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1 Introduction

At the end of the last century a new paradigm of computation was proposed i.e. quantum com-
putation. Although it is not yet obvious whether useful quantum computers can be constructed,
the field of quantum algorithm development has progressed very rapidly in recent years [1], [2].
For example, many new algorithms for quantum machine learning and quantum image processing
have recently been created [3, 4].

In this work we introduce an algorithm for image classification of grayscale images, based
on classical principal component analysis (PCA) and quantum measurement. The general idea
behind the algorithm is as follows. Given a set of training images, using PCA we train a classifier to
detect the images similar to those in the training set. Effectively we divide the image signal space
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into two orthogonal subspaces. The first one — spanned by the leading principal components —
catches the most of the variability of the signal in the training set, the second one consists mostly
of noise.

After the classifier is constructed the leading principal components are used to create a pro-
jector onto a subspace of quantum states. The image which is being classified is also encoded on
a quantum state, and then measured using the projector defined above.

The paper is organised as follows. In Sec. 2 we recall the basic notions of quantum compu-
tation. In Sec. 3 we shortly discuss state of the art in quantum image processing. In Sec. 4 we
introduce the image classification algorithm. Finally, in Sec. 5, we draw conclusions.

2 Essentials of quantum computation

Let us consider the basic model of a quantum system — a qunit — i.e. a quantum system with
n basic physical states. In order to provide the mathematical description of a state of a qunit
we choose an orthonormal basis in the corresponding Hilbert Space. In this case we consider
n-dimensional Hilbert space. Our basis will consist of n vectors that in the braket notation take
the form

|0〉 =

 1
...
0

 , . . . , |n− 1〉 =

 0
...
1

 . (1)

The |x〉 vector is called ‘ket’ and its Hermitian conjugation (|x〉)† = 〈x| is called ‘bra’. We can
represent any valid state of a qubit |ψ〉 as a normalized linear combination of the basis vectors:

|ψ〉 = α1|0〉+ · · ·+ αn|n− 1〉, (2)

where α1, . . . , αn ∈ C and
n∑
i=1
|αi|2 = 1. Moreover, the most basic model of a quantum state — a

qubit — is a qunit with n = 2.
The operation which allows joining n independent qunit systems is the tensor product. Let

us take n qunit states

|ψ〉 =

 ψ1
...
ψn

 = ψ1|0〉+ · · ·+ ψn|n− 1〉, |φ〉 =

 φ1
...
φn

 = φ1|0〉+ · · ·+ φn|n− 1〉. (3)

We can write their joint state in Cn ⊗ Cn as

|ψ〉 ⊗ |φ〉 =



ψ1φ1
...

ψ1φn
ψ2φ1

...
ψnφn−1

ψnφn


. (4)
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The other way of joining quantum systems into a bigger one is by using the direct sum. The
joint state of two states |ψ〉, |φ〉 ∈ Cn is

|ψ〉 ⊕ |φ〉 =



ψ1
...
ψn
φ1
...
φn


. (5)

Let |ψ〉 (ket) be a normalised column vector from Hilbert space Cn with orthonormal basis
{|i〉}ni=1. Dual vector to ket is 〈ψ| (bra). In such case the state of the system is represented as
|ψ〉 =

∑
i ψi|i〉.

We denote the inner product of |ψ〉 and |φ〉 by 〈φ|ψ〉 =
n∑
i=1

φ∗iψi. It has three properties:

1. 〈ψ|ψ〉 ≥ 0 where equality holds iff |ψ〉 = 0,

2. 〈φ|ψ〉 = 〈ψ|φ〉∗,

3. 〈ψ|(a1|φ1〉+ a2|φ2〉) = a1〈ψ|φ1〉+ a2〈ψ|φ2〉.

Furthermore, |ψ〉〈φ| =
n∑
i=1

n∑
j=1

ψiφ
∗
j |i〉〈j| will be their outer product.

One of the most important concepts in quantum information is the measurement. The math-
ematical model of the measurement is as follows. First we define a finite set of outcomes Γ. Then
we assign the corresponding measurement operators {Pγ}γ∈Γ. We request that the measurement
operators satisfy the condition P 2

γ = Pγ and
∑

γ Pγ = I.
The probability that we obtain the outcome γ when measuring a state |φ〉 is equal to

PΓ(γ, |φ〉) = 〈φ|Pγ |φ〉. (6)

After the measurement the state of the system changes into a state

Pγ |φ〉
〈φ|Pγ |φ〉1/2

.

3 State of the art

There are various ways in which classical data can be encoded on quantum states. The specific
encoding method depends on the type of data and quantum algorithms that will be executed.
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3.1 Quantum representations of digital images

Below we recall four most important representations of quantum images proposed in recent years.
In the Qubit Lattice representation of grayscale images proposed in [5] the intensity of a pixel

at position y, x is encoded on a qubit |q〉y,x.
The Real Ket representation introduced in [6] stores 2n×2n grayscale images in unnormalised

quantum states of the form

|Ψ〉 =
∑

i1,...,in=1,...,4

ci1,...,in |i1, . . . , in〉,

where ci1,...,in ∈ R and subsequent ququarts (a ququart is a qunit with n = 4) serve as the position
of a pixel encoded in a quad-tree.

The flexible representation of quantum images (FRQI) captures information about pixel
colours and their corresponding positions. It is inspired by the pixel representation for images in
classical computers. This information is encoded into a quantum state defined as follows

|I(θ)〉 =
1

2n

22n−1∑
i=0

(cos θi |0〉+ sin θi |1〉)⊗ |i〉, (7)

where θi ∈
[
0, π2

]
and constitutes of the colour encoding vector, |0〉, |1〉 is a fixed basis of a two-

dimensional complex Hilbert space, and |i〉 is a basis of 22n-dimensional space responsible for
encoding the position in the image. The colour is encoded in a 2D-vector by cos θi |0〉+ sin θi |1〉
which is connected by a Kronecker product with a vector |i〉 responsible for a position in the
image.

A novel enhanced quantum representation (NEQR) of digital images proposed in [7] encodes
a grayscale 2n × 2n image in a quantum state of the form

|I〉 =
1

2n

2n−1∑
y=0

2n−1∑
x=0

q−1⊗
i=0

|Ciyx〉 ⊗ |Y X〉,

where Ciyx is a discrete value of image intensity, quantised with q levels of quantisations of a pixel
at position (y, x).

3.2 Quantum image processing algorithms

The sub-field of quantum computation that deals with algorithm development for quantum image
processing has grown very rapidly. At least a hundred papers discussing this subject have been
published in the last fifteen years.

It should be noted that some of classical image transformations already have their quantum
analogues. For example we can mention quantum Fourier transform [8], quantum discrete cosine
transform [9, 10], and quantum wavelet transform [11].

There exist several clever techniques to process the images encoded in quantum states. For
example, in [12] the authors propose a way to perform template-matching algorithm using quan-
tum Fourier transform and amplitude amplification. In paper [13] the authors extended the use of
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quantum circuit models for quantum image representation and processing. They developed three
strategies to extend the number of geometric transformations [14] on quantum images using the
FRQI representation of quantum images. In [15] the authors proposed quantum algorithms for
edge detection and image filtering based on projective measurement. In [16] the authors proposed
a model for storing and operating on infra-red images.

Complex quantum image processing requires a number of basic algorithmic primitives. In [17]
the authors developed a quantum image translation, which maps the position of each picture
element into a new position. In [18] an algorithm for comparing colour quantum images based on
FRQI model is described.

4 Algorithm for quantum image classification

The aim of the presented algorithm is the classification of quantum images. The input of the
algorithm is a quantum representation of an image which will be tested. The algorithm requires
a set of principal components which describe a class of pictures. The output is “yes” or “no”
and answers the question whether the image exhibits the features represented by the principal
components.

4.1 Principal component analysis

In order to create the described quantum classifier principal component analysis (PCA) will be
applied. This technique has been successfully applied to various datasets in the domain of signal
processing. In celebrated classical paper [19] it was applied to the classification of human faces.

Let us suppose that we have m sample vectors from learning set {|Si〉}mi=1. Next we calculate
mean vector of these samples

|S̄〉 =
1

m

m∑
i=1

|Si〉, (8)

and then we calculate normalized sample vectors |Di〉, where i ∈ {1, . . . ,m}

|Di〉 =
|Si〉 − |S̄〉
|||Si〉 − |S̄〉||

, ∀i ∈ {1, . . . ,m}. (9)

Then we obtain the matrix of data A ∈ Mm,n with rank k ≤ m. The matrix is composed of
vertically stacked horizontal vectors |Di〉, where i ∈ {1, . . . ,m}.

Then, by SVD we get A = UΣV T . where U ∈ Mm and V ∈ Mn are orthogonal matrices.
The matrix Σ = diag{σ1, . . . , σq} is such that σ1 ≥ σ2 ≥ . . . ≥ σk > σk+1 = . . . = σq = 0, with
q = min(m,n).

The numbers σi are called singular values, i.e. non-negative square roots of the eigenvalues of
AAT . The columns of U are eigenvectors of AAT and the columns of V are eigenvectors of ATA.
The i-th column vector of the matrix U:,i is called the i-th principal component of the data.
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4.2 Classification model

The developed algorithm is based on the classical model of image classification. To classify some
picture X we represent it as a vector |X〉. This will be input data. We denoted the set of the
principal components by {|Vl〉}sl=1. We measure the likelihood M of the input data being in the
control set in the following way:

M =
s∑
l=1

|〈X|Vl〉|2. (10)

The measure takes values from interval [0, 1], where 0 is for the images orthogonal to the considered
class, and 1 for the images in the class.

4.3 Goals and assumptions

The main goal is to develop an algorithm which will keep undermentioned assumptions.

1. Underlying quantum system used for the representation of pictures dimensions grows lin-
early with picture size.

2. Image representation has to provide the possibility of manipulation on individual pixels
without global changes or state renormalization.

3. Local image disturbances cannot cause significant change to the quantum representation
state in the terms of image similarity measure.

4. The developed algorithm should allow the adaptation of classical techniques. Because of
that fact we aim to achieve the linear dependency between classical inner product and inner
product on considered quantum representation space.

5. The classification test should be feasible with the use of a measurement. Because of that
quantum representation of principal components should provide the possibility of creating
orthogonal projectors that can be used to construct a measurement.

In the following parts of this section we introduce quantum representation of pictures and image
classification algorithm based on the above assumptions.

4.4 Quantum image representation

Suppose we have a normalized image vector of n values |X〉 = {xi}ni=1, where xi ∈ [0, 1]. The
quantum system encoding the data from the image space will be a direct sum H = (Ck)⊕n. Quan-
tum representation |Φ(X)〉 ∈ H of a picture |X〉 will be a mapping from [0, 1]n to H defined by

|Φ(X)〉 =
1√
n

n⊕
i=1

|φ(xi)〉, (11)

where pixels are represented by

|φ(xi)〉 = xi|0〉+
√

1− x2
i |1〉. (12)
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Using direct sum in this representation ensures that the developed algorithm keeps the first
assumption.

We will construct the quantum representation of vectors from PCA in the same way. Let
{|Vl〉}sl=1 be a set of principal components with values vl,i ∈ [−1, 1] and {|Φ(Vl)〉}sl=1 be a set of
their quantum representations. Because we need to keep orthogonality of principal components
the representation of each of them is encoded on different 2—dimensional subspace of Ck. The
spaces intersection is an axis spanned by |0〉. Each pixel of j-th component is represented by

|φ(vj,i)〉 = vl,i|0〉+
√

1− v2
l,i|j + 1〉, (13)

where j ∈ {1, 2, 3, . . . , s} and i is a pixel index. The whole principal component representation
is composed of the pixel representations in the same way as in (11). Let us take two vectors
|Vj〉, Eq.|Vl〉 and their quantum representation |Φ(Vj)〉, |Φ(Vl)〉. The inner product of |Vl〉 and
|Vj〉 is

〈Vl|Vj〉 =

n∑
i=1

v∗l,ivj,i, (14)

and for corresponding quantum representations one reads

〈Φ(Vl)|Φ(Vj)〉 =
1√
n

1√
n

n∑
i=1

〈φ(vl,i)|φ(vj,i)〉

=
1

n

n∑
i=1

(v∗l,ivj,i〈0|0〉+
√

1− v2
j,ivl,i〈0|j + 1〉+

+ v∗j,i

√
1− v2

l,i〈l + 1|0〉+
√

1− v2
l,i

√
1− v2

j,i〈l + 1|j + 1〉)

=
1

n

n∑
i=1

v∗l,ivj,i,

(15)

where the first equality is from Eq. (11) and the last one is implied by orthonormality of the basis
vectors. From Eq. (14) and Eq. (15) we derive that the inner product of two vectors is equal to
the inner product of quantum representations of these vectors with respect to a constant factor
1/n. This is an important feature of the introduced representation, which is significant for the
algorithm.

4.5 Construction of measurement

The quantum algorithm for image classification is based on classical methods for determining
the characteristic subspace of the data set in the featured space. Thus we take s principal
components {|Vl〉}sl=1 that describe the data set crucial properties. The quantum algorithm for
image classification will utilise the system H defined in the previous section. In order to use
the classically computed components in the quantum algorithm we need to convert our principal
components into the quantum representation {|Φ(Vl)〉}sl=1.

The developed algorithm is based on the quantum measurement scheme. We consider two-
element output set Γ = {yes, no}. The first of the resulting labels will correspond to the principal
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components subspace and the other one – to the rest of the image space. Thus we create two
measurement operators Π and 1 − Π. The principal component projection operator Π is of the
form

Π =
s∑
l=1

|Φ(Vl)〉〈Φ(Vl)|. (16)

Projector Π corresponds to output “yes” and 1−Π corresponds to output “no”.

4.6 Measurement probabilities

Let |X〉 be an input image vector and {|Vl〉}sl=1 the set of the principal components.
Now let |Φ(X)〉 be a quantum representation of the input and {|Φ(Vl)〉}sl=1 be a quantum

representation of principal components with projector Π constructed as in Eq. (16). Then the
probability of the result of the measurement being “yes” for a given input is

PΓ(yes|X) = 〈Φ(X)|Π|Φ(X)〉 =
s∑
l=1

|〈Φ(X)|Φ(Vl)〉|2 =
1

n2
M, (17)

where the last equation results from Eq. (14) and Eq. (15). Thus the probability PΓ(yes|X) is
linearly dependent on the classical likelihood measure M (calculated in Eq. (10)) with respect
to a factor 1/n2, where the last equation is from Eq. (14) and Eq. (15). Thus the probability
PΓ(yes|X) is linearly dependent on the classical likelihood measure M with factor 1/n2.

Because of the factor 1/n2 we perform n2 tests. We assume that we have n2 copies of the
quantum representation of the vector |X〉. We perform the measurement Π on each of the copies.
If any of the measurements returns “yes” then the algorithm returns positive answer. If not, the
answer is negative. The probability that the algorithm will return the output “no” for a given
input vector |X〉 is equal to

PΓ,n2(no|X) = (1− PΓ(yes|X))n
2
. (18)

The probability of positively classifying the input image in most of the cases is close to the classical
likelihood measure. In general the probability is slightly lower. Thus the algorithm trifle favors
the negative answer. If the result is “yes” we can express the state after the measurement as:

|Φyes(X)〉 =
Π|Φ(X)〉√

〈Φ(X)|Π|Φ(X)〉
,

if the result was “no” we can express it as:

|Φno(X)〉 =
(1−Π)|Φ(X)〉√
〈Φ(X)|Π|Φ(X)〉

.

The pictures which can be obtained from decoding the state after the measurement will be defined
as output pictures. By decoding we mean the operation opposite to the encoding from Eq. (11)
and (12) i.e. we take subsequent values xi from the first coordinate of |0〉 and consider them as
the values of pixels of the output picture.
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C1 C2 C3

Figure 1 Pattern pictures, 11× 11 pixels.

5 Example

In order to demonstrate the presented method we consider some examples. We will focus on the
classification of black-white images. First, we construct a learning set and determine principal
components which describe the data set. Next, we perform the results of numerical tests on three
sample pictures.

5.1 Construction of the learning set

Suppose we have three pattern pictures presented in Fig. (1). Our aim is to check if some testing
picture has common features with pictures C1, C2, C3. The algorithm for PCA requires huge
amount of pictures which will be used as a learning set. In this example we create the learning
set based on pattern pictures C1, C2, C3. The image from the learning set is constructed from
a pattern picture as follows. Firstly, a random number with uniform distribution from interval
[0, 2/5] has added to every pixel. Secondly, the picture has been normalized. From each pattern
picture we create 250 pictures, so the learning set consists of 750 pictures. From these pictures
we create the vectors which are next vertically stacked to matrix A. This matrix is used as an
input for the PCA algorithm (see Sec. 4.1).

We take three principal components which correspond to the largest singular values and
transform them into the quantum representation described in Sec. 4.4. The resulting components
are represented in Fig. (2). In the final step we construct the projector Π, according to Eq. (16).

5.2 Test data

Suppose we have three images X1, X2, X3 which we want to test separately (Fig. 3). In order to
use the quantum image representation we need to normalize images X1, X2, X3 and represent
them as vectors. As in Sec. 4.4 we construct the quantum representation for each of the pictures
(|Φ(X1)〉, |Φ(X2)〉, |Φ(X3)〉).

In the Table 1 we present the probabilities that the algorithm returns “yes” after the mea-
surement on one copy for each testing picture: PΓ(yes|Xi), where i ∈ {1, 2, 3}. The probabilities
that the algorithm returns “yes” if we perform the measurement on 1212 copies: PΓ,1212(yes|Xi),

9



Quantum image classification using principal component analysis (10 of 12)

first principal component second principal component third principal component

Figure 2 First three principal components.

X1 X2 X3

OX1 OX2 OX3

Figure 3 Upper row: input pictures. Lower row: output pictures.

where i ∈ {1, 2, 3}.
Output pictures from the algorithm are presented in Fig. (3). As we can see in Fig. (2), the

compliment of these three pattern pictures is distinguished in the first principal component. This
explains why this compliment is visible on the output pictures.

6 Concluding remarks

In this paper we have provided a new quantum representation of digital images and the algorithm
for classification of the images. The classification is performed by applying the measurement
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i PΓ(yes|Xi) PΓ,1212(yes|Xi)
1 4.0987e-05 0.45124
2 5.4741e-05 0.55133
3 5.3351e-05 0.54211

Table 1 Second column: probabilities for one copy of image Xi, where i ∈ {1, 2, 3}. Third
column: probabilities for 1212 copies of picture Xi, where i ∈ {1, 2, 3}.

apparatus on the quantum states that represent input images. The measurement is performed
on multiple copies of the image sequentially. The introduced quantum representation allows the
transformation of some properties from the classical model of algorithms because of linear depen-
dency between inner products. Moreover, the quantum representation of principal components
enables defining orthogonal projectors needed for the measurement construction. Therefore, the
paper provides a complete system for quantum classification of digital images.

In the future work we will try to harness the possibility of manipulation on individual pixels
without global changes or state renormalization in order to improve the possibilities of classifi-
cation. Furthermore, we will consider other classification techniques such as linear discriminant
analysis (LDA). Moreover, we will modify the algorithm in order to limit the number of used
copies.
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