E(q−1).

In the end, the closing step of our procedure should be formu-
lated. The same like in the right-oriented scenario, the polyno-
mial matrix D(q−1) is strictly associated with the matrix poly-
nomial βββ (q−1). Thus, the Algorithm 6 together with the Fig. 4
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Fig. 4. The graphical objective of the Algorithm 6

Algorithm 6 Algorithm for calculation of the matrix D(q−1)
from the matrix βββ (q−1)

Require: The matrix βββ (q−1); The sizes m and n of the matrix
B(q−1)

1: comb_wr[.] ← the table of the combinations without repe-
titions (1:m,n)

2: number_comb ← number of the combinations without rep-
etitions providing by the structure comb_wr[.]

3: for i = 1, i ≤ number_comb, i++ do
4: D1,i(q

−1)= det(choose_rows(βββ (q−1),comb_wr[i]))
5: end for
6: return D(q−1) � The final form of the D(q−1).

end up with the last newly introduced accomplishment of the
manuscript related to the Conjecture 2.

The final form of the nonsquare structure D(q−1) sounds as
follows

D(q−1) =
[

det(b11) det(b12) det(b13) det(b14)
]
. (28)

Remark 7. Notice, that the above-mentioned issues are as-
sociated with the Section 3.2 covering the chosen matrix
B4×3(q

−1).
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Fig. 4. The graphical objective of the Algorithm 6
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end up with the last newly introduced accomplishment of the
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