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1 Introduction

Random bits are required in many areas including in cryptography, computer simulation, statis-
tical sampling, etc. A True Random Number Generator (TRNG) can be used to generate these
random bits. However, the TRNG design uses some uncontrollable physical processes as a source
of true randomness and in most practical environments this is an inefficient procedure. So, a
Pseudo Random Number Generator (PRNG) can be used in place of a TRNG. PRNG takes a
small bit length seed (random) as input and produces a very large binary sequence which appears
to be random. The concept of PRNG motivates the design of stream ciphers and in stream cipher
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design, Linear Feedback Shift Register (LFSR, see Golomb [1], Lidl and Niederreiter [2]) is used
as one of the important basic building blocks.

The LFSR is very popular in hardware as it has fast and low cost of implementation. If it is
primitive, then it produces maximum length periodic bitstream for any nonzero initial state. Also,
bitstream generated by the LFSR have very good statistical properties. However, it produces only
one new bit in each cycle, so such ciphers are often referred as bit-oriented ciphers and could not
take the advantage of available word based modern operations. However, the word based LFSR
called MRMM [3, 4, 5, 6] takes this advantage. By Zeng at el., it is called as σ-LFSR [7]. It is
shown in [8, 9] that Marsaglia’s Xorshift RNGs are special case of the MRMMs.

In this paper, we have given an algorithm which constructs Xorshift RNGs from a binary
primitive polynomial. Later, we have found a weakness in these RNGs generated from this
algorithm and suggested a solution to overcome this weakness. The paper is organized as follows.
In Sec. 2, we introduce some notations, definitions and results concerning to the primitive LFSRs
and Xorshift generators. We propose the construction algorithm for Xorshift RNGs in Sec. 3.
In Sec. 4, some results and issues pertaining to the Xorshift RNGs produced by construction
algorithm are discussed. Finally, conclusion is made in Sec. 5.

2 Notation and theory

Let Fq denote the finite field with q elements, where q is a prime power and Fq[X] be the ring of
polynomials in one variable X with coefficients in Fq. Denote Mm(Fq) the set of all m×m matrices
with entries in Fq and GLm(Fq) be the set of all m ×m invertible matrices. For C ∈ Mm(Fq),
Cij denotes the entry of the matrix C at ith row and jth column. For any square matrix C,
det(C) = |C| denotes its determinant whereas CT denotes the transpose of the matrix C. The
notation ord(C) denotes the period of the matrix C. dne denotes least positive integer greater than
or equal to n. Let R ∈Mm(F2) be the right shift operator defined as Rx = (0, x1, x2, . . . , xm−1)

T ,
where x = (x1, x2, . . . , xm)T ∈ Fm2 . Then the matrix form of R is as follows

R =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


m×m

(1)

Similarly, let L be the left-shift operator defined as the transpose of the matrix R, i.e., Lx =
L(x1, x2, . . . , xm)T = (x2, x3, . . . , xm, 0)T . For a positive integer k, Lk means L is applied for k
times i.e., k is the amount of shifting in left direction and Rk is defined similarly. It is easy to
see that both Lkx and Rkx = 0 if k ≥ m. Let Im ∈ GLm(Fq) be the identity matrix.

2.1 LFSR

A sequence s0, s1, s2, . . . with elements from a finite field Fq is called periodic if there exists a
nonnegative integer p such that si+p = si for all i ≥ 0. The smallest such integer p is called the
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period of the sequence. For a periodic sequence, it is always possible to have a relation called
linear recurring relation (LRR) [2] among the elements as

si+n = −(c0si + c1si+1 + · · ·+ cn−1si+n−1) (2)

where ci ∈ Fq and the integer n is called the degree of the LRR. It is well known that for a given
periodic sequence in Fq there is a minimum degree LRR which satisfy the periodic sequence. The
associated polynomial f(x) = xn−cn−1xn−1− . . .−c1x−c0 is called the characteristic polynomial
of the LRR. The companion matrix T of the polynomial f is as follows

T =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
c0 c1 c2 . . . cn−1


n×n

(3)

If the column vector S0 = (s0, s1, . . . , sn−1)
T ∈ Fnq is the initial states of the LFSR, then S1 =

T (S0) = (s1, s2, . . . , sn)T where sn is calculated using the equation (2). The successive states of
the LFSR are obtained by repeated application of T . If Sk be the states of the LFSR after kth

iteration, then Sk = T k(S0). Again, it is proved that the sequence generated by the LRR have
period (qn − 1) if and only if the polynomial associated with the LRR is a primitive polynomial
of degree n over the field Fq [2, 10] .

The primitive LFSRs have very nice properties. The primitive LFSRs produce bit sequence
which not only have a large period, but also have good statistical properties required for crypto-
graphic applications. Again, they have low cost of implementation in hardware [10, 11]. So, the
LFSRs are quite useful in generation of pseudorandom bit sequences. However, LFSR produces
only one new bit per cycle and in many situations such as high speed link encryption, an effi-
cient software encryption technique is required. In such cases, bit-oriented ciphers do not provide
adequate efficiency. In case of the LFSR of order n, total n shifting along with the feedback
computation is needed to produce one bit output. Thus, an LFSR takes O(n) bit manipulations
in order to produce only a single bit. Therefore, in case of software implementation point of view,
the LFSR does not take the advantage of the available word based modern processors. However,
the word based RNGs like σ-LFSRs [12, 13] and Xorshift RNGs [14] take this advantage.

2.2 Xorshift generator

Xorshift generator [14] introduced by Marsaglia is a linear operator T , which uses only two
word based operations called shifting (both right and left) and exclusive-or (XOR). The basic
idea of Xorshift generators is that the state is modified by applying repeatedly shift and XOR
operations. If S0 = (s0, s1, . . . , sn−1)T ∈ Fmn2 is the initial seed, where each si is m-bit in size,
then {TS0, T

2S0, T
3S0, . . .} is the sequence of words generated by T . Note that, in case of Xorshift

RNGs, TS can be computed using a small number of Xorshift operations for any S ∈ Fmn2 . Here,
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the companion matrix of this operator T in the block form is

T =


0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

. . .
...

0 0 0 · · · Im
(1 + La)(1 +Rb) 0 0 · · · (1 +Rc)

 (4)

where a, b and c are three positive integers and each block is an m × m matrix. Here 0 is the
m ×m zero matrix and TS0 = (s1, s2, . . . , sn−1, As0 + Bsn−1)T , where A = (1 + La)(1 + Rb)
and B = (1 + Rc). So its implementation requires only a few number of Xorshift operations
per pseudo-random number generation. Again, the Xorshift generators have implementation
advantages when the size of the each state in bits is a multiple of the computer word size m
(typically m = 32 or 64). The Xorshift RNGs are extremely fast and there are several values of
triplet (a, b, c) for which the companion matrix T has maximal period. Marsaglia [14] lists all those
triplets (a, b, c) that yield maximal period Xorshift generators with m = 32 and m = 64. Later it
was verified by Panneton and L’Ecuyer [9] and also shown some deficiencies after analyzing this
class of generators. Brent also discussed a potential problem related to correlation of outputs
with low Hamming weights and suggested a technique to overcome that problem [8].

From Eq. (4), it is clear that the dimension of the matrix T is mn×mn and so the maximal
period of T could be 2mn−1. Let P (z) = det(T − Iz) be the characteristic polynomial of T , then
T is full periodic (i.e., ord(T ) = 2mn − 1) if and only if P (z) is a primitive polynomial over the
binary field F2[2, 10]. The list of triplet (a, b, c) were listed out as follows:

• It first constructs the matrix T using the triplet(a, b, c) as in Eq. (4).

• Checks the primitiveness of the characteristic polynomial P (z) of the matrix T .

• If P (z) is primitive, then the triplet (a, b, c) is added to the list.

In this process, to get one such triplet it needs several attempts for primitiveness checking of the
polynomial P (z). Now, we are proposing an algorithm which does the reverse i.e., it first finds a
primitive polynomial and then constructs a Xorshift generator T from this primitive polynomial.
The construction algorithm is described in the following section.

3 Construction algorithm for Xorshift RNG

In this section, we present the algorithm which constructs a Xorshift RNG from a given primitive
polynomial. Let f(X) =

∑mn
i=0 aiX

i be a polynomial of degree mn over F2. Then using the
coefficients ai’s define n number of m×m matrices Ci for i = 1, 2, . . . , n− 1, where first (m− 1)
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columns contain zeros only and is as below

Ci =


0 0 . . . 0 ai
0 0 . . . 0 an+i
0 0 . . . 0 a2n+i
...

...
. . .

...
...

0 0 . . . 0 a(m−1)n+i


m×m

(5)

Again, define the matrix C0 in the following form

C0 =


0 0 . . . 0 a0
1 0 . . . 0 an
0 1 . . . 0 a2n
...

...
. . .

...
...

0 0 . . . 1 a(m−1)n


m×m

(6)

Now, using the matrix coefficients C0, C1, . . . , Cn−1, constructs the matrix T of size mn×mn as
given in the Eq. (7)

T =


0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

. . .
...

0 0 0 · · · Im
C0 C1 C2 · · · Cn−1

 . (7)

Then, for the column vector S = (s0, s1, . . . , sn−1)T

TS = (s1, s2, . . . , sn−1, C0s0 + C1s1 + . . .+ Cn−1sn−1)T (8)

Let M(X) = ImX
n − Cn−1X

n−1 − · · · − C1X − C0. Then M(X) is an m × m matrix
polynomial. We call M(X) as the matrix polynomial corresponding to the polynomial f(X).
Using the following results, it is possible to calculate the determinant of an mn×mn matrix from
the determinant of an m×m matrix [12, lemma 2.3].

Lemma 1. Let T be the matrix corresponding to the polynomial f(X) of degree mn as defined
in Eq. (7). Then the characteristic polynomial of T is equal to the determinant of M(X).

Lemma 2. Let M(X) be the matrix polynomial corresponding to the polynomial f(X) of degree
mn over Fq. Then the determinant |M(X)| is equal to f(X).

Proof. The matrix form of M(X) is

M(X) =



Xn 0 0 · · · 0 f0
−1 Xn 0 · · · 0 f1
0 −1 Xn · · · 0 f2
...

...
...

. . .
...

...
0 0 0 · · · Xn fm−2
0 0 0 · · · −1 fm−1 + fmX

n


m×m

(9)
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where fi(X) =
∑(i+1)n−1

k=in akX
k−in for i = 0, 1, . . . , (m − 1) and fm(X) = amn 6= 0. Multiply

Xn with the nth row and add to the (n− 1)th row of the above matrix M(X). This will remove
Xn from the (n− 1)th row without any change in the determinant. Now, add Xn times the new
(n − 1)th row to the (n − 2)th row. This will remove Xn from the (n − 2)th row. Continue this
procedure till all the Xn terms on the main diagonal have been removed. Then, the resultant
matrix will have the same determinant as M(X) and it will be in the following form

0 0 0 · · · 0 g0
−1 0 0 · · · 0 g1
0 −1 0 · · · 0 g2
...

...
...

. . .
...

...
0 0 0 · · · 0 gm−2
0 0 0 · · · −1 gm−1


m×m

(10)

where

g0 = f0 +Xn (f1 +Xn (f2 + · · ·+Xn (fm−1 +Xnfm) · · · ))
g1 = f1 +Xn (f2 + · · ·+Xn (fm−1 +Xnfm) · · · )
g2 = f2 + · · ·+Xn (fm−1 +Xnfm)

...

gm−2 = fm−2 +Xn (fm−1 +Xnfm)

gm−1 = fm−1 +Xnfm

(11)

After suitable operations, it can be shown that

det (M(X))) = det



0 0 0 · · · 0 g0
−1 0 0 · · · 0 0
0 −1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · −1 0


= (−1)2(m−1)g0. (12)

But g0 = f(X) and thus proves the lemma.

From Lemma 1 and Lemma 2, it is clear that the characteristic polynomial of T is primitive
if the polynomial f(X) is primitive. Therefore, if f(X) is primitive, then T is full periodic i.e.,
ord(T ) = (2mn − 1) [2, 10]. Our next goal is to show that the matrix operator T belongs to the
class of Xorshift RNGs. Note that all the matrix coefficients Ci given in Eq. (5) and (6) used in
Eq. (8) have a special form. The construction algorithm for Xorshift RNGs takes the advantage

of these special structures. It is easy to see that the matrix C0 can be written as C0 = R + Ĉ0,
where R is the right shift operator and Ĉ0 is an m×m matrix having first (m− 1) zero columns.

Again, the last column of both Ĉ0 and C0 are same and the structure of Ĉ0 is exactly same as
Cj , for j ≥ 1. Because of the following lemma, we will show that TS can be computed using only
Xorshift operations.

6
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Input: A primitive polynomial f(X) of degree mn over F2.
Output: A Xorshift RNG of order n over F2m .
1: Construct the matrix coefficients Cis as in Eq. (5) and (6)
2: Construct the matrix T as described in the Eq. (7)
3: Return the matrix T

Algorithm 1 Construction of primitive Xorshift RNGs

Lemma 3. [12] For any matrix A ∈Mm(F2) having all the columns zero except the mth column
and for any vector s = [s0, s1, . . . , sm−1]

T ∈ Fm2 , we have

As = sm−1vm (13)

where vm represents the mth column of the matrix A.

By invoking Lemma 3, TS can be rewritten as follows:

TS = (s1, s2, . . . , sn−1, sn)T (14)

where,

sn = (Rsi + α0v0 + α1v1 + · · ·+ αn−1vn−1) (15)

and αi is the least significant bit (LSB) of si and vi is the mth column of the matrix Ci (0 ≤
i ≤ n − 1), that is vi = [ai, an+i, . . . , a(m−1)n+i]

T . It is clear that the Eq. (15) can be computed
by using only one right shift operation and at most n XOR operations and thus, it falls into the
class of Marsaglia’s Xorshift RNGs. We call Eq. (15) as feedback computation function.

Now we are in a position to propose the construction algorithm for Xorshift RNGs. The
sequential steps of the construction algorithm are described in Alg. 1.

The complexity of the Alg. 1 is O(1) as it generates a primitive Xorshift generator T from a
given primitive polynomial just by expressing the coefficients in matrix form.

Lemma 4. The primitive Xorshift RNGs of order n over F2m generated by Alg. 1 will have at
least two and at most (n+ 1) Xorshift operations in the feedback function computation.

Proof. Alg. 1 generates primitive Xorshift RNGs from the primitive polynomial and again, the
constant term of the primitive polynomial must be nonzero i.e., a0 6= 0. This implies v0 6= 0 as
v0 = [a0, an, . . . , a(m−1)n]T . Again, in the recurrence relation in Eq. (15), the right shift R will
be present irrespective of any polynomial. So there will be at least two Xorshift operations in the
feedback computation. Also, in Eq. (15), there are almost (n+ 1) nonzero terms. This completes
the proof.

4 A note on construction algorithm for Xorshift genera-
tors

The Xorshift generators generated from the primitive polynomials and so are full periodic. For
every primitive polynomial of degree mn, it constructs distinct Xorshift generator. Therefore,
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Iteration No. States of Xorshift generator

1 (d,

(n-1) times︷ ︸︸ ︷
0,0, · · · ,0)

2 (0, d,

(n-2) times︷ ︸︸ ︷
0,0, · · · ,0)

3 (0,0, d,

(n-3) times︷ ︸︸ ︷
0,0, · · · ,0)

...
...

n (

(n-1) times︷ ︸︸ ︷
0,0, · · · ,0, d)

n+ 1 (d2 ,

(n-1) times︷ ︸︸ ︷
0,0, · · · ,0)

n+ 2 (0, d2 ,

(n-2)times︷ ︸︸ ︷
0,0, · · · ,0)

...
...

Table 1 States of Xorshift RNG

total number of full periodic Xorshift generators of order n over the field F2m produced by this
algorithm is φ(2mn−1)

mn .

4.1 Weakness in Initialization of Xorshift generator States

The primitive Xorshift RNGs generated by the construction algorithm have efficient software
implementation property, however from cryptographic point of view they have a weakness similar
to the Lagged Fibonacci Generator (LFG) [8, 15]. In LFG, if all states are initialized with even
numbers, then the feedback value will be always even in every iteration. To counter this weakness,
at least one state of the LFG must be initialized with an odd value. Similar kind of weakness is
also present in the Xorshift RNGs constructed by Alg. 1. If first (n−1) states (i.e., s0, s1, . . . , sn−2)
of the Xorshift RNG generated by the construction algorithm are even, then there will be only
one active term in the feedback value computation i.e., Rsi. This happens because the αi defined
in Eq. (15) is the least significant bit (LSB) of the state si and so equal to zero for even value
of si. If all states are multiple of 2l i.e., si = 2lki, then there will be only one active component
in the feedback function computation till nl many iterations and for 0 < j < nl, sn+j = Rj1sj2 ,
where j1 = d jne and j2 = (j − 1) mod n.

In particular, if the states si for 0 ≤ i < (n − 1) are zero vectors and sn−1 = d, where d is a
multiple of 2l, for some integer l > 0, then the Tab. 1 gives the states of Xorshift generator after
the subsequent iterations.

If the content of stage 0 is the output word in each iteration, then the first nl words of the
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output sequence produces by the Xorshift generator is as follows

(n-1) times︷ ︸︸ ︷
0,0, · · · ,0, d

2
,

(n-1) times︷ ︸︸ ︷
0,0, · · · ,0, d

22
, · · · ,

(n-1) times︷ ︸︸ ︷
0,0, · · · ,0, d

2l
, · · · (16)

Here each word is m−bit wide. There are (n−1) zero vectors in each n consecutive output words
till the nlth iteration. Note that, with initial states (d,0,0, · · · ,0) with d = 2lk, the first ln
outputs are same irrespective of any primitive Xorshift RNGs of order n constructed by Alg. 1.
So, the initial value of the states of the Xorshift generator produced by the construction algorithm
are significant for the quality of pseudorandom vectors generation. To avoid this weakness, the
initial states of the Xorshift RNG need be initialized with odd numbers. In such case, all αi will
be equal to 1 at the first iteration and there will be maximum number of active terms for the
feedback function computation.

4.2 Different Xorshift generators from same binary primitive polynomial

One of the important thing of the construction algorithm is that it produces different primitive
Xorshift generators of different order from a given binary primitive polynomial of degreemn. Since
in most of the operating system, the word size is of the form 2k, we have considered mn = 2k

for some positive integer k. Again for mn = 2k, there will be (k − 1) distinct possible choices
for m i.e., 1, 21, . . . , 2k−1. For each value of m, the construction algorithm returns n vectors
{v0, v1, . . . , vn−1}, where each vi is of m-bit length. For better understanding, the following
example is provided.

Example 1. Let us consider the binary primitive polynomial f(x) = x32 + x31 + x27 + x26 + x25 +
x20 + x19 + x15 + x14 + x11 + x9 + x7 + x6 + x5 + x4 + x2 + 1. Here degree of f(x) is 32 and
so mn = 32 = 25. Then the set of possible choices for m is {1, 21, 22, 23, 24}. But, we are only
considering m = 23 and 24. The respective Xorshift RNGs constructed using Alg. 1 are given
below:

1. For m = 23 and n = 22: v0 = 0xf7, v1 = 0x54, v2 = 0x73, v3 = 0xbf .

2. For m = 24 and n = 2: v0 = 0xbf2f , v1 = 0x6775.

From Eq. (15), it is clear that for a Xorshift generator of order n over the field F2m requires
following operations in each iteration:

• It requires one right shift operation and at most n XOR operations for computation of the
feedback value fd.

• n state shifting operations i.e., si = si+1 for i = 0, 1, . . . , n− 2 and sn−1 = fd.

Then, using Lemma 4, it is clear that at least (n+2) and at most (2n+1) Xorshift operations
are needed to produce an m-bit word in each cycle. Thus, to produce a bitstream of length l,
it will take d lme many iterations. If N is the total number of word operations (XOR, right shift

and shifting), then (n+ 2)d lme ≤ N ≤ (2n+ 1)d lme. Suppose for a binary primitive polynomial of
degree mn, two separate primitive Xorshift RNGs (RNG1 and RNG2) are generated with word

9
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size m1 and m2 respectively, where m2 = 2m1. Let, the respective order of RNG1 and RNG2 be
n1 and n2, then n1 = mn

m1
and n2 = mn

m2
= mn

2m1
. If N1 and N2 be the total number of operations

required to generate bitstream of length l, then we have

(n1 + 2)

⌈
l

m1

⌉
≤ N1 ≤ (2n1 + 1)

⌈
l

m1

⌉
, (17)

(n2 + 2)

⌈
l

m2

⌉
≤ N2 ≤ (2n2 + 1)

⌈
l

m2

⌉
. (18)

Therefore,

N1 ≥ (n1 + 2)

⌈
l

m1

⌉
= (2n2 + 2)

⌈
2l

m2

⌉
≥ 2(2n2 + 2)

(⌈
l

m2

⌉
− 1

)
= 2(2n2 + 1)

⌈
l

m2

⌉
+ 2

⌈
l

m2

⌉
> 2N2.

(19)

Again,

N1 ≤ (2n1 + 1)

⌈
l

m1

⌉
= (4n2 + 1)

⌈
2l

m2

⌉
≤ 2(4n2 + 1)

⌈
l

m2

⌉
< 8N2. (20)

Using Eq. (19) and (20), we have 2 < N1/N2 < 8. Therefore, for larger value of m, the
Xorshift generator will take lesser number of word operations to produce the bitstream of desired
length l and so will take lesser time which is reflected in our experimental results given in the
Tab. 2.

Word size m Avg. Time taken (sec) Avg. Time taken (sec)
to generate 109 bits to generate 1010 bits

8 78.6 841.1
16 20.0 215.3
32 6.0 62.7
64 1.9 19.2

Table 2 Average timing for different values of m

For our experiment, we have taken mn = 512 and the bitstream length l as 109 and 1010.
Then for m = 8, 16, 32, 64, measured the average time taken to generate bitstream of length l. It
is observed that if the word size m is increased by 2, then the time taken reduced by c to generate
a fixed length bitstream, where 2 < c < 8. The construction algorithm for primitive Xorshift
RNGs is implemented in C and the used Test machine is Intel Xeon(R) CPU E5645 @ 2.40GHz
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x 12 with 8 GiB memory and 64-bit Linux operating system. The Tab. 2 summarize the results,
which tells that it is better to select the primitive Xorshift RNG having larger word size m (i.e.,
32 or 64) so as to take the advantage of modern word based operations.

4.3 Primitive Xorshift generator with Desired Number of Tap Points

The effect of number of tap points in the LFSR (i.e., the number of nonzero coefficients) is
important for cryptographic usage while choosing a primitive polynomial. Because an LFSR with
less number of tap positions is susceptible to fast correlation attack [16, 17]. The distribution of
polynomials over F2 with respect to their weights are well studied in [18]. It is desirable to select
the primitive polynomial whose weight is close to n/2 i.e., the polynomial is neither too sparse
nor too dense [9, 19]. However, in certain areas like light weight cryptography, it is preferable to
have less number of nonzero tap positions. So, it is required to have an algorithm which could
generate primitive Xorshift RNGs of order n over F2m with desired number of tap points k, where
1 < k < n + 2. In case of Marsaglia’s Xorshift RNGs, there are total six operations (i.e., three
XOR and three shifting) are used in the feedback function computation. Alg. 2 produces such
primitive RNGs with desired number of Xorshift operations k.

From Lemma 4, it is shown that in case of primitive Xorshift RNGs there will be at least
two operations for its feedback computation (i.e., R and α0v0). Therefore, for getting a primitive
Xorshift generator with k Xorshift operations for its feedback computation, Alg. 2 assigns random
binary value to the coefficients needed for the matrix coefficient C0 as given in Eq. (6) with a0 = 1.
Next it selects (k − 2) distinct random integer i such that 0 < i < n and then constructs the
random binary matrix coefficients Ci as described in Eq. (5). Finally, assign amn = 1 so that
the polynomial f(X) =

∑mn
i=0 aiX

i will be a polynomial of degree mn. If f(x) is primitive, then
Alg. 1 returns the desired primitive Xorshift generator.

5 Conclusion

In this paper, we have proposed two algorithms related to Marsaglia’s Xorshift RNGs. Alg. 1
constructs primitive Xorshift generator from a given primitive polynomial. We studied those
Xorshift generators and found a common weakness in all those generators. It is shown that
the states of those Xorshift generators need to be initialized carefully and is suggested that all
the states to be initialized with odd numbers. We have shown that several primitive Xorshift
generators of different order can be constructed from a given primitive polynomial of degree mn
using the construction algorithm. We also shown that for the larger value of word size m, the
Xorshift generator takes less time to produce a bitstream of the desired length l. So, in case of
software implementations, it is suggested to select the primitive Xorshift generators with a larger
word size m (i.e., 32 or 64) to take the advantage of modern word based operations. Finally, We
have provided another algorithm that produces efficient primitive Xorshift generator with desired
number of Xorshift operations needed for computation of its feedback function .
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Input: Three positive integers m,n and k.
Output: A primitive Xorshift generator of order n over F2m having k Xorshift operations.
1: Generate a random polynomial f(X) =

∑mn
i=0 aiX

i as follows
2: i = 1
3: while i < k do
4: if i = 1 then
5: l = 0
6: else
7: l = rand( ) mod n /*generating random index*/
8: while l ∈ S do
9: l = rand( ) mod n

10: end while
11: end if
12: S = S ∪ {l}
13: j = 1
14: while j < m do
15: al+(j−1)n = rand( ) mod 2 /*generating random bit*/
16: j = j + 1
17: end while
18: i = i+ 1
19: end while
20: a0 = 1 and amn = 1
21: if f(X) is not primitive, go to step-1.
22: else, using Alg. 1 return the required Xorshift generator from f(X).

Algorithm 2 Primitive Xorshift generator with k Xorshift operations
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