
Theoretical and Applied Informatics

ISSN 1896–5334

Vol. x (200x), no. x

pp. x–x

Designing Human-Computer Interaction

for Mobile Devices with the FMX Application Platform

ZDZISŁAW SROCZYŃSKI
a

aInstitute of Mathematics, Silesian University of Technology

Abstract: The article contains a survey of methods of the mobile development with the FMX Applica-

tion platform, which allows to build multi-platform solutions for the efficient Human-Computer Interaction.

The test projects illustrate some important conclusions regarding the design and testing of mobile
applications for iOS and Android operating systems. They demonstrate navigation controls designed in the
skeumorphic and flat manner with some comparisons based on interviews with users in several age ranges.
Test apps provide also touch gestures, sensor integration and connections to remote internet data sources.
Some additional considerations about the localization and internationalization of the mobile applications
built with the FMX platform were also presented.

The proposed implementation of the software engineering methods for the mobile application develop-

ment provides new insights, valuable for software developers dealing with the new FMX platform on iOS
and Android.

Keywords: HCI, mobile devices, multi-platform applications

1. Mobile HCI in modern software projects

The development of modern software is very often dedicated specifically for smart-

phones, tablets and the other mobile devices. The advantages and disadvantages of the

mobile hardware and mobile operating systems should be taken into account for such

projects. Mobile devices, in opposite to desktop computers, often have less computa-

tional possibilities, smaller screens, no keyboard, but they are equipped with touch rec-

ognizers, gyroscopes, accelerometers, GPS sensors and compass. Although their multi-

media efficiency is lower than desktop ones, the obligatory equipment is an integrated

hi-resolution digital camera. Moreover, the mobile devices often use 3G or 4G services,

which have a lower response time and often a lower bandwidth then cable internet con-

nections [11]. These factors have the strong negative influence on the user experience

while accessing mobile web pages and using mobile applications (apps).

Theoretical and Applied Informatics

ISSN 1896-5334

Vol. 26 (2014), no. 1, 2

pp. 87 - 104

2

Clearly, that is possible to get a proper project of the Human-Computer Interaction

(HCI) adapted for efficient mobile solutions, only taking into account factors mentioned

above. First, the mobile application should make use from touch gestures not limited to

simple movement in four directions, but also special ones, as pinch-in and pinch-out for

zooming or shaking. Even simple gestures, as tapping, which corresponds with mouse

clicking, need customized large controls, easy to point with fingertips. Placing relatively

big-sized controls on a small screen (about 4 to 5 inches in diagonal for an average

smartphone) results in a division of the communication area into separated units. These

units, called ”views” in Apple’s iOS, represent somewhat equivalents of windows in

desktop programming. The main difference is that they always occupy the whole screen

and cannot partially overlap each other.

For example, the set of detailed formal regulations for the user interface used by ap-

plications for iOS operating system is enclosed in document titled ”iOS Human Interface

Guidelines” [2]. The corporate standard establishes certain restrictions for developers

this way. These include methods of controls arrangement, the visual appearance up to

detailed design of icons and behaviour of standard and custom elements of the user inter-

face. Human-computer interaction unified this way ensures similar graphical interface

in different applications, making them easier to learn for the user.

Touch screens, leading HCI towards natural interfaces, are suitable for tasks of point-

ing, but often fail during accurate manipulation of objects, for example CAD works or

advanced and fast text processing [12]. Moreover, they cause troubles for elder people

with disabilities and are almost useless for visually impaired.

Building human-computer interaction for mobiles requires also the use of the other

extra functionalities of the device, as calling, sandboxed filesystem and sharing sheets,

contacts database, digital maps interface. Users are familiar with these standard inter-

faces and desire to see it unchanged in whole infrastructure of business applications.

The most of mobile operating systems has rather limited possibilities when talking

about multitasking. The first reason for that is reduced processor’s efficiency, the second

– the obvious problem to represent many views simultaneously on the same small screen

and to navigate between them. Some novice users of iPhone are certainly even not aware

of the possibility to browse through the list of executed applications. These apps are

not ”running” in the strict meaning, because iOS forces suspension of the processes in

background, freezing them so the user has only the impression of multitasking, while

the efficiency of the mobile device is not degrading.

Continuing with this example, lets examine the application lifetime cycle for iOS

application, which can be in one of the following states:

– not running – the application has not been launched yet,

– inactive – the application is running in the background but not receiving events (a

temporary state),

88

3

– active – the application is running in the foreground and is receiving events,

– background – a temporary state before being suspended,

– suspended – the application is frozen in its current state and does not execute nor

receive events.

It is worth noting that in iOS version 3 and lower there were only two states: not run-

ning and active, as it had no multitasking features at all. The application had been termi-

nated in these versions, instead of being suspended. Moreover, in case of low-memory

conditions, the iOS operating system automatically sends a low memory warning, and

after that purges suspended applications without notice to make more memory available

for the foreground application. Although, there are opportunities to interact with oper-

ating system or remote data sources which may result in semi-simultaneous acting of

more then one app. It can be notifications through notification center and network push

notifications. But all these methods require appropriate extra iOS API calls, as runtime

machine code of the suspended application is frozen.

The part of above considerations concerns only iOS, but in general many problems

with mobile application design are common for the most popular operating systems,

as Android, Windows Phone, iOS or BlackBerry OS. And one of them is the market

segmentation itself, in with four or five major players and many others (for example

Tizen, Firefox OS, Sailfish OS or Ubuntu Touch OS) are attempting to build their own,

incompatible development infrastructures. This way every mobile operating system is

completely different, requires different programming languages and skills, from Java,

through C++ and C#, Javascript, up to Objective-C and Swift. What is more, there are

also miscellaneous design recommendations for the user interface and concepts for the

navigation in these systems.

2. Foundations of the FMX platform

Some kind of universal framework could become the solution for problems described

above. This framework should be built from common base of source code, and moreover

– common design of user interface expandable with skins appropriate for a particular

operating system and mobile device.

There are many approaches trying to meet such requirements, mostly based on

HTML5 and Javascript with some kind of proxy library connecting the application with

the hardware. These solutions are often called hybrid mobile applications. But the exper-

iments shown that native code can be about five times faster than interpreted Javascript

code used in mobile web applications and embedded web applications (for example

built with Phonegap). What’s more, the ARC (automatic reference counting) architec-

ture used by native code LLVM compiler for iOS increases performance of memory

89

4

management in applications. The web apps using garbage collector technology suffer

also from non-deterministic pauses caused by necessary heap scans [5].

So, to gain maximum performance and fully integrate with environment of the mo-

bile operating system, the best solution is a native compiler, using ARM op-codes and

directly translating the communication between the framework and the API of the OS.

Thus obtained application can be fast enough to behave as fully native UI ones, and

easily portable to different platforms the same time.

The FMX Application Platform (called FireMonkey or FM in previous editions)

developed by Embarcedero meets these requirements. It is designed to develop applica-

tions for desktop Windows and OS X workstations, Apple’s mobile operating system:

iOS (in iPhones, iPads, iPods Touch) as well as current (in Rad Studio XE5-XE7 re-

leases) and future versions of Android [6]. The usage of FMX Platform simplifies the

multi-platform development at least at the level of the other software tools, as Silverlight,

HTML5 or Flash [3], while the range of target operating systems supported by FMX is

much wider. Although there are some dedicated frameworks with similar level of porta-

bility, as for example Unity 3D (specialized for game development), FMX appears to be

the most sophisticated general usage tool for multi-platform development [1].

The user experience in rich GUI client applications built with FMX platform uses

efficient 2D and 3D vector graphics, allows rapid prototyping with visual designer, ani-

mation effects and transformations of bitmapped graphics. The apps take full advantage

of capabilities of the mobile OS and hardware, supported by the native cross-compiler

for the ARM architecture.

The FMX platform is a fully object-oriented library designed for multimedia and

visual effects in rich client applications. Thanks to that, controls can be embedded in

the other ones. The styles engine of the platform provides an easy way to fit the look

of the application into the framework of the particular operating system. It includes

mobile iOS, as well as Android ”skin”. Furthermore, FMX assures the universal API for

cooperation with many services of the operating system, as sensors, network connection,

camera interface, as well as a software bridges giving the way to direct connection to

platform-specific services with all their details [13]. MKMapKit from iOS can be a good

example of such service.

The programming IDE used for FMX development, called RAD Studio, runs on

Windows machines. Despite of a need to deploy using a computer running Mac OS

X (Apple’s Xcode code-signing tools and iOS simulator require OS X), that is a major

simplification of the whole development process for mobile targets, making it similar to

the common desktop application design.

90

5

2.1. Customization of the HCI with graphics effects and animations

The graphics effects in the FMX Application Platform are objects and they can be

applied to any of the other objects in the platform. This is possible in the visual way

– making an effect object the child of the visual control, or programmatically. The

effects can be combined by adding more then one to the same control. Some interactive

(triggered) effects slow-down the iOS apps, so they are switched-off by default. This

makes the significant difference between desktop machines and mobile ones [4].

In the IDE, animations can be applied to any object’s property signed with a film

strip in the object inspector. Triggers for animations include mouse, focus, visibility

and drag events. They can be combined and reversed if necessary. AnimationType

and InterpolationType can be defined for each animation, in addition to the duration.

AnimationType determines how the specified property changes from the start to the end

value. The path of the interpolation curve determines InterpolationType.

That is also possible to fire animations in code, in the synchronous and asynchronous

way, using AnimateFloatWait and AnimateFloat methods. This is illustrated by the fol-

lowing short example:

Panel.AnimateFloat(’Position.X’, -50, 0.4, TAnimationType.atIn,

TInterpolationType.itExponential);

Due to test-proven limitations in iOS implementation, it is recommended to use asyn-

chronous version on that platform and FM version 1, controlling the sequence of events

in the application by hand, with the use of separate timer objects.

Thanks to the modular object-oriented design of FMX platform the application of

many visual effects, common in modern UX design, is straightforward and does not

require special effort from the developer. This way the author can focus at the most

important functionalities needed by the app and then make it more attractive in a few

independent directives. There is a blur effect shown in the example educational game in

the Fig. 1. The blur is one of the popular trends in the development of modern mobile

applications [14], putting the contents in the first plane while the overall app’s look is

still available to the user and reminds about the current context.

In the mentioned example all the movement in the view of the game is frozen, then

the view is blurred and overlapped by a settings pane. The object arranging the blur

effect (i.e. BlurEffectGame) is set-up as a child of the main layout:

object LayoutGame: TLayout

Align = Client

Size.Width = 320.00

Size.Height = 460.00

Size.PlatformDefault = False

object BlurEffectGame: TBlurEffect

91

6

Softness = 1.20

Enabled = False

end

end

So, to turn it on when the user touches menu icon in the upper-left corner of the

layout, there is only a need to change the value of the Enabled field. This applies the

blur effect to all the children of the LayoutGame object.

Fig. 1. Blur effect used in the user interface of the educational game developed with FMX library .

Moreover, the example with blur effect proves, that high-level development libraries

as FMX can simplify the design of the complex visual human-computer interaction, es-

pecially when compared to Apple’s classes UIBlurEffect and UIVisualEffectView from

the newest iOS 8 SDK [9]. The latter require much more work from the programmer

and have less capabilities. For the former versions of the iOS (i.e. 6 or 7) the developer

needs to implement the blur effect himself, which costs even more effort.

2.2. Definition and triggering of FMX styles

The styles engine for the FMX platform allows to design fully customizable user

interface. The application can use many styles embedded in its executable or loaded

from external files on demand. Styles are defined with the use of a special description

language coded in plain-text files. So, there is also a possibility to alter them by hand.

92

7

The style definition language describes every aspect of a visual appearance of the

application, from simple borders and fills of the controls, up to dynamic actions, chang-

ing the look of the controls under certain conditions. These triggers allow to respond to

the user’s activity, as mouse clicking, tapping or the other gestures.

Fig. 2: Sample user interface for image gallery in FMX app (English version in the iOS application on the left, Polish

version in MS Windows application in the middle, Polish version in iOS 7 styled application on the right).

The FMX platform allows the usage of separate styles on different platforms (while

maintaining the same source code base). On the other hand, it is possible to apply the

same style on different platforms (see Fig. 2). This creates the opportunity to evaluate

the mobile application compiled for testing with target on the Windows desktop plat-

form, or adjust style to the destination platform, or even dynamically according to user

settings. The skinnable user interface helps to develop modern and agile HCI for busi-

ness applications built with FMX platform. For example, introduction of iOS version 7

required just to prepare new style, compatible with new Apple’s guidance for ”the look

and feel” of an iOS 7 app.

TStyleBook control can contain a complete set of style definitions and allow to

change the style in the application dynamically in the OnCreate event of the form as

follows (assuming that form’s name is FormTestStyle and StyleBook’s name is Style-

BookAndroidL):

procedure TFormTestStyle.FormCreate(Sender: TObject);

begin

{$IFDEF ANDROID}

if TOSVersion.Major = 5 then

FormTestStyle.StyleBook := StyleBookAndroidL;

{$ENDIF}

end;

93

8

In the above example the conditional define checks for Android platform and then

TOSVersion static class field Major is checked against the newest version of Android

(i.e. ”L” or ”5”). For that version the special look-and-feel is loaded from the StyleBook

control. Given this style in .fsf file, the developer is able to adapt it in very efficient

manner, assuring the best possible interaction of the mobile app and the user.

3. Testing and profiling HCI in mobile applications

Mobile applications need careful design and thorough testing. Software engineering

of the mobile application should take into consideration not only emulator, but as many

as possible real devices, running different versions of the mobile operating system. For

example making iPhone 4 app compatible with iOS 6 and iPhone 5 requires an important

detail: appropriate sized splash-screen bitmaps.

There is no possibility to complete tests of many mobile sensors without the use

of real devices, as gestures, accelerometer, gps are not available on simulator or are

simulated in reduced forms. It includes the changes of device orientation and running

on devices with different screen sizes (smartphones vs tablets). The performance of the

simulator is also different then real machine’s one. The iOS simulator is sometimes faster

then real iPhones, especially when it comes to graphics. On the other hand, Android

emulator on desktop computer is often much less efficient than real devices running that

operating system.

Hardware limits of mobile devices (as low memory warnings in iOS, network time-

outs, timers freezing while applications are going into the background) are the hardest

to test and simulate. Sometimes it takes hours or even days to detect particular issue, as

it appears only after long operation of the app, which is intended to work continuously.

Testers of common desktop business application are not familiar with such problems and

these requirements of the mobile environment.

Significant problems were observed during long-term tests of the animations and

visual effects in sample application developed with FM version 1. Short tests ended

successfully, but leaving the phone turn-on for a longer time led to the situation in which

the animations were broken or the whole app crashed. This especially happened when

application was running at midnight, suggesting problems with the change of date. The

look into the source code of GetTick method showed that a wrong precision was used:

function TPlatformCocoa.GetTick: single;

var

H, M, S, MS: word;

begin

DecodeTime(time, H, M, S, MS);

Result := ((((H * 60 * 60) + (M * 60) + S) * 1000) + MS) / 1000;

end;

94

9

The solution was to replace single precision with double one and introduce factors
for all date elements in the calculation, as follows:

function GetTick: double;

var

Y, MO, D, H, M, S, MS: word;

sY, sMO, sD, sH, sM, sS, sMS: double;

begin

DecodeDateTime(now, Y, MO, D, H, M, S, MS);

sY:=Y; sMo:=MO; sD:=D; sH:=H; sM:=M; sS:=S; sMS:=MS;

Result :=

(((((((sY*12+sMo)*31+sD)*24+sH)*60*60)+(sM*60)+sS)*1000)+sMS)

/1000;

end;

This time every animation proceed smoothly, and the app could run without prob-

lems for many days.

The FMX platform allows calling native libraries of the underlying mobile operating

system, for example MKMapKit in iOS, showing maps with pins pointing into locations.

There is also a possibility to use native controls instead of styled, vector graphics-based

ones. This way the developer can overcome some difficulties with time-consuming an-

imations to get better user experience, for example replacing TAniIndicator with native

ActivityIndicatorView from iOS.

The task of transferring the data over the internet connection also needs the real de-

vice for testing. The timeouts and behaviour of the mobile device while the cellular

signal is low or connection breaks, create some important user experience issues. With

the common ActivityIndicatorView the application designer keeps this experience on

the standard, well-known level. The application should refresh the data in selected inter-

vals, short enough to present current information and long enough to provide convenient

reading, or on a direct demand of the user. The FMX platform provides the interface to

manipulate XML files and store the data in sqlite databases. In the test application ad-

ditional MD5 hash function checks if remote data has changed, so unnecessary updates

of the screen contents are not performed. This saves data transfer (which can be crucial

for average user) and makes overall user experience much better, as the app shows the

information contents much faster.

3.1. Internationalization and localization of the software

The internationalization should assure a proper behaviour of the application despite

of changing user locale settings. On the other hand, localization is a process of trans-

lation of all the messages in the application. This often raises further issues, especially

with string lengths in different languages. The best way to localize the application is to

use an automatic feature listing all the messages to translate and helping to manage them.

95

10

In the FMX platform such feature is provided by the TLang object. Some examples of

the user interface of the multilingual application are shown in Fig. 3.

The proper operation of multilanguage support in Firemonkey requires a slight fix

in source code of the library, as original GetCurrentLangID method sets always only the

English locale. This should be replaced with call to native method from iOS Foundation

framework: NSLocale.preferredLanguages. FM platform version 1 needs the following

correction:

function TPlatformCocoa.GetCurrentLangID: WideString;

begin

result:=UTF8Decode(

NSLocale.preferredLanguages.objectAtIndex(0).UTF8String);

end;

Newer versions of FMX Application Platform suffer from similar bug and the solu-
tion is as follows (with the use of language extensions designed for ARM compiler):

function TPlatformCocoaTouch.GetCurrentLangID: string;

var

lngs : NSArray;

LanguageISO: NSString;

begin

lngs := TNSLocale.OCClass.preferredLanguages;

LanguageISO:= TNSString.Wrap(lngs.objectAtIndex(0));

Result := UTF8ToString(LanguageISO.UTF8String);

if Length(Result) > 2 then Delete(Result, 3, MaxInt);

end;

The next point worth mentioning is the unicode support in modern applications. The

unicode allows to write down all the string messages, xml files and databases in different

languages not bothering with code pages and coding/decoding procedures.

There is a need to carefully test the translation engine and all the messages. Although

it can be done with the use of the iOS simulator, it is better to check on the real device. In

fact, some UTF-8 encoded strings display well on the device, while the simulator shows

question marks instead of non-ASCII special characters.

3.2. User experience in applications developed with FMX

The overall usability of the computer system has some attributes, identified slightly

different in the literature. The best general reference here is [10], which distinguishes:

1. efficiency – how easy is to achieve the goal,

2. satisfaction – freedom from discomfort and positive attitude to the product,

3. learnability – the easiness to learn and start using the product,

96

11

A. B.

C. D.

Fig. 3: iOS MkMapView with custom bitmap logo in FireMonkey application A. Polish version of FM1 app, B. English

version of FM1 app, C. Polish version, iOS6 (skeumorphic) style, D. Polish version, iOS7 (flat) style.

4. memorability – the easiness to return and operate the system after some break,

5. faultlessness – low error rate and the ability to recover.

97

12

The authors of [8] widen these attributes introducing cognitive load and effective-

ness, trying to describe specific problems of the mobile development. On the other

hand, there are many much more detailed, but uncategorised, factors described in [11],

referring different aspects of the mobile design.

Assuming that satisfaction and learnability are key factors dependant on the visual

aspect of the user experience, the survey of user opinions on FMX platform-developed

apps was conducted. The test application was developed in three different versions,

according to the development of FMX platform:

1. vector – iOS 6 like app (FM1),

2. pixel-perfect iOS 6 skeumorphic design app (FM for XE4),

3. pixel-perfect iOS 7 and 8 flat design app (FMX for XE5-XE7).

The first question was if the very exact UI design is important to common user, as

FM1 application looked just similar to iOS 6 native ones, but not exactly the same. Many

games provide some specific user interface without any criticism, while for business

applications their users may require much more consistent design. The answer to this

question determines the limits of learnability for the FMX app user.

Second problem, even more important and interesting, are user preferences for old-

fashioned skeumorphic design or modern flat-looking one. The skeumorphic design (see

Fig. 2 C), mimicking objects from real world, as buttons, sliders or tabs with shadows,

gradients and borders forming 3D look, was the principal recommendation for the UI of

Apple software for many years. On the opposite side there is a flat design, reinvented

by Microsoft for Metro design in Windows 8 and Windows Phone operating systems.

Flat design leaves only the pure information, basing on very simple graphic icons, a few

colors, completely no shadows nor gradients, so overall user interface looks just ”flat”.

Sometimes the resulting UI is simply black-and-white. Apple used this idea in iOS 7,

being for the first time just a follower when talking about user experience (see Fig. 2

D). From this point of view the newest iOS 8 did not bring much new factors, as main

novelties in this version of Apple’s system concern details and some new APIs. Anyway,

the GUI of iOS stays almost the same in versions 7 and 8.

So the second question arises, if the new flat design is really better from the user

point of view? Has the age or the knowledge of the user any connection with the rating?

Thanks to FMX platform and the Rad Studio IDE which allow to change the theme for

the application on-the-fly, that was possible to survey a number of respondents using

exactly the same functionality of the applications having different appearance.

The results for the first question were rather surprising, as nobody noticed the differ-

ences between FMX app and native ones. The surveyed group was quite large, about 50

persons, but most of them were not every-day iOS users. Certainly, the iPhone or iPad

users were able to distinguish native and FMX apps after a longer, close and thorough

98

13

examination. So, the conclusion is that for the user experience the general outline of the

UI is more important than the exact fulfilment of the graphical project guidelines.

There were significant differences in perception of the application UI by the peo-

ple of different age in the results for the second question. The youngest respondents

(students aged around 20 years) were more open to the new paradigms, and their user

experience with iOS 7 was full of satisfaction. Despite this, nearly half informed about

mixed emotions for the details of the flat design: some pointed out several inconsis-

tencies, as low visibility of clickable buttons, for example. Respondents about 30 were

more sceptical about the new design in iOS 7, while people about 40 and elder were

choosing definitely the skeumorphic iOS 6 version. The number of respondents divided

into age groups was not very high for this question, but the trend seems to be evident

(see Fig. 4). Moreover, the rate of acceptance for the flat design in iOS 7 was much

higher in the group of active users of Apple’s products. It follows that the loyal users are

more likely to accept changes and news and they are less critical when it comes to minor

issues.

It is of interest to know whether the results will be similar for the general case. The

aim of this section was to sketch the problem of the user reaction for novelties in the

design of mobile apps and define some significant factors. There is surely the need

of further research and querying a greater number of respondents, which is of course

a complex task from the logistical point of view.

Fig. 4: Overall acceptance rate for ”flat design” in iOS according to different age ranges of permanent and incidental/no

iOS users.

99

14

Thanks to the development of the FMX platform and the possibility to compile for

Android operating system from single code-base (in Rad Studio versions XE5-XE7),

the survey can be extended by Android version. This gives the unique opportunity to

compare UX on different platforms with the native look-and-feel without rewriting the

whole application with separate design tools, programming languages and IDEs. This

way the complete user-computer interaction built for the mobile application can be easily

validated and evaluated.

3.3. Advantages of the newest versions of FMX

The FMX application platform introduced with the newest XE4-XE7 versions of

RAD Studio allows much easier development of modern-looking applications. The new

style engine and native components for pick data, communicate with sensors, the layout

manager auto-adjusting form size and orientation, as well as non-visual improvements

as xml and database support (Interbase ToGo and SQLite) give the new quality for the

mobile development [7]. This helps in the fast design of an attractive user interface and

creation of the efficient HCI in the application.

Firemonkey (FM) Application Platform, called just ”FMX” in the newest version,

supports also Android based devices. Developers using FMX get the unique opportunity

to develop applications for very different operating systems, covering the most of the

market-share, including MS Windows, Apple desktop OS X, Apple mobile iOS and

Google Android (see Fig. 5). The single code base in the FMX platform projects allows

to focus on key problems in the application, leaving all details of needed interfaces to

the platform and its style engine. This way there is possible the efficient development of

rich human-computer interaction with much less effort from the programmer.

It is worth noting that the FMX developer can work efficiently in the agile, proto-

typing manner, providing a working version of the application to the user in a very short

time. This can be achieved thanks to visual form designer, style engine and fast compiler,

as well as the clear and easy to implement platform design. It is also important that the

most of the functionality of the application can be tested just in the MS Windows devel-

opment environment with the special ”Mobile Preview” functionality. ”Mobile Preview”

invokes the windows compiler for the application developed for mobile targets (i.e. iOS

or Android), when the developer chooses Windows platform as its target, but meanwhile

it applies the semi-mobile visual style, which helps to debug the app. This way the app

using the FMX platform can operate in Windows environment, connect to various in-

ternet sources, process the remote and local data, query databases etc. That is another

time-saving factor, since the windows compiler is much faster then mobile/ARM one,

and the deployment for Windows is almost instant, without the need of file transfer to

the mobile device nor even obtaining provisioning profile which allows to use the iOS

device in development.

100

15

Fig. 5: Test app developed entirely for iOS in RAD Studio XE7 IDE targeting Android platform – the look-and-feel of

Android UI was introduced automatically in the FireUI designer.

Regardless of all the details of the UI design, the maintenance of the single source

code helps to ensure key factors of the proper multidevice project [11]:

– visual continuity – interactive elements should look similar at screens with differ-

ent factors and sizes,

– feature continuity – the reduced functionality for smaller devices should remain

consistent with overall design assumptions,

– data continuity – the same user’s data should be used unchanged at every platform,

– content continuity – the content of the information should be composed in the

same manner.

These goals can be easily achieved with the use of the FMX application platform

with less error rate and better results for novel functionalities of the software, thanks to

a separation of the model and the controller from UI design details (i.e. the view) at

different development platforms.

The FireUI designer in the RAD Studio IDE simplifies the design process, allowing

addictions and modifications of the form according to the current software platform.

The one shared master form is subclassed for multiple platforms and device form factors

giving the customized sub-view when necessary. This way the developer can maintain

101

16

one codebase without degrading native platform support. This happens for example

while positioning navigation buttons (on the top in iOS, hardware one in Android) or

tabs (usually on the bottom of the form in iOS, but on the top in Android). So, FireUI

assures the best possible experience for the user, referring the rules of the particular,

well-known mobile platform. Meanwhile, there are all the benefits and advantages of

multidevice project preserved. This kind of GUI designer is unique for the RAD Studio

IDE and for this reason it is remarkable.

4. Conclusions

There are examples of multi-platform mobile applications presented in the paper.

The test applications demonstrate main controls and methods of human-computer in-

teraction used for iOS mobile operating system, as navigation controls, touch gestures,

sensor integration and connection with remote internet data source, as well as some

graphics effects. These applications were successfully ported to Android without the

need for extensive changes in source code at all.

Some important conclusions from testing the application in the mobile environment

are also described. It was shown that the mobile project should be tested on a real device,

including long term testing, taking into account life-cycle of the application in the mobile

OS. This part of the article contains also some improvements to the source code of the

first version [4] of the Firemonkey (FMX) platform. The test application was initially

compiled with this version. The other improvements apply also to next versions of the

FMX platform.

The following part of the article contains some additional considerations about lo-

calization and internationalization of the mobile application built with the FMX plat-

form. The final conclusion states FMX as efficient tool to create well designed human-

computer interaction for the mobile devices, using different operating systems.

The multidevice, multi-platform FMX development environment helped to conduct

some experiments regarding the overall impact of UI design on users’ satisfaction and

effectiveness during the usage of mobile apps. The results indicated the differences in

perception of the application UI dependant on age and former experiences of the user.

Apparently the trendy flat design is not quite the best solution for everybody.

The presented implementation of software engineering methods for mobile applica-

tion development provides new insights, valuable for software developers dealing with

the new FMX platform on iOS and Android. It is also worth further investigations in

more complex software projects and broadened surveys.

102

17

References

[1] Arsjentiev D.A., Pashkov P.S.: The environment for multi-device application de-

velopment Delphi XE5, Bulletin of Moscow State University of Printing Arts

(Russian edition), No 9’2013.

[2] Apple Inc.: iOS Human Interface Guidelines, https://developer.apple.com/

library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html,

2015-01-18.

[3] Buitendag A., Roux L., Botha A., Herselman M.,Van Der Walt J.: m-Living Labs,

A Framework for Collaborative Community Advancement, in: Cunningham P.,

Cunningham M.(Eds): ST-Africa 2012 Conference Proceedings, ISBN: 978-1-

905824-34-2, IIMC International Information Management Corporation, 2012

[4] Chandler G.: FireMonkey development for iOS and OS X with Delphi XE2, From

the WYN (What You Need) Series, Coogara Consulting 2012.

[5] Crawford D.: Why mobile web apps are slow, http://sealedabstract.com/

rants/why-mobile-web-apps-are-slow/, 2015-01-18.

[6] Embarcadero, Inc.: RAD Studio Mobile Roadmap, http://edn.embarcadero.com/

article/43677, March 2014.

[7] Embarcadero, Inc.: RAD Studio Mobile Tutorials Version XE7, November 2014.

[8] Harrison R., Flood D., Duce D.: Usability of mobile applications: literature re-

view and rationale for a new usability model, Journal of Interaction Science May

2013, 1:1.

[9] Nahavandipoor V.: iOS 8 Swift Programming Cookbook, O’Reilly Media 2014.

[10] Nielsen, J.: Usability Engineering. Academic Press, Boston, ISBN 0-12-518405-

0, 1993.

[11] Nielsen, J., Budiu, R.: Mobile Usability, New Riders Press, ISBN 0-321-88448-

5, 2012, Polish edition: Funkcjonalność aplikacji mobilnych. Nowoczesne stan-

dardy UX i UI, Helion 2013.

[12] Sikorski M.: Interakcja człowiek-komputer, Wydawnictwo PJWSTK, Warszawa

2010.

[13] Teti D.: Delphi Cookbook, ISBN 139781783559589, Packt Publishing 2014.

[14] Treder M., Pachucki A., Zielonko A., Łukasiewicz K.: Mobile book of trends

2014, UX Pin & Movade internal report, http://www.uxpin.com/mobile-design-

book-of-trends.html, 2015-01-18.

103

104

Projektowanie interakcji człowiek-komputer dla urz�dze� mobilnych z wykorzystaniem

platformy FMX

Streszczenie

Współczesne oprogramowanie coraz cz��ciej tworzone jest specjalnie dla urz�dze� mobilnych –

smartfonów i tabletów. Projekty tego rodzaju powinny spełnia� szereg wymogów zwi�zanych ze

specyfik� obsługiwanego sprz�tu i mobilnych systemów operacyjnych. Wła�ciwe zaprojektowanie

po�rednictwa u�ytkowego pozwala wówczas zbudowa� efektywne narz�dzia interakcji człowiek-

komputer (Human-Computer Interaction – HCI).

Istotnym problemem zwi�zanym z budowaniem aplikacji dla urz�dze� mobilnych jest du�e

rozwarstwienie systemów operacyjnych oraz wspieraj�cych je platform programistycznych. Z tego

wzgl�du celowe jest d��enie do opracowania rozwi�za� uniwersalnych, pozwalaj�cych w jak

najwi�kszym stopniu zunifikowa� baz� kodu �ródłowego. Zało�enia takie spełnia platforma FMX

(Firemonkey) opracowana w firmie Embarcadero, pozwalaj�ca tworzy� oprogramowanie zarówno dla

systemów klasy desktop (Windows i OS X), jak i systemów mobilnych (iOS oraz Android).

Platforma FMX ułatwia projektowanie interakcji z u�ytkownikiem za pomoc� po�rednictwa

budowanego za pomoc� wydajnej grafiki wektorowej 2D oraz 3D, uzupełnionej o efekty animacji

i przekształce� grafiki bitmapowej. Za pomoc� wbudowanych stylów mo�na uzyska� wra�enie

wykorzystania natywnych elementów interfejsu ró�nych systemów operacyjnych, w tym systemów

mobilnych. Ponadto Firemonkey zapewnia wsparcie dla usług oferowanych przez mobilny system

operacyjny, takich jak dost�p do aparatu cyfrowego, akcelerometru, kompasu czy GPS.

W artykule przedstawiono przykłady aplikacji mobilnych zawieraj�cych podstawowe elementy

interakcji człowiek-komputer na urz�dzeniu mobilnym pracuj�cym pod kontrol� systemu operacyjnego

iOS. Ponadto omówione zostały wa�ne z punktu widzenia in�ynierii oprogramowania aspekty zwi�zane

ze specyfik� projektowania oraz testowania aplikacji mobilnych.

