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Abstract. In the paper, maximal values xe(τ) of the solutions x(t) of the linear differential equations excited by the Dirac delta function are determined. The 
analytical solutions of the equations and also the maximal positive values of these solutions are obtained. The analytical formulae enable the design of the system 
with prescribed properties. The complementary case to the earlier paper is presented. In an earlier paper it was assumed that the roots si are different, and now 
we consider the case when s1 = s2 = … = sn.
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We assume that the root s1 of Eq. (2) is real and negative. 
We call it the pole:
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1. Introduction 

The extremal value of the state variable 𝑥𝑥(𝑡𝑡) has a 
fundamental role in the many branches of the industry. In 
the chemical industry, the overrising temperature or 
pressure can lead to the explosion. In the energy industry 
the overvoltage waves can destroy the installation. In the 
economic systems it is the determination of the maximal 
profit. The search for extremal values of the controlled 
quantity was the subject of many papers [1,2,3,4,5], 
however, no analytic formulae for their calculation were 
found. This paper provides original formulae which allow 
the determination of extremal values. For the first time, 
solutions of a certain class of transcendental equations are 
given in the form of analytical relationships. These 
formulae make it possible to estimate the accuracy of the 
performance of systems described by differential 
equations. In this way they fill the gap existing in the 
literature on the subject. 
In the paper [6] it was assumed that the roots 𝑠𝑠𝑖𝑖 are 
different, and now we consider the case when 𝑠𝑠1 = 𝑠𝑠2 =
⋯ = 𝑠𝑠𝑛𝑛. 
 
We consider the dynamic system which is described by 
the differential equation 
 
𝑥𝑥(𝑛𝑛)(𝑡𝑡) + 𝑎𝑎1𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) + ⋯ + 𝑎𝑎𝑛𝑛−1𝑥𝑥(1)(𝑡𝑡) + 𝑎𝑎𝑛𝑛𝑥𝑥(𝑡𝑡) = 
𝑏𝑏1𝑢𝑢(𝑚𝑚)(𝑡𝑡) + 𝑏𝑏2𝑢𝑢(𝑚𝑚−1)(𝑡𝑡) + ⋯ + 𝑏𝑏𝑚𝑚𝑢𝑢(𝑡𝑡)                     (1)  
                       
where 
𝑎𝑎𝑖𝑖 > 0,  𝑏𝑏𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛  – are constant parameters 
𝑥𝑥(𝑡𝑡)  - dynamic error 

𝑢𝑢(𝑡𝑡) = 𝛿𝛿(𝑡𝑡)  - Dirac impulse of the external signal. 
 
The characteristic equation of the equation (1) is 
 
𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛 = 0                                                    (2) 
 
We assume that the root 𝑠𝑠1 of the equation (2) is real and 
negative. We call it the pole. 
 
0 > 𝑠𝑠1                                                                              (3) 
 
The zeroes of the polynomial 𝐿𝐿(𝑠𝑠), given below, are real, 
different and negative 
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) … (𝑠𝑠 − 𝑧𝑧𝑚𝑚),      𝑚𝑚 < 𝑛𝑛             (4) 
 
and 
0 > 𝑠𝑠1 > 𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑚𝑚                                          (5) 
 
We denote the transfer function 
 
𝐺𝐺(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠)                                                                     (6) 
and the solution of the equation (1) in the operational 
form is 
 
𝑋𝑋(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠) ∆(𝑠𝑠)                                                             (7) 
 
Then the solution of the equation (1) in the time domain is 
 
𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 ∑ 𝐴𝐴𝑘𝑘𝑡𝑡𝑘𝑘−1 𝑛𝑛

𝑘𝑘=1                                                (8) 
 
where 

. (3)

The zeroes of the polynomial L(s) given below, are real, 
different and negative:
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𝑏𝑏1𝑢𝑢(𝑚𝑚)(𝑡𝑡) + 𝑏𝑏2𝑢𝑢(𝑚𝑚−1)(𝑡𝑡) + ⋯ + 𝑏𝑏𝑚𝑚𝑢𝑢(𝑡𝑡)                     (1)  
                       
where 
𝑎𝑎𝑖𝑖 > 0,  𝑏𝑏𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛  – are constant parameters 
𝑥𝑥(𝑡𝑡)  - dynamic error 

𝑢𝑢(𝑡𝑡) = 𝛿𝛿(𝑡𝑡)  - Dirac impulse of the external signal. 
 
The characteristic equation of the equation (1) is 
 
𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛 = 0                                                    (2) 
 
We assume that the root 𝑠𝑠1 of the equation (2) is real and 
negative. We call it the pole. 
 
0 > 𝑠𝑠1                                                                              (3) 
 
The zeroes of the polynomial 𝐿𝐿(𝑠𝑠), given below, are real, 
different and negative 
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) … (𝑠𝑠 − 𝑧𝑧𝑚𝑚),      𝑚𝑚 < 𝑛𝑛             (4) 
 
and 
0 > 𝑠𝑠1 > 𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑚𝑚                                          (5) 
 
We denote the transfer function 
 
𝐺𝐺(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠)                                                                     (6) 
and the solution of the equation (1) in the operational 
form is 
 
𝑋𝑋(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠) ∆(𝑠𝑠)                                                             (7) 
 
Then the solution of the equation (1) in the time domain is 
 
𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 ∑ 𝐴𝐴𝑘𝑘𝑡𝑡𝑘𝑘−1 𝑛𝑛

𝑘𝑘=1                                                (8) 
 
where 

, (6)

and the solution of Eq. (1) in the operational form is:
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pressure can lead to the explosion. In the energy industry 
the overvoltage waves can destroy the installation. In the 
economic systems it is the determination of the maximal 
profit. The search for extremal values of the controlled 
quantity was the subject of many papers [1,2,3,4,5], 
however, no analytic formulae for their calculation were 
found. This paper provides original formulae which allow 
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solutions of a certain class of transcendental equations are 
given in the form of analytical relationships. These 
formulae make it possible to estimate the accuracy of the 
performance of systems described by differential 
equations. In this way they fill the gap existing in the 
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We assume that the root 𝑠𝑠1 of the equation (2) is real and 
negative. We call it the pole. 
 
0 > 𝑠𝑠1                                                                              (3) 
 
The zeroes of the polynomial 𝐿𝐿(𝑠𝑠), given below, are real, 
different and negative 
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and 
0 > 𝑠𝑠1 > 𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑚𝑚                                          (5) 
 
We denote the transfer function 
 
𝐺𝐺(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠)                                                                     (6) 
and the solution of the equation (1) in the operational 
form is 
 
𝑋𝑋(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠) ∆(𝑠𝑠)                                                             (7) 
 
Then the solution of the equation (1) in the time domain is 
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We assume that the root 𝑠𝑠1 of the equation (2) is real and 
negative. We call it the pole. 
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different and negative 
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and 
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We denote the transfer function 
 
𝐺𝐺(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠)                                                                     (6) 
and the solution of the equation (1) in the operational 
form is 
 
𝑋𝑋(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)
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Then the solution of the equation (1) in the time domain is 
 
𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 ∑ 𝐴𝐴𝑘𝑘𝑡𝑡𝑘𝑘−1 𝑛𝑛
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, (8)

where

 

2 

𝐴𝐴𝑘𝑘 = ∑ 𝑥𝑥(𝑘𝑘−𝑖𝑖)(0)(−1)𝑖𝑖𝑠𝑠1
𝑖𝑖

𝑖𝑖!(𝑘𝑘−𝑖𝑖)!
𝑘𝑘
𝑖𝑖=1                                                  (9) 

 
The initial conditions of the equation (1) depend on Dirac 
impulse 𝛿𝛿(𝑡𝑡) and the poles and zeroes of the transfer 
function 𝐺𝐺(𝑠𝑠). 

2. Statement of the problem 

We want to determine the number of the extremal values 
𝑥𝑥(𝜏𝜏) of the solution 𝑥𝑥(𝑡𝑡) and the analytic formulae for the 
extremal times 𝜏𝜏.  
There are many papers connected with this problem [7-
13]. In the literature there are no analytical formulae for 
the extremal error of the dynamic system. The extremum 
dynamic error gives information about accuracy of the 
system. The time gives information about velocity of the 
transient. The analytical formulae enable design of the 
system with prescribed properties. 
 
We consider the following four cases: 
1. 𝐿𝐿(𝑠𝑠) = 1 
2. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1) 
3. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) 
4. 𝐿𝐿(𝑠𝑠) = ∏ (𝑠𝑠 − 𝑧𝑧𝑖𝑖)  ,   𝑖𝑖 = 1,2, … , 𝑛𝑛 − 1𝑛𝑛−1

𝑖𝑖=1  
 

3. Solution of the problem 

3.1  Case 1. 𝑚𝑚 = 0 , 𝐿𝐿(𝑠𝑠) = 1,  𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛       
 
The initial conditions of the equation (1) are forced by 
𝛿𝛿(𝑡𝑡) [14]  
 
𝑥𝑥(𝑖𝑖)(0) = 0,   𝑖𝑖 = 0,1, … , 𝑛𝑛 − 2

𝑥𝑥(𝑛𝑛−1)(0) = 1 }                                   (10) 

 
In this case the coefficients 
 
𝐴𝐴𝑘𝑘 = 0    for   𝑘𝑘 = 1,2, … , 𝑛𝑛 − 1                                   (11) 
 

𝐴𝐴𝑛𝑛 = 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! = 1

(𝑛𝑛−1)!                                                  (12) 
 
The solution of the equation (1) is 
 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑡𝑡𝑛𝑛−1                                              (13) 

 
The derivative 
 

𝑥𝑥(1)(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡𝑡𝑡𝑛𝑛−2 [𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑠𝑠1𝑡𝑡 + 𝑥𝑥(𝑛𝑛−1)(0)

(𝑛𝑛−2)! ]                (14) 
 
From the necessary condition 
 
𝑥𝑥(1)(𝑡𝑡) = 0                                                                    (15) 

 
we obtain 
 
Theorem 1.  
 
The times of the extremums are as follows: 𝜏𝜏1 = 0  has 
multiplicity n-2, and 
 
    𝜏𝜏2 = − 𝑛𝑛−1

𝑠𝑠1
                                                                 (16) 

 
Remark 1 
 
If solution 𝜏𝜏(𝑠𝑠1) can be optimized with respect to 𝑠𝑠1 then 
the optimal time 𝜏𝜏2𝑜𝑜𝑜𝑜 is equal to (see [15]) 
 
𝜏𝜏2 = − 𝑛𝑛

𝑠𝑠1
                                                                       (17) 

 
In Fig.1 an illustrative example with  𝑛𝑛 = 4,   𝑠𝑠1 = −1  is 
shown . 
 
𝜏𝜏2 = 𝑛𝑛 − 1 = 3                                                             (18) 

 
 

Fig.1 Time response of the system  for  𝑛𝑛 = 4, 𝑠𝑠1 = −1 
 

From (16) we have:  𝜏𝜏1 = 0,     𝜏𝜏2 = 3.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.2240418077 . 

 
3.2 Case 2 
 
We assume 
 
𝐿𝐿(𝑠𝑠) = 𝑠𝑠 − 𝑧𝑧1                                                                (19) 
 
which means that:   𝑚𝑚 = 1,   𝑧𝑧1 < 𝑠𝑠1 < 0. 
The initial conditions of the equation (1) in this case are: 
 
𝑥𝑥(𝑖𝑖)(0) = 0   for 𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 3

𝑥𝑥(𝑛𝑛−2)(0) = 1
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − 𝑧𝑧1

}                          (20) 

 

, (9)

The initial conditions of Eq. (1) depend on Dirac impulse δ(t) 
and the poles and zeroes of the transfer function G(s).

2. Statement of the problem

We want to determine the number of the extremal values x(τ) 
of the solution x(t) and the analytic formulae for the extremal 
times τ.

1. Introduction

The extremal value of the state variable x(t) has a fundamen-
tal role in the many branches of the industry. In the chemical 
industry, the overrising temperature or pressure can lead to 
the explosion. In the energy industry, the overvoltage waves 
can destroy the installation. In the economic systems, it is the 
determination of the maximal profit. The search for extremal 
values of the controlled quantity was the subject of many papers 
[1‒5]. However, no analytic formulae for their calculation were 
found. This paper provides the original formulae which allow 
the determination of extremal values. For the first time, solu-
tions of a certain class of transcendental equations are given in 
the form of analytical relationships. These formulae make it 
possible to estimate the accuracy of the performance of systems 
described by differential equations. In this way they fill the gap 
existing in the literature on the subject.

In paper [6] it was assumed that the roots si are different, 
and now we consider the case when s1 = s2 = ¢¢¢ = sn.

We consider the dynamic system which is described by the 
differential equation:

 

1 

 
 
 
 

Extremal values of differential equations with application to control 
systems 

 
Henryk GÓRECKI and Mieczysław ZACZYK 

1  AGH University of Science and Technology, Department of Automatics and Robotics 

Al. Mickiewicza 30, 30-059 Kraków, Poland, e-mails: head@agh.edu.pl,  zaczyk@agh.edu.pl 

 
 

Abstract. In the paper, maximal values 𝑥𝑥𝑒𝑒(𝜏𝜏) of the solutions x(t) of the linear differential equations excited by the Dirac delta function are 
determined. There are obtained the analytical solutions of the equations and also the maximal positive values of these solutions. The analytical formulae 
enable design of the system with prescribed properties . The complementary case to the earlier paper is presented.  In an earlier paper it was assumed  
that the roots 𝑠𝑠𝑖𝑖 are different, and now we consider the case when 𝑠𝑠1 = 𝑠𝑠2 = ⋯ = 𝑠𝑠𝑛𝑛. 
Key words:  extremal values, characteristic equation, transfer function, Dirac’s impulse, multiple root 

 

1. Introduction 

The extremal value of the state variable 𝑥𝑥(𝑡𝑡) has a 
fundamental role in the many branches of the industry. In 
the chemical industry, the overrising temperature or 
pressure can lead to the explosion. In the energy industry 
the overvoltage waves can destroy the installation. In the 
economic systems it is the determination of the maximal 
profit. The search for extremal values of the controlled 
quantity was the subject of many papers [1,2,3,4,5], 
however, no analytic formulae for their calculation were 
found. This paper provides original formulae which allow 
the determination of extremal values. For the first time, 
solutions of a certain class of transcendental equations are 
given in the form of analytical relationships. These 
formulae make it possible to estimate the accuracy of the 
performance of systems described by differential 
equations. In this way they fill the gap existing in the 
literature on the subject. 
In the paper [6] it was assumed that the roots 𝑠𝑠𝑖𝑖 are 
different, and now we consider the case when 𝑠𝑠1 = 𝑠𝑠2 =
⋯ = 𝑠𝑠𝑛𝑛. 
 
We consider the dynamic system which is described by 
the differential equation 
 
𝑥𝑥(𝑛𝑛)(𝑡𝑡) + 𝑎𝑎1𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) + ⋯ + 𝑎𝑎𝑛𝑛−1𝑥𝑥(1)(𝑡𝑡) + 𝑎𝑎𝑛𝑛𝑥𝑥(𝑡𝑡) = 
𝑏𝑏1𝑢𝑢(𝑚𝑚)(𝑡𝑡) + 𝑏𝑏2𝑢𝑢(𝑚𝑚−1)(𝑡𝑡) + ⋯ + 𝑏𝑏𝑚𝑚𝑢𝑢(𝑡𝑡)                     (1)  
                       
where 
𝑎𝑎𝑖𝑖 > 0,  𝑏𝑏𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛  – are constant parameters 
𝑥𝑥(𝑡𝑡)  - dynamic error 

𝑢𝑢(𝑡𝑡) = 𝛿𝛿(𝑡𝑡)  - Dirac impulse of the external signal. 
 
The characteristic equation of the equation (1) is 
 
𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛 = 0                                                    (2) 
 
We assume that the root 𝑠𝑠1 of the equation (2) is real and 
negative. We call it the pole. 
 
0 > 𝑠𝑠1                                                                              (3) 
 
The zeroes of the polynomial 𝐿𝐿(𝑠𝑠), given below, are real, 
different and negative 
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) … (𝑠𝑠 − 𝑧𝑧𝑚𝑚),      𝑚𝑚 < 𝑛𝑛             (4) 
 
and 
0 > 𝑠𝑠1 > 𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑚𝑚                                          (5) 
 
We denote the transfer function 
 
𝐺𝐺(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠)                                                                     (6) 
and the solution of the equation (1) in the operational 
form is 
 
𝑋𝑋(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠) ∆(𝑠𝑠)                                                             (7) 
 
Then the solution of the equation (1) in the time domain is 
 
𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 ∑ 𝐴𝐴𝑘𝑘𝑡𝑡𝑘𝑘−1 𝑛𝑛

𝑘𝑘=1                                                (8) 
 
where 

1 

 
 
 
 

Extremal values of differential equations with application to control 
systems 

 
Henryk GÓRECKI and Mieczysław ZACZYK 

1  AGH University of Science and Technology, Department of Automatics and Robotics 

Al. Mickiewicza 30, 30-059 Kraków, Poland, e-mails: head@agh.edu.pl,  zaczyk@agh.edu.pl 

 
 

Abstract. In the paper, maximal values 𝑥𝑥𝑒𝑒(𝜏𝜏) of the solutions x(t) of the linear differential equations excited by the Dirac delta function are 
determined. There are obtained the analytical solutions of the equations and also the maximal positive values of these solutions. The analytical formulae 
enable design of the system with prescribed properties . The complementary case to the earlier paper is presented.  In an earlier paper it was assumed  
that the roots 𝑠𝑠𝑖𝑖 are different, and now we consider the case when 𝑠𝑠1 = 𝑠𝑠2 = ⋯ = 𝑠𝑠𝑛𝑛. 
Key words:  extremal values, characteristic equation, transfer function, Dirac’s impulse, multiple root 

 

1. Introduction 

The extremal value of the state variable 𝑥𝑥(𝑡𝑡) has a 
fundamental role in the many branches of the industry. In 
the chemical industry, the overrising temperature or 
pressure can lead to the explosion. In the energy industry 
the overvoltage waves can destroy the installation. In the 
economic systems it is the determination of the maximal 
profit. The search for extremal values of the controlled 
quantity was the subject of many papers [1,2,3,4,5], 
however, no analytic formulae for their calculation were 
found. This paper provides original formulae which allow 
the determination of extremal values. For the first time, 
solutions of a certain class of transcendental equations are 
given in the form of analytical relationships. These 
formulae make it possible to estimate the accuracy of the 
performance of systems described by differential 
equations. In this way they fill the gap existing in the 
literature on the subject. 
In the paper [6] it was assumed that the roots 𝑠𝑠𝑖𝑖 are 
different, and now we consider the case when 𝑠𝑠1 = 𝑠𝑠2 =
⋯ = 𝑠𝑠𝑛𝑛. 
 
We consider the dynamic system which is described by 
the differential equation 
 
𝑥𝑥(𝑛𝑛)(𝑡𝑡) + 𝑎𝑎1𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) + ⋯ + 𝑎𝑎𝑛𝑛−1𝑥𝑥(1)(𝑡𝑡) + 𝑎𝑎𝑛𝑛𝑥𝑥(𝑡𝑡) = 
𝑏𝑏1𝑢𝑢(𝑚𝑚)(𝑡𝑡) + 𝑏𝑏2𝑢𝑢(𝑚𝑚−1)(𝑡𝑡) + ⋯ + 𝑏𝑏𝑚𝑚𝑢𝑢(𝑡𝑡)                     (1)  
                       
where 
𝑎𝑎𝑖𝑖 > 0,  𝑏𝑏𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛  – are constant parameters 
𝑥𝑥(𝑡𝑡)  - dynamic error 

𝑢𝑢(𝑡𝑡) = 𝛿𝛿(𝑡𝑡)  - Dirac impulse of the external signal. 
 
The characteristic equation of the equation (1) is 
 
𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛 = 0                                                    (2) 
 
We assume that the root 𝑠𝑠1 of the equation (2) is real and 
negative. We call it the pole. 
 
0 > 𝑠𝑠1                                                                              (3) 
 
The zeroes of the polynomial 𝐿𝐿(𝑠𝑠), given below, are real, 
different and negative 
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) … (𝑠𝑠 − 𝑧𝑧𝑚𝑚),      𝑚𝑚 < 𝑛𝑛             (4) 
 
and 
0 > 𝑠𝑠1 > 𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑚𝑚                                          (5) 
 
We denote the transfer function 
 
𝐺𝐺(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠)                                                                     (6) 
and the solution of the equation (1) in the operational 
form is 
 
𝑋𝑋(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠) ∆(𝑠𝑠)                                                             (7) 
 
Then the solution of the equation (1) in the time domain is 
 
𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 ∑ 𝐴𝐴𝑘𝑘𝑡𝑡𝑘𝑘−1 𝑛𝑛

𝑘𝑘=1                                                (8) 
 
where 

1 

 
 
 
 

Extremal values of differential equations with application to control 
systems 

 
Henryk GÓRECKI and Mieczysław ZACZYK 

1  AGH University of Science and Technology, Department of Automatics and Robotics 

Al. Mickiewicza 30, 30-059 Kraków, Poland, e-mails: head@agh.edu.pl,  zaczyk@agh.edu.pl 

 
 

Abstract. In the paper, maximal values 𝑥𝑥𝑒𝑒(𝜏𝜏) of the solutions x(t) of the linear differential equations excited by the Dirac delta function are 
determined. There are obtained the analytical solutions of the equations and also the maximal positive values of these solutions. The analytical formulae 
enable design of the system with prescribed properties . The complementary case to the earlier paper is presented.  In an earlier paper it was assumed  
that the roots 𝑠𝑠𝑖𝑖 are different, and now we consider the case when 𝑠𝑠1 = 𝑠𝑠2 = ⋯ = 𝑠𝑠𝑛𝑛. 
Key words:  extremal values, characteristic equation, transfer function, Dirac’s impulse, multiple root 

 

1. Introduction 

The extremal value of the state variable 𝑥𝑥(𝑡𝑡) has a 
fundamental role in the many branches of the industry. In 
the chemical industry, the overrising temperature or 
pressure can lead to the explosion. In the energy industry 
the overvoltage waves can destroy the installation. In the 
economic systems it is the determination of the maximal 
profit. The search for extremal values of the controlled 
quantity was the subject of many papers [1,2,3,4,5], 
however, no analytic formulae for their calculation were 
found. This paper provides original formulae which allow 
the determination of extremal values. For the first time, 
solutions of a certain class of transcendental equations are 
given in the form of analytical relationships. These 
formulae make it possible to estimate the accuracy of the 
performance of systems described by differential 
equations. In this way they fill the gap existing in the 
literature on the subject. 
In the paper [6] it was assumed that the roots 𝑠𝑠𝑖𝑖 are 
different, and now we consider the case when 𝑠𝑠1 = 𝑠𝑠2 =
⋯ = 𝑠𝑠𝑛𝑛. 
 
We consider the dynamic system which is described by 
the differential equation 
 
𝑥𝑥(𝑛𝑛)(𝑡𝑡) + 𝑎𝑎1𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) + ⋯ + 𝑎𝑎𝑛𝑛−1𝑥𝑥(1)(𝑡𝑡) + 𝑎𝑎𝑛𝑛𝑥𝑥(𝑡𝑡) = 
𝑏𝑏1𝑢𝑢(𝑚𝑚)(𝑡𝑡) + 𝑏𝑏2𝑢𝑢(𝑚𝑚−1)(𝑡𝑡) + ⋯ + 𝑏𝑏𝑚𝑚𝑢𝑢(𝑡𝑡)                     (1)  
                       
where 
𝑎𝑎𝑖𝑖 > 0,  𝑏𝑏𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛  – are constant parameters 
𝑥𝑥(𝑡𝑡)  - dynamic error 

𝑢𝑢(𝑡𝑡) = 𝛿𝛿(𝑡𝑡)  - Dirac impulse of the external signal. 
 
The characteristic equation of the equation (1) is 
 
𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛 = 0                                                    (2) 
 
We assume that the root 𝑠𝑠1 of the equation (2) is real and 
negative. We call it the pole. 
 
0 > 𝑠𝑠1                                                                              (3) 
 
The zeroes of the polynomial 𝐿𝐿(𝑠𝑠), given below, are real, 
different and negative 
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) … (𝑠𝑠 − 𝑧𝑧𝑚𝑚),      𝑚𝑚 < 𝑛𝑛             (4) 
 
and 
0 > 𝑠𝑠1 > 𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑚𝑚                                          (5) 
 
We denote the transfer function 
 
𝐺𝐺(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠)                                                                     (6) 
and the solution of the equation (1) in the operational 
form is 
 
𝑋𝑋(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)

𝑀𝑀(𝑠𝑠) ∆(𝑠𝑠)                                                             (7) 
 
Then the solution of the equation (1) in the time domain is 
 
𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 ∑ 𝐴𝐴𝑘𝑘𝑡𝑡𝑘𝑘−1 𝑛𝑛

𝑘𝑘=1                                                (8) 
 
where 

,
 (1)

where
ai > 0, bi ¸ 0, i = 1, 2, …, n – are constant parameters,
x(t) – is a dynamic error,
u(t) = δ(t) – is Dirac impulse of the external signal.

The characteristic equation of Eq. (1) is:
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There are many papers connected with this problem [7‒13]. 
In the literature there are no analytical formulae for the extremal 
error of the dynamic system. The extremum dynamic error gives 
information about the accuracy of the system. The time gives 
information about the velocity of the transient. The analytical 
formulae facilitate the design of the system with prescribed 
properties.

We consider the following four cases:
1. L(s) = 1,
2. L(s) = (s ¡ z1),
3. L(s) = (s ¡ z1)(s ¡ z2),
4. L(s) = ∏n ¡ 1

i = 1 (s ¡ zi), i = 1, 2, …, n ¡ 1.

3. Solution of the problem

3.1. Case 1. m = 0, L(s) = 1, M(s) = (s ¡ s1)
n.

The initial conditions of Eq. (1) are forced by δ(t) [14] 

 

2 

𝐴𝐴𝑘𝑘 = ∑ 𝑥𝑥(𝑘𝑘−𝑖𝑖)(0)(−1)𝑖𝑖𝑠𝑠1
𝑖𝑖

𝑖𝑖!(𝑘𝑘−𝑖𝑖)!
𝑘𝑘
𝑖𝑖=1                                                  (9) 

 
The initial conditions of the equation (1) depend on Dirac 
impulse 𝛿𝛿(𝑡𝑡) and the poles and zeroes of the transfer 
function 𝐺𝐺(𝑠𝑠). 

2. Statement of the problem 

We want to determine the number of the extremal values 
𝑥𝑥(𝜏𝜏) of the solution 𝑥𝑥(𝑡𝑡) and the analytic formulae for the 
extremal times 𝜏𝜏.  
There are many papers connected with this problem [7-
13]. In the literature there are no analytical formulae for 
the extremal error of the dynamic system. The extremum 
dynamic error gives information about accuracy of the 
system. The time gives information about velocity of the 
transient. The analytical formulae enable design of the 
system with prescribed properties. 
 
We consider the following four cases: 
1. 𝐿𝐿(𝑠𝑠) = 1 
2. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1) 
3. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) 
4. 𝐿𝐿(𝑠𝑠) = ∏ (𝑠𝑠 − 𝑧𝑧𝑖𝑖)  ,   𝑖𝑖 = 1,2, … , 𝑛𝑛 − 1𝑛𝑛−1

𝑖𝑖=1  
 

3. Solution of the problem 

3.1  Case 1. 𝑚𝑚 = 0 , 𝐿𝐿(𝑠𝑠) = 1,  𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛       
 
The initial conditions of the equation (1) are forced by 
𝛿𝛿(𝑡𝑡) [14]  
 
𝑥𝑥(𝑖𝑖)(0) = 0,   𝑖𝑖 = 0,1, … , 𝑛𝑛 − 2

𝑥𝑥(𝑛𝑛−1)(0) = 1 }                                   (10) 

 
In this case the coefficients 
 
𝐴𝐴𝑘𝑘 = 0    for   𝑘𝑘 = 1,2, … , 𝑛𝑛 − 1                                   (11) 
 

𝐴𝐴𝑛𝑛 = 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! = 1

(𝑛𝑛−1)!                                                  (12) 
 
The solution of the equation (1) is 
 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑡𝑡𝑛𝑛−1                                              (13) 

 
The derivative 
 

𝑥𝑥(1)(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡𝑡𝑡𝑛𝑛−2 [𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑠𝑠1𝑡𝑡 + 𝑥𝑥(𝑛𝑛−1)(0)

(𝑛𝑛−2)! ]                (14) 
 
From the necessary condition 
 
𝑥𝑥(1)(𝑡𝑡) = 0                                                                    (15) 

 
we obtain 
 
Theorem 1.  
 
The times of the extremums are as follows: 𝜏𝜏1 = 0  has 
multiplicity n-2, and 
 
    𝜏𝜏2 = − 𝑛𝑛−1

𝑠𝑠1
                                                                 (16) 

 
Remark 1 
 
If solution 𝜏𝜏(𝑠𝑠1) can be optimized with respect to 𝑠𝑠1 then 
the optimal time 𝜏𝜏2𝑜𝑜𝑜𝑜 is equal to (see [15]) 
 
𝜏𝜏2 = − 𝑛𝑛

𝑠𝑠1
                                                                       (17) 

 
In Fig.1 an illustrative example with  𝑛𝑛 = 4,   𝑠𝑠1 = −1  is 
shown . 
 
𝜏𝜏2 = 𝑛𝑛 − 1 = 3                                                             (18) 

 
 

Fig.1 Time response of the system  for  𝑛𝑛 = 4, 𝑠𝑠1 = −1 
 

From (16) we have:  𝜏𝜏1 = 0,     𝜏𝜏2 = 3.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.2240418077 . 

 
3.2 Case 2 
 
We assume 
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𝐿𝐿(𝑠𝑠) = 𝑠𝑠 − 𝑧𝑧1                                                                (19) 
 
which means that:   𝑚𝑚 = 1,   𝑧𝑧1 < 𝑠𝑠1 < 0. 
The initial conditions of the equation (1) in this case are: 
 
𝑥𝑥(𝑖𝑖)(0) = 0   for 𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 3

𝑥𝑥(𝑛𝑛−2)(0) = 1
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − 𝑧𝑧1

}                          (20) 

 

. (14)

From the necessary condition
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𝐴𝐴𝑘𝑘 = ∑ 𝑥𝑥(𝑘𝑘−𝑖𝑖)(0)(−1)𝑖𝑖𝑠𝑠1
𝑖𝑖

𝑖𝑖!(𝑘𝑘−𝑖𝑖)!
𝑘𝑘
𝑖𝑖=1                                                  (9) 

 
The initial conditions of the equation (1) depend on Dirac 
impulse 𝛿𝛿(𝑡𝑡) and the poles and zeroes of the transfer 
function 𝐺𝐺(𝑠𝑠). 

2. Statement of the problem 

We want to determine the number of the extremal values 
𝑥𝑥(𝜏𝜏) of the solution 𝑥𝑥(𝑡𝑡) and the analytic formulae for the 
extremal times 𝜏𝜏.  
There are many papers connected with this problem [7-
13]. In the literature there are no analytical formulae for 
the extremal error of the dynamic system. The extremum 
dynamic error gives information about accuracy of the 
system. The time gives information about velocity of the 
transient. The analytical formulae enable design of the 
system with prescribed properties. 
 
We consider the following four cases: 
1. 𝐿𝐿(𝑠𝑠) = 1 
2. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1) 
3. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) 
4. 𝐿𝐿(𝑠𝑠) = ∏ (𝑠𝑠 − 𝑧𝑧𝑖𝑖)  ,   𝑖𝑖 = 1,2, … , 𝑛𝑛 − 1𝑛𝑛−1

𝑖𝑖=1  
 

3. Solution of the problem 

3.1  Case 1. 𝑚𝑚 = 0 , 𝐿𝐿(𝑠𝑠) = 1,  𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛       
 
The initial conditions of the equation (1) are forced by 
𝛿𝛿(𝑡𝑡) [14]  
 
𝑥𝑥(𝑖𝑖)(0) = 0,   𝑖𝑖 = 0,1, … , 𝑛𝑛 − 2

𝑥𝑥(𝑛𝑛−1)(0) = 1 }                                   (10) 

 
In this case the coefficients 
 
𝐴𝐴𝑘𝑘 = 0    for   𝑘𝑘 = 1,2, … , 𝑛𝑛 − 1                                   (11) 
 

𝐴𝐴𝑛𝑛 = 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! = 1

(𝑛𝑛−1)!                                                  (12) 
 
The solution of the equation (1) is 
 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑡𝑡𝑛𝑛−1                                              (13) 

 
The derivative 
 

𝑥𝑥(1)(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡𝑡𝑡𝑛𝑛−2 [𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑠𝑠1𝑡𝑡 + 𝑥𝑥(𝑛𝑛−1)(0)

(𝑛𝑛−2)! ]                (14) 
 
From the necessary condition 
 
𝑥𝑥(1)(𝑡𝑡) = 0                                                                    (15) 

 
we obtain 
 
Theorem 1.  
 
The times of the extremums are as follows: 𝜏𝜏1 = 0  has 
multiplicity n-2, and 
 
    𝜏𝜏2 = − 𝑛𝑛−1

𝑠𝑠1
                                                                 (16) 

 
Remark 1 
 
If solution 𝜏𝜏(𝑠𝑠1) can be optimized with respect to 𝑠𝑠1 then 
the optimal time 𝜏𝜏2𝑜𝑜𝑜𝑜 is equal to (see [15]) 
 
𝜏𝜏2 = − 𝑛𝑛

𝑠𝑠1
                                                                       (17) 

 
In Fig.1 an illustrative example with  𝑛𝑛 = 4,   𝑠𝑠1 = −1  is 
shown . 
 
𝜏𝜏2 = 𝑛𝑛 − 1 = 3                                                             (18) 

 
 

Fig.1 Time response of the system  for  𝑛𝑛 = 4, 𝑠𝑠1 = −1 
 

From (16) we have:  𝜏𝜏1 = 0,     𝜏𝜏2 = 3.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.2240418077 . 

 
3.2 Case 2 
 
We assume 
 
𝐿𝐿(𝑠𝑠) = 𝑠𝑠 − 𝑧𝑧1                                                                (19) 
 
which means that:   𝑚𝑚 = 1,   𝑧𝑧1 < 𝑠𝑠1 < 0. 
The initial conditions of the equation (1) in this case are: 
 
𝑥𝑥(𝑖𝑖)(0) = 0   for 𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 3

𝑥𝑥(𝑛𝑛−2)(0) = 1
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − 𝑧𝑧1

}                          (20) 

 
, (15)

we obtain:

Theorem 1. The times of the extremums are as follows: τ1 = 0 
has multiplicity n ¡ 2, and
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𝑖𝑖!(𝑘𝑘−𝑖𝑖)!
𝑘𝑘
𝑖𝑖=1                                                  (9) 

 
The initial conditions of the equation (1) depend on Dirac 
impulse 𝛿𝛿(𝑡𝑡) and the poles and zeroes of the transfer 
function 𝐺𝐺(𝑠𝑠). 

2. Statement of the problem 

We want to determine the number of the extremal values 
𝑥𝑥(𝜏𝜏) of the solution 𝑥𝑥(𝑡𝑡) and the analytic formulae for the 
extremal times 𝜏𝜏.  
There are many papers connected with this problem [7-
13]. In the literature there are no analytical formulae for 
the extremal error of the dynamic system. The extremum 
dynamic error gives information about accuracy of the 
system. The time gives information about velocity of the 
transient. The analytical formulae enable design of the 
system with prescribed properties. 
 
We consider the following four cases: 
1. 𝐿𝐿(𝑠𝑠) = 1 
2. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1) 
3. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) 
4. 𝐿𝐿(𝑠𝑠) = ∏ (𝑠𝑠 − 𝑧𝑧𝑖𝑖)  ,   𝑖𝑖 = 1,2, … , 𝑛𝑛 − 1𝑛𝑛−1

𝑖𝑖=1  
 

3. Solution of the problem 

3.1  Case 1. 𝑚𝑚 = 0 , 𝐿𝐿(𝑠𝑠) = 1,  𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛       
 
The initial conditions of the equation (1) are forced by 
𝛿𝛿(𝑡𝑡) [14]  
 
𝑥𝑥(𝑖𝑖)(0) = 0,   𝑖𝑖 = 0,1, … , 𝑛𝑛 − 2

𝑥𝑥(𝑛𝑛−1)(0) = 1 }                                   (10) 

 
In this case the coefficients 
 
𝐴𝐴𝑘𝑘 = 0    for   𝑘𝑘 = 1,2, … , 𝑛𝑛 − 1                                   (11) 
 

𝐴𝐴𝑛𝑛 = 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! = 1

(𝑛𝑛−1)!                                                  (12) 
 
The solution of the equation (1) is 
 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑡𝑡𝑛𝑛−1                                              (13) 

 
The derivative 
 

𝑥𝑥(1)(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡𝑡𝑡𝑛𝑛−2 [𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑠𝑠1𝑡𝑡 + 𝑥𝑥(𝑛𝑛−1)(0)

(𝑛𝑛−2)! ]                (14) 
 
From the necessary condition 
 
𝑥𝑥(1)(𝑡𝑡) = 0                                                                    (15) 

 
we obtain 
 
Theorem 1.  
 
The times of the extremums are as follows: 𝜏𝜏1 = 0  has 
multiplicity n-2, and 
 
    𝜏𝜏2 = − 𝑛𝑛−1

𝑠𝑠1
                                                                 (16) 

 
Remark 1 
 
If solution 𝜏𝜏(𝑠𝑠1) can be optimized with respect to 𝑠𝑠1 then 
the optimal time 𝜏𝜏2𝑜𝑜𝑜𝑜 is equal to (see [15]) 
 
𝜏𝜏2 = − 𝑛𝑛

𝑠𝑠1
                                                                       (17) 

 
In Fig.1 an illustrative example with  𝑛𝑛 = 4,   𝑠𝑠1 = −1  is 
shown . 
 
𝜏𝜏2 = 𝑛𝑛 − 1 = 3                                                             (18) 

 
 

Fig.1 Time response of the system  for  𝑛𝑛 = 4, 𝑠𝑠1 = −1 
 

From (16) we have:  𝜏𝜏1 = 0,     𝜏𝜏2 = 3.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.2240418077 . 

 
3.2 Case 2 
 
We assume 
 
𝐿𝐿(𝑠𝑠) = 𝑠𝑠 − 𝑧𝑧1                                                                (19) 
 
which means that:   𝑚𝑚 = 1,   𝑧𝑧1 < 𝑠𝑠1 < 0. 
The initial conditions of the equation (1) in this case are: 
 
𝑥𝑥(𝑖𝑖)(0) = 0   for 𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 3

𝑥𝑥(𝑛𝑛−2)(0) = 1
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − 𝑧𝑧1

}                          (20) 

 

. (16)

Remark 1. If solution τ(s1) can be optimized with respect to s1 
then the optimal time τ2op is equal to (see [15]):
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𝑖𝑖

𝑖𝑖!(𝑘𝑘−𝑖𝑖)!
𝑘𝑘
𝑖𝑖=1                                                  (9) 

 
The initial conditions of the equation (1) depend on Dirac 
impulse 𝛿𝛿(𝑡𝑡) and the poles and zeroes of the transfer 
function 𝐺𝐺(𝑠𝑠). 

2. Statement of the problem 

We want to determine the number of the extremal values 
𝑥𝑥(𝜏𝜏) of the solution 𝑥𝑥(𝑡𝑡) and the analytic formulae for the 
extremal times 𝜏𝜏.  
There are many papers connected with this problem [7-
13]. In the literature there are no analytical formulae for 
the extremal error of the dynamic system. The extremum 
dynamic error gives information about accuracy of the 
system. The time gives information about velocity of the 
transient. The analytical formulae enable design of the 
system with prescribed properties. 
 
We consider the following four cases: 
1. 𝐿𝐿(𝑠𝑠) = 1 
2. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1) 
3. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) 
4. 𝐿𝐿(𝑠𝑠) = ∏ (𝑠𝑠 − 𝑧𝑧𝑖𝑖)  ,   𝑖𝑖 = 1,2, … , 𝑛𝑛 − 1𝑛𝑛−1

𝑖𝑖=1  
 

3. Solution of the problem 

3.1  Case 1. 𝑚𝑚 = 0 , 𝐿𝐿(𝑠𝑠) = 1,  𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛       
 
The initial conditions of the equation (1) are forced by 
𝛿𝛿(𝑡𝑡) [14]  
 
𝑥𝑥(𝑖𝑖)(0) = 0,   𝑖𝑖 = 0,1, … , 𝑛𝑛 − 2

𝑥𝑥(𝑛𝑛−1)(0) = 1 }                                   (10) 

 
In this case the coefficients 
 
𝐴𝐴𝑘𝑘 = 0    for   𝑘𝑘 = 1,2, … , 𝑛𝑛 − 1                                   (11) 
 

𝐴𝐴𝑛𝑛 = 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! = 1

(𝑛𝑛−1)!                                                  (12) 
 
The solution of the equation (1) is 
 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑡𝑡𝑛𝑛−1                                              (13) 

 
The derivative 
 

𝑥𝑥(1)(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡𝑡𝑡𝑛𝑛−2 [𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑠𝑠1𝑡𝑡 + 𝑥𝑥(𝑛𝑛−1)(0)

(𝑛𝑛−2)! ]                (14) 
 
From the necessary condition 
 
𝑥𝑥(1)(𝑡𝑡) = 0                                                                    (15) 

 
we obtain 
 
Theorem 1.  
 
The times of the extremums are as follows: 𝜏𝜏1 = 0  has 
multiplicity n-2, and 
 
    𝜏𝜏2 = − 𝑛𝑛−1

𝑠𝑠1
                                                                 (16) 

 
Remark 1 
 
If solution 𝜏𝜏(𝑠𝑠1) can be optimized with respect to 𝑠𝑠1 then 
the optimal time 𝜏𝜏2𝑜𝑜𝑜𝑜 is equal to (see [15]) 
 
𝜏𝜏2 = − 𝑛𝑛

𝑠𝑠1
                                                                       (17) 

 
In Fig.1 an illustrative example with  𝑛𝑛 = 4,   𝑠𝑠1 = −1  is 
shown . 
 
𝜏𝜏2 = 𝑛𝑛 − 1 = 3                                                             (18) 

 
 

Fig.1 Time response of the system  for  𝑛𝑛 = 4, 𝑠𝑠1 = −1 
 

From (16) we have:  𝜏𝜏1 = 0,     𝜏𝜏2 = 3.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.2240418077 . 

 
3.2 Case 2 
 
We assume 
 
𝐿𝐿(𝑠𝑠) = 𝑠𝑠 − 𝑧𝑧1                                                                (19) 
 
which means that:   𝑚𝑚 = 1,   𝑧𝑧1 < 𝑠𝑠1 < 0. 
The initial conditions of the equation (1) in this case are: 
 
𝑥𝑥(𝑖𝑖)(0) = 0   for 𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 3

𝑥𝑥(𝑛𝑛−2)(0) = 1
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − 𝑧𝑧1

}                          (20) 

 

. (17)

In Fig. 1 an illustrative example with n = 4, s1 = –1 is shown:
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𝑖𝑖

𝑖𝑖!(𝑘𝑘−𝑖𝑖)!
𝑘𝑘
𝑖𝑖=1                                                  (9) 

 
The initial conditions of the equation (1) depend on Dirac 
impulse 𝛿𝛿(𝑡𝑡) and the poles and zeroes of the transfer 
function 𝐺𝐺(𝑠𝑠). 

2. Statement of the problem 

We want to determine the number of the extremal values 
𝑥𝑥(𝜏𝜏) of the solution 𝑥𝑥(𝑡𝑡) and the analytic formulae for the 
extremal times 𝜏𝜏.  
There are many papers connected with this problem [7-
13]. In the literature there are no analytical formulae for 
the extremal error of the dynamic system. The extremum 
dynamic error gives information about accuracy of the 
system. The time gives information about velocity of the 
transient. The analytical formulae enable design of the 
system with prescribed properties. 
 
We consider the following four cases: 
1. 𝐿𝐿(𝑠𝑠) = 1 
2. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1) 
3. 𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) 
4. 𝐿𝐿(𝑠𝑠) = ∏ (𝑠𝑠 − 𝑧𝑧𝑖𝑖)  ,   𝑖𝑖 = 1,2, … , 𝑛𝑛 − 1𝑛𝑛−1

𝑖𝑖=1  
 

3. Solution of the problem 

3.1  Case 1. 𝑚𝑚 = 0 , 𝐿𝐿(𝑠𝑠) = 1,  𝑀𝑀(𝑠𝑠) = (𝑠𝑠 − 𝑠𝑠1)𝑛𝑛       
 
The initial conditions of the equation (1) are forced by 
𝛿𝛿(𝑡𝑡) [14]  
 
𝑥𝑥(𝑖𝑖)(0) = 0,   𝑖𝑖 = 0,1, … , 𝑛𝑛 − 2

𝑥𝑥(𝑛𝑛−1)(0) = 1 }                                   (10) 

 
In this case the coefficients 
 
𝐴𝐴𝑘𝑘 = 0    for   𝑘𝑘 = 1,2, … , 𝑛𝑛 − 1                                   (11) 
 

𝐴𝐴𝑛𝑛 = 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! = 1

(𝑛𝑛−1)!                                                  (12) 
 
The solution of the equation (1) is 
 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡 𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑡𝑡𝑛𝑛−1                                              (13) 

 
The derivative 
 

𝑥𝑥(1)(𝑡𝑡) = 𝑒𝑒𝑠𝑠1𝑡𝑡𝑡𝑡𝑛𝑛−2 [𝑥𝑥(𝑛𝑛−1)(0)
(𝑛𝑛−1)! 𝑠𝑠1𝑡𝑡 + 𝑥𝑥(𝑛𝑛−1)(0)

(𝑛𝑛−2)! ]                (14) 
 
From the necessary condition 
 
𝑥𝑥(1)(𝑡𝑡) = 0                                                                    (15) 

 
we obtain 
 
Theorem 1.  
 
The times of the extremums are as follows: 𝜏𝜏1 = 0  has 
multiplicity n-2, and 
 
    𝜏𝜏2 = − 𝑛𝑛−1

𝑠𝑠1
                                                                 (16) 

 
Remark 1 
 
If solution 𝜏𝜏(𝑠𝑠1) can be optimized with respect to 𝑠𝑠1 then 
the optimal time 𝜏𝜏2𝑜𝑜𝑜𝑜 is equal to (see [15]) 
 
𝜏𝜏2 = − 𝑛𝑛

𝑠𝑠1
                                                                       (17) 

 
In Fig.1 an illustrative example with  𝑛𝑛 = 4,   𝑠𝑠1 = −1  is 
shown . 
 
𝜏𝜏2 = 𝑛𝑛 − 1 = 3                                                             (18) 

 
 

Fig.1 Time response of the system  for  𝑛𝑛 = 4, 𝑠𝑠1 = −1 
 

From (16) we have:  𝜏𝜏1 = 0,     𝜏𝜏2 = 3.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.2240418077 . 

 
3.2 Case 2 
 
We assume 
 
𝐿𝐿(𝑠𝑠) = 𝑠𝑠 − 𝑧𝑧1                                                                (19) 
 
which means that:   𝑚𝑚 = 1,   𝑧𝑧1 < 𝑠𝑠1 < 0. 
The initial conditions of the equation (1) in this case are: 
 
𝑥𝑥(𝑖𝑖)(0) = 0   for 𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 3

𝑥𝑥(𝑛𝑛−2)(0) = 1
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − 𝑧𝑧1

}                          (20) 

 

. (18)

From (16) we have: τ1 = 0, τ2 = 3. The extremal value is 
x(τ2) = 0.2240418077.

3.2. Case 2. We assume:

 

2 

𝐴𝐴𝑘𝑘 = ∑ 𝑥𝑥(𝑘𝑘−𝑖𝑖)(0)(−1)𝑖𝑖𝑠𝑠1
𝑖𝑖

𝑖𝑖!(𝑘𝑘−𝑖𝑖)!
𝑘𝑘
𝑖𝑖=1                                                  (9) 

 
The initial conditions of the equation (1) depend on Dirac 
impulse 𝛿𝛿(𝑡𝑡) and the poles and zeroes of the transfer 
function 𝐺𝐺(𝑠𝑠). 

2. Statement of the problem 
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𝑥𝑥(𝜏𝜏) of the solution 𝑥𝑥(𝑡𝑡) and the analytic formulae for the 
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There are many papers connected with this problem [7-
13]. In the literature there are no analytical formulae for 
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system with prescribed properties. 
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The times of the extremums are as follows: 𝜏𝜏1 = 0  has 
multiplicity n-2, and 
 
    𝜏𝜏2 = − 𝑛𝑛−1
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. (20)

The solution of x(t) is:

 

3 

The solution of 𝑥𝑥(𝑡𝑡) is 
 
𝑥𝑥(𝑡𝑡) = −[(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡 − (𝑛𝑛 − 1)]

𝑡𝑡𝑛𝑛−2
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                  (21) 
 
 
Theorem 2 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = [(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡2 − (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)𝑡𝑡 − (𝑛𝑛 −
1)(𝑛𝑛 − 2)]𝑡𝑡𝑛𝑛−3𝑒𝑒𝑠𝑠1𝑡𝑡                                                       (22) 
 
From the necessary condition  𝑥𝑥(1)(𝑡𝑡) = 0  we have 
 

𝜏𝜏1𝑛𝑛−3 = 0
𝜏𝜏2 =

1
2
(𝑛𝑛−1)(2𝑠𝑠1−𝑧𝑧1)±√(𝑛𝑛−1)2(2𝑠𝑠1−𝑧𝑧1)2+4(𝑛𝑛−1)(𝑛𝑛−2)(𝑧𝑧1−𝑠𝑠1)𝑠𝑠1

𝑠𝑠1(𝑧𝑧1−𝑠𝑠1)
}                                                    

(23) 
It is easy to observe that the discriminant ∆ of the 
equation (22) is positive: 
 

∆=
(𝑛𝑛 − 1)2(2𝑠𝑠1 − 𝑧𝑧1)2 + 4(𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1 > 0

and      √∆ > (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)
}   

                                         (24) 
and the equation (22) has only one solution 𝜏𝜏2 > 0. 
 
 
Examples 
 
In Fig.2 the time response of the system is given for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
 

Fig.2 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 
 
From (23) we have:  𝜏𝜏2 = 1.236067978.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.4700782295 . 

In Fig.3 the time response of the system is shown, for  
𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5. 

 
Fig.3 Time response of the system for  𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5 

 
From (23) we have: 𝜏𝜏1 = 0,   𝜏𝜏2 = 1.076033674.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.07936506865 . 

In Fig.4 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5. 
 

 
Fig.4 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
From (23) we have: 𝜏𝜏1 = 0,      𝜏𝜏2 = 3.291502624.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.3120410227. 

 
3.3 Case 3.    
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2)                                               (25) 
 
which means that:   𝑚𝑚 = 2,    𝑧𝑧2 < 𝑧𝑧1 < 𝑠𝑠1 < 0.    
 
The initial conditions of the equation (1) in this case are: 
 

𝑥𝑥(𝑖𝑖)(0) = 0      for  𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 4
𝑥𝑥(𝑛𝑛−3)(0) = 1

𝑥𝑥(𝑛𝑛−2)(0) = 𝑛𝑛𝑠𝑠1 − (𝑧𝑧1 + 𝑧𝑧2)
𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1
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𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1

2

 

} 
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3 

The solution of 𝑥𝑥(𝑡𝑡) is 
 
𝑥𝑥(𝑡𝑡) = −[(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡 − (𝑛𝑛 − 1)]

𝑡𝑡𝑛𝑛−2
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                  (21) 
 
 
Theorem 2 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = [(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡2 − (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)𝑡𝑡 − (𝑛𝑛 −
1)(𝑛𝑛 − 2)]𝑡𝑡𝑛𝑛−3𝑒𝑒𝑠𝑠1𝑡𝑡                                                       (22) 
 
From the necessary condition  𝑥𝑥(1)(𝑡𝑡) = 0  we have 
 

𝜏𝜏1𝑛𝑛−3 = 0
𝜏𝜏2 =

1
2
(𝑛𝑛−1)(2𝑠𝑠1−𝑧𝑧1)±√(𝑛𝑛−1)2(2𝑠𝑠1−𝑧𝑧1)2+4(𝑛𝑛−1)(𝑛𝑛−2)(𝑧𝑧1−𝑠𝑠1)𝑠𝑠1

𝑠𝑠1(𝑧𝑧1−𝑠𝑠1)
}                                                    

(23) 
It is easy to observe that the discriminant ∆ of the 
equation (22) is positive: 
 

∆=
(𝑛𝑛 − 1)2(2𝑠𝑠1 − 𝑧𝑧1)2 + 4(𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1 > 0

and      √∆ > (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)
}   

                                         (24) 
and the equation (22) has only one solution 𝜏𝜏2 > 0. 
 
 
Examples 
 
In Fig.2 the time response of the system is given for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
 

Fig.2 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 
 
From (23) we have:  𝜏𝜏2 = 1.236067978.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.4700782295 . 

In Fig.3 the time response of the system is shown, for  
𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5. 

 
Fig.3 Time response of the system for  𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5 

 
From (23) we have: 𝜏𝜏1 = 0,   𝜏𝜏2 = 1.076033674.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.07936506865 . 

In Fig.4 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5. 
 

 
Fig.4 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
From (23) we have: 𝜏𝜏1 = 0,      𝜏𝜏2 = 3.291502624.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.3120410227. 

 
3.3 Case 3.    
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2)                                               (25) 
 
which means that:   𝑚𝑚 = 2,    𝑧𝑧2 < 𝑧𝑧1 < 𝑠𝑠1 < 0.    
 
The initial conditions of the equation (1) in this case are: 
 

𝑥𝑥(𝑖𝑖)(0) = 0      for  𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 4
𝑥𝑥(𝑛𝑛−3)(0) = 1

𝑥𝑥(𝑛𝑛−2)(0) = 𝑛𝑛𝑠𝑠1 − (𝑧𝑧1 + 𝑧𝑧2)
𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1

2
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The solution of 𝑥𝑥(𝑡𝑡) is 
 
𝑥𝑥(𝑡𝑡) = −[(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡 − (𝑛𝑛 − 1)]

𝑡𝑡𝑛𝑛−2
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                  (21) 
 
 
Theorem 2 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = [(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡2 − (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)𝑡𝑡 − (𝑛𝑛 −
1)(𝑛𝑛 − 2)]𝑡𝑡𝑛𝑛−3𝑒𝑒𝑠𝑠1𝑡𝑡                                                       (22) 
 
From the necessary condition  𝑥𝑥(1)(𝑡𝑡) = 0  we have 
 

𝜏𝜏1𝑛𝑛−3 = 0
𝜏𝜏2 =

1
2
(𝑛𝑛−1)(2𝑠𝑠1−𝑧𝑧1)±√(𝑛𝑛−1)2(2𝑠𝑠1−𝑧𝑧1)2+4(𝑛𝑛−1)(𝑛𝑛−2)(𝑧𝑧1−𝑠𝑠1)𝑠𝑠1

𝑠𝑠1(𝑧𝑧1−𝑠𝑠1)
}                                                    

(23) 
It is easy to observe that the discriminant ∆ of the 
equation (22) is positive: 
 

∆=
(𝑛𝑛 − 1)2(2𝑠𝑠1 − 𝑧𝑧1)2 + 4(𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1 > 0

and      √∆ > (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)
}   

                                         (24) 
and the equation (22) has only one solution 𝜏𝜏2 > 0. 
 
 
Examples 
 
In Fig.2 the time response of the system is given for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
 

Fig.2 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 
 
From (23) we have:  𝜏𝜏2 = 1.236067978.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.4700782295 . 

In Fig.3 the time response of the system is shown, for  
𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5. 
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From (23) we have: 𝜏𝜏1 = 0,   𝜏𝜏2 = 1.076033674.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.07936506865 . 

In Fig.4 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5. 
 

 
Fig.4 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
From (23) we have: 𝜏𝜏1 = 0,      𝜏𝜏2 = 3.291502624.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.3120410227. 

 
3.3 Case 3.    
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2)                                               (25) 
 
which means that:   𝑚𝑚 = 2,    𝑧𝑧2 < 𝑧𝑧1 < 𝑠𝑠1 < 0.    
 
The initial conditions of the equation (1) in this case are: 
 

𝑥𝑥(𝑖𝑖)(0) = 0      for  𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 4
𝑥𝑥(𝑛𝑛−3)(0) = 1

𝑥𝑥(𝑛𝑛−2)(0) = 𝑛𝑛𝑠𝑠1 − (𝑧𝑧1 + 𝑧𝑧2)
𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1
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 (22)

From the necessary condition x(1)(t) = 0 we have:

3 

The solution of 𝑥𝑥(𝑡𝑡) is 
 
𝑥𝑥(𝑡𝑡) = −[(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡 − (𝑛𝑛 − 1)]

𝑡𝑡𝑛𝑛−2
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                  (21) 
 
 
Theorem 2 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = [(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡2 − (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)𝑡𝑡 − (𝑛𝑛 −
1)(𝑛𝑛 − 2)]𝑡𝑡𝑛𝑛−3𝑒𝑒𝑠𝑠1𝑡𝑡                                                       (22) 
 
From the necessary condition  𝑥𝑥(1)(𝑡𝑡) = 0  we have 
 

𝜏𝜏1𝑛𝑛−3 = 0
𝜏𝜏2 =

1
2
(𝑛𝑛−1)(2𝑠𝑠1−𝑧𝑧1)±√(𝑛𝑛−1)2(2𝑠𝑠1−𝑧𝑧1)2+4(𝑛𝑛−1)(𝑛𝑛−2)(𝑧𝑧1−𝑠𝑠1)𝑠𝑠1

𝑠𝑠1(𝑧𝑧1−𝑠𝑠1)
}                                                    

(23) 
It is easy to observe that the discriminant ∆ of the 
equation (22) is positive: 
 

∆=
(𝑛𝑛 − 1)2(2𝑠𝑠1 − 𝑧𝑧1)2 + 4(𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1 > 0

and      √∆ > (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)
}   

                                         (24) 
and the equation (22) has only one solution 𝜏𝜏2 > 0. 
 
 
Examples 
 
In Fig.2 the time response of the system is given for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
 

Fig.2 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 
 
From (23) we have:  𝜏𝜏2 = 1.236067978.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.4700782295 . 

In Fig.3 the time response of the system is shown, for  
𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5. 

 
Fig.3 Time response of the system for  𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5 

 
From (23) we have: 𝜏𝜏1 = 0,   𝜏𝜏2 = 1.076033674.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.07936506865 . 

In Fig.4 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5. 
 

 
Fig.4 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
From (23) we have: 𝜏𝜏1 = 0,      𝜏𝜏2 = 3.291502624.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.3120410227. 

 
3.3 Case 3.    
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2)                                               (25) 
 
which means that:   𝑚𝑚 = 2,    𝑧𝑧2 < 𝑧𝑧1 < 𝑠𝑠1 < 0.    
 
The initial conditions of the equation (1) in this case are: 
 

𝑥𝑥(𝑖𝑖)(0) = 0      for  𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 4
𝑥𝑥(𝑛𝑛−3)(0) = 1

𝑥𝑥(𝑛𝑛−2)(0) = 𝑛𝑛𝑠𝑠1 − (𝑧𝑧1 + 𝑧𝑧2)
𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1

2

 

} 
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3 

The solution of 𝑥𝑥(𝑡𝑡) is 
 
𝑥𝑥(𝑡𝑡) = −[(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡 − (𝑛𝑛 − 1)]

𝑡𝑡𝑛𝑛−2
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                  (21) 
 
 
Theorem 2 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = [(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡2 − (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)𝑡𝑡 − (𝑛𝑛 −
1)(𝑛𝑛 − 2)]𝑡𝑡𝑛𝑛−3𝑒𝑒𝑠𝑠1𝑡𝑡                                                       (22) 
 
From the necessary condition  𝑥𝑥(1)(𝑡𝑡) = 0  we have 
 

𝜏𝜏1𝑛𝑛−3 = 0
𝜏𝜏2 =

1
2
(𝑛𝑛−1)(2𝑠𝑠1−𝑧𝑧1)±√(𝑛𝑛−1)2(2𝑠𝑠1−𝑧𝑧1)2+4(𝑛𝑛−1)(𝑛𝑛−2)(𝑧𝑧1−𝑠𝑠1)𝑠𝑠1

𝑠𝑠1(𝑧𝑧1−𝑠𝑠1)
}                                                    

(23) 
It is easy to observe that the discriminant ∆ of the 
equation (22) is positive: 
 

∆=
(𝑛𝑛 − 1)2(2𝑠𝑠1 − 𝑧𝑧1)2 + 4(𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1 > 0

and      √∆ > (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)
}   

                                         (24) 
and the equation (22) has only one solution 𝜏𝜏2 > 0. 
 
 
Examples 
 
In Fig.2 the time response of the system is given for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 
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From (23) we have: 𝜏𝜏1 = 0,   𝜏𝜏2 = 1.076033674.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.07936506865 . 

In Fig.4 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5. 
 

 
Fig.4 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
From (23) we have: 𝜏𝜏1 = 0,      𝜏𝜏2 = 3.291502624.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.3120410227. 

 
3.3 Case 3.    
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2)                                               (25) 
 
which means that:   𝑚𝑚 = 2,    𝑧𝑧2 < 𝑧𝑧1 < 𝑠𝑠1 < 0.    
 
The initial conditions of the equation (1) in this case are: 
 

𝑥𝑥(𝑖𝑖)(0) = 0      for  𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 4
𝑥𝑥(𝑛𝑛−3)(0) = 1

𝑥𝑥(𝑛𝑛−2)(0) = 𝑛𝑛𝑠𝑠1 − (𝑧𝑧1 + 𝑧𝑧2)
𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1

2
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. (23)

It is easy to observe that the discriminant ∆ of the Eq. (22) is 
positive:

3 

The solution of 𝑥𝑥(𝑡𝑡) is 
 
𝑥𝑥(𝑡𝑡) = −[(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡 − (𝑛𝑛 − 1)]

𝑡𝑡𝑛𝑛−2
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                  (21) 
 
 
Theorem 2 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = [(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡2 − (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)𝑡𝑡 − (𝑛𝑛 −
1)(𝑛𝑛 − 2)]𝑡𝑡𝑛𝑛−3𝑒𝑒𝑠𝑠1𝑡𝑡                                                       (22) 
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𝑥𝑥(𝑛𝑛−3)(0) = 1

𝑥𝑥(𝑛𝑛−2)(0) = 𝑛𝑛𝑠𝑠1 − (𝑧𝑧1 + 𝑧𝑧2)
𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1

2

 

} 
 
  

   (26) 

, (24)

and the Eq. (22) has only one solution τ2 > 0.

Fig. 1. Time response of the system for n = 4, s1 = –1
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Examples. In Fig. 2 the time response of the system is given 
for n = 3, s1 = –1, z1 = –1.5.

From (23) we have: τ2 = 1.236067978. The extremal value 
is x(τ2) = 0.4700782295.

In Fig. 3 the time response of the system is shown, for 
n = 4, s1 = –2, z1 = –2.5.

From (23) we have: τ1 = 0, τ2 = 1.076033674. The extremal 
value is: x(τ2) = 0.07936506865.

In Fig. 4 the time response of the system is shown, for 
n = 5, s1 = –1, z1 = –1.5.

From (23) we have: τ1 = 0, τ2 = 3.291502624. The extremal 
value is: x(τ2) = 0.3120410227.

3.3. Case 3.

 

3 

The solution of 𝑥𝑥(𝑡𝑡) is 
 
𝑥𝑥(𝑡𝑡) = −[(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡 − (𝑛𝑛 − 1)]

𝑡𝑡𝑛𝑛−2
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                  (21) 
 
 
Theorem 2 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = [(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡2 − (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)𝑡𝑡 − (𝑛𝑛 −
1)(𝑛𝑛 − 2)]𝑡𝑡𝑛𝑛−3𝑒𝑒𝑠𝑠1𝑡𝑡                                                       (22) 
 
From the necessary condition  𝑥𝑥(1)(𝑡𝑡) = 0  we have 
 

𝜏𝜏1𝑛𝑛−3 = 0
𝜏𝜏2 =

1
2
(𝑛𝑛−1)(2𝑠𝑠1−𝑧𝑧1)±√(𝑛𝑛−1)2(2𝑠𝑠1−𝑧𝑧1)2+4(𝑛𝑛−1)(𝑛𝑛−2)(𝑧𝑧1−𝑠𝑠1)𝑠𝑠1

𝑠𝑠1(𝑧𝑧1−𝑠𝑠1)
}                                                    

(23) 
It is easy to observe that the discriminant ∆ of the 
equation (22) is positive: 
 

∆=
(𝑛𝑛 − 1)2(2𝑠𝑠1 − 𝑧𝑧1)2 + 4(𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1 > 0

and      √∆ > (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)
}   

                                         (24) 
and the equation (22) has only one solution 𝜏𝜏2 > 0. 
 
 
Examples 
 
In Fig.2 the time response of the system is given for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
 

Fig.2 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 
 
From (23) we have:  𝜏𝜏2 = 1.236067978.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.4700782295 . 

In Fig.3 the time response of the system is shown, for  
𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5. 

 
Fig.3 Time response of the system for  𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5 

 
From (23) we have: 𝜏𝜏1 = 0,   𝜏𝜏2 = 1.076033674.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.07936506865 . 

In Fig.4 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5. 
 

 
Fig.4 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
From (23) we have: 𝜏𝜏1 = 0,      𝜏𝜏2 = 3.291502624.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.3120410227. 

 
3.3 Case 3.    
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2)                                               (25) 
 
which means that:   𝑚𝑚 = 2,    𝑧𝑧2 < 𝑧𝑧1 < 𝑠𝑠1 < 0.    
 
The initial conditions of the equation (1) in this case are: 
 

𝑥𝑥(𝑖𝑖)(0) = 0      for  𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 4
𝑥𝑥(𝑛𝑛−3)(0) = 1

𝑥𝑥(𝑛𝑛−2)(0) = 𝑛𝑛𝑠𝑠1 − (𝑧𝑧1 + 𝑧𝑧2)
𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1

2

 

} 
 
  

   (26) 

, (25)

which means that: m = 2, z2 < z1 < s1 < 0.

The initial conditions of Eq. (1) in this case are:

 

3 

The solution of 𝑥𝑥(𝑡𝑡) is 
 
𝑥𝑥(𝑡𝑡) = −[(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡 − (𝑛𝑛 − 1)]

𝑡𝑡𝑛𝑛−2
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                  (21) 
 
 
Theorem 2 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = [(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡2 − (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)𝑡𝑡 − (𝑛𝑛 −
1)(𝑛𝑛 − 2)]𝑡𝑡𝑛𝑛−3𝑒𝑒𝑠𝑠1𝑡𝑡                                                       (22) 
 
From the necessary condition  𝑥𝑥(1)(𝑡𝑡) = 0  we have 
 

𝜏𝜏1𝑛𝑛−3 = 0
𝜏𝜏2 =

1
2
(𝑛𝑛−1)(2𝑠𝑠1−𝑧𝑧1)±√(𝑛𝑛−1)2(2𝑠𝑠1−𝑧𝑧1)2+4(𝑛𝑛−1)(𝑛𝑛−2)(𝑧𝑧1−𝑠𝑠1)𝑠𝑠1

𝑠𝑠1(𝑧𝑧1−𝑠𝑠1)
}                                                    

(23) 
It is easy to observe that the discriminant ∆ of the 
equation (22) is positive: 
 

∆=
(𝑛𝑛 − 1)2(2𝑠𝑠1 − 𝑧𝑧1)2 + 4(𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑧𝑧1 − 𝑠𝑠1)𝑠𝑠1 > 0

and      √∆ > (𝑛𝑛 − 1)(2𝑠𝑠1 − 𝑧𝑧1)
}   

                                         (24) 
and the equation (22) has only one solution 𝜏𝜏2 > 0. 
 
 
Examples 
 
In Fig.2 the time response of the system is given for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
 

Fig.2 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 
 
From (23) we have:  𝜏𝜏2 = 1.236067978.  The extremal 

value is: 𝑥𝑥(𝜏𝜏2) = 0.4700782295 . 

In Fig.3 the time response of the system is shown, for  
𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5. 

 
Fig.3 Time response of the system for  𝑛𝑛 = 4, 𝑠𝑠1 = −2, 𝑧𝑧1 = −2.5 

 
From (23) we have: 𝜏𝜏1 = 0,   𝜏𝜏2 = 1.076033674.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.07936506865 . 

In Fig.4 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5. 
 

 
Fig.4 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5 

 
From (23) we have: 𝜏𝜏1 = 0,      𝜏𝜏2 = 3.291502624.  The 

extremal value is: 𝑥𝑥(𝜏𝜏2) = 0.3120410227. 

 
3.3 Case 3.    
 
𝐿𝐿(𝑠𝑠) = (𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2)                                               (25) 
 
which means that:   𝑚𝑚 = 2,    𝑧𝑧2 < 𝑧𝑧1 < 𝑠𝑠1 < 0.    
 
The initial conditions of the equation (1) in this case are: 
 

𝑥𝑥(𝑖𝑖)(0) = 0      for  𝑖𝑖 = 0,1,2, … , 𝑛𝑛 − 4
𝑥𝑥(𝑛𝑛−3)(0) = 1

𝑥𝑥(𝑛𝑛−2)(0) = 𝑛𝑛𝑠𝑠1 − (𝑧𝑧1 + 𝑧𝑧2)
𝑥𝑥(𝑛𝑛−1)(0) = 𝑧𝑧1𝑧𝑧2 − 𝑛𝑛𝑠𝑠1(𝑧𝑧1 + 𝑧𝑧2) +

1
2 𝑛𝑛(𝑛𝑛 + 1)𝑠𝑠1

2

 

} 
 
  

   (26) . (26)

Theorem 3. The solution x(t) is:

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

. (27)

The first derivative of x(t) in this case is equal:

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

.

 (28)

From the necessary condition x(1)(t) = 0 we have:

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

, (29)

with multiplicity n ¡ 4, and τ2 can be calculated from the equa-
tion:

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

.

 (30)

The analytical formula for τ2 is rather complicated; how-
ever, it is possible to obtain it for three zeroes.

Fig. 2. Time response of the system for n = 3, s1 = –1, z1 = –1.5

Fig. 3. Time response of the system for n = 4, s1 = –2, z1 = –2.5

Fig. 4. Time response of the system for n = 5, s1 = –1, z1 = –1.5
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It can be shown that in the case z1, z2, …, zn ¡ 1 the time τ2 
is determined from the equation of degree n.

Examples. In Fig. 5 the time response of the system is shown, 
for n = 3, s1 = –1, z1 = –1.5, z2 = –2.5.

3.4. Case 4. m = n ¡ 1.
The equivalent form to Eq. (4), using Vieta’s formulae is:

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

, (31)

where

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

, (32)

The transfer function is:

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

. (33)

Then the solution x(t) is:

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

4 

 
Theorem 3 
 
The solution 𝑥𝑥(𝑡𝑡) is 
 
 𝑥𝑥(𝑡𝑡) = [(𝑧𝑧2 − 𝑠𝑠1)(𝑧𝑧1 − 𝑠𝑠1)𝑡𝑡2 − (𝑛𝑛 − 1)(𝑧𝑧2 + 𝑧𝑧1 −
2𝑠𝑠1)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)]

𝑡𝑡𝑛𝑛−3
(𝑛𝑛−1)! 𝑒𝑒

𝑠𝑠1𝑡𝑡                              (27) 
 
The first derivative of 𝑥𝑥(𝑡𝑡) in this case is equal 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑒𝑒𝑠𝑠1𝑡𝑡{(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝑡𝑡3 + (𝑛𝑛 − 1)[(𝑧𝑧1 −
𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1) + (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝑡𝑡2 + (𝑛𝑛 − 1)(𝑛𝑛 −
2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑡𝑡 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 − 3)}𝑡𝑡𝑛𝑛−4    (28) 
 
From the necessary condition 𝑥𝑥(1)(𝑡𝑡) = 0 we have 
 
𝜏𝜏1 = 0                                                                            (29) 
 
with multiplicity n-4, and 𝜏𝜏2 can be calculated from the 
equation 
 
 
(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)𝑠𝑠1𝜏𝜏23 + (𝑛𝑛 − 1)[(𝑧𝑧1 − 𝑠𝑠1)(𝑧𝑧2 − 𝑠𝑠1)

+ (2𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝑠𝑠1]𝜏𝜏22 + 
(𝑛𝑛 − 1)(𝑛𝑛 − 2)(3𝑠𝑠1 − 𝑧𝑧1 − 𝑧𝑧2)𝜏𝜏2 + (𝑛𝑛 − 1)(𝑛𝑛 − 2)(𝑛𝑛 −
3) = 0                                                                           (30) 
 
The analytical formula for  𝜏𝜏2  is rather complicated, 
however it is possible to obtain it for three zeroes. 
It can be shown that in case  𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1  the time 𝜏𝜏2 is 
determined from the equation of degree n. 
 
Examples 
 
In Fig.5 the time response of the system is shown, for  
𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.5 Time response of the system for  𝑛𝑛 = 3, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (30) we have:  𝜏𝜏2 = 0.666666665.  The extremal 
value is: 𝑥𝑥(𝜏𝜏2) = 1.283542798. 

 
In Fig.6 the time response of the system is shown, for  
𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5, 𝑧𝑧2 = −2.5. 

 
Fig.6 Time response of the system for  𝑛𝑛 = 5, 𝑠𝑠1 = −1, 𝑧𝑧1 = −1.5,

𝑧𝑧2 = −2.5 
 
From (29) and (30) we have:  𝜏𝜏1 = 0 ,  
𝜏𝜏2 = 2.856475152.  The extremal value is: 𝑥𝑥(𝜏𝜏2) =
0.8005324665 . 
 
3.4  Case 4  m=n-1   

The equivalent form to the equation (4), using Vieta’s 
formulae is: 
 

𝐿𝐿(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑠𝑠 + 𝑏𝑏𝑛𝑛               (31) 

where 
𝑏𝑏2
𝑏𝑏1
= (−1)𝑛𝑛−1 ∑ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1
𝑏𝑏3
𝑏𝑏1
= ∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛−1

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗.
.

𝑏𝑏𝑛𝑛
𝑏𝑏1
= (−1)𝑛𝑛−1 ∏ 𝑧𝑧𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 }
  
 

  
 

                                               (32) 

 

The transfer function 

𝐺𝐺(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑛𝑛−1+𝑏𝑏2𝑠𝑠𝑛𝑛−2+⋯+𝑏𝑏𝑛𝑛
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

= 𝑏𝑏1∏ (𝑠𝑠−𝑧𝑧𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
(𝑠𝑠−𝑠𝑠1)𝑛𝑛

                  (33) 

 
Then the solution 𝑥𝑥(𝑡𝑡) is 

𝑥𝑥(𝑡𝑡) = {𝑏𝑏1 + [𝑏𝑏2 − (𝑛𝑛−11 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (
𝑛𝑛−2
1 )𝑏𝑏2𝑠𝑠1 +

(𝑛𝑛−12 )𝑏𝑏1𝑠𝑠12]
𝑡𝑡2

2! + [𝑏𝑏1 − (
𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 + (

𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠12 −

(𝑛𝑛−13 )𝑏𝑏1𝑠𝑠13]
𝑡𝑡3

3! + ⋯+

[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯+ 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1]
𝑡𝑡𝑛𝑛−1
(𝑛𝑛−1)!} 𝑒𝑒

𝑠𝑠1𝑡𝑡              (34) 

 

.

 (34)

We assume that Eq. (31) has only real, negative roots. The suf-
ficient conditions for this are:

Theorem 4. [16]. Let L(s) be a polynomial of degree n ¸ 2 
with positive coefficients. If
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We assume that the equation (31) has only real, negative 
roots. The sufficient conditions for this are 
 
Theorem 4 [16] 
 
Let 𝐿𝐿(𝑠𝑠) be a polynomial of degree 𝑛𝑛 ≥ 2 with positive 
coefficients. If 
 

{𝑏𝑏𝑖𝑖
2 − 4𝑏𝑏𝑖𝑖−1𝑏𝑏𝑖𝑖+1 > 0,    𝑖𝑖 = 1,2, … , 𝑛𝑛 − 2

𝑏𝑏𝑖𝑖 > 0                      (35) 

 
then all the roots of 𝐿𝐿(𝑠𝑠) are real, negative and distinct. 
We obtain the derivative of 𝑥𝑥(𝑡𝑡) from the relation (34). 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡 = {[𝑏𝑏2 − (𝑛𝑛−1
1 )𝑏𝑏1𝑠𝑠1]𝑠𝑠1 + 𝑏𝑏1𝑠𝑠1 + 𝑠𝑠1[𝑏𝑏2 +

(𝑛𝑛−1
1 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (𝑛𝑛−2

1 )𝑏𝑏2𝑠𝑠1 + (𝑛𝑛−1
2 )𝑏𝑏1𝑠𝑠1

2]𝑡𝑡 +
[𝑏𝑏3 − (𝑛𝑛−2

1 )𝑏𝑏2𝑠𝑠1 + (𝑛𝑛−1
2 )𝑏𝑏1𝑠𝑠1

2]𝑠𝑠1
𝑡𝑡2

2! + 3[𝑏𝑏1 − (𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 +

(𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠1

2 − (𝑛𝑛−1
3 )𝑏𝑏1𝑠𝑠1

3] 𝑡𝑡2

3! + [𝑏𝑏1 − (𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 +

(𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠1

2 − (𝑛𝑛−1
3 )𝑏𝑏1𝑠𝑠1

3]𝑠𝑠1
𝑡𝑡3

3! + (𝑛𝑛 − 1)[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 +
⋯ + 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1] 𝑡𝑡𝑛𝑛−2

(𝑛𝑛−1)! + 𝑠𝑠1[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯ +

𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1] 𝑡𝑡𝑛𝑛−1

(𝑛𝑛−1)!} 𝑒𝑒𝑠𝑠1𝑡𝑡                                                (36) 
 
From the equation 𝑥𝑥(1)(𝑡𝑡) = 0 it is possible to 
determinate 𝜏𝜏2 > 0 using numerical calculations. 
 
Theorem 5 
 
If, the initial conditions of the stable system described by 
(1) are positive 
 
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − ∑ 𝑧𝑧𝑖𝑖 > 0𝑛𝑛−1

𝑖𝑖=1
𝑥𝑥(𝑛𝑛−2)(0) = 1

}                                  (37) 

 
then, they represent the sufficient conditions for the 
existence of the positive extremum of 𝑥𝑥(𝑡𝑡), where 𝑥𝑥(𝑡𝑡)  is 
the solution of equation (1). 
 
Proof 
 
It is evident, because 𝑥𝑥(0) ≥ 0, 𝑥𝑥(𝑛𝑛−1)(0) > 0   and  

lim
𝑡𝑡→∞

𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) = 0 
for the stable system. 
 

4. Conclusions 

If the dynamic system is controlled by Dirac impulse 𝛿𝛿(𝑡𝑡) 
then it is possible to obtain analytical formulae for the 
extremal 𝜏𝜏2 in general from the equation whose degree  
depends on the number of zeroes 𝑧𝑧𝑖𝑖. For  𝑖𝑖 =
0,1,2, … , 𝑛𝑛 − 1  it is possible to obtain the algebraic 
equation of degree appropriately 𝑖𝑖 = 1,2, … , 𝑛𝑛. Contrary 

to the cases when 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑗𝑗  for  𝑖𝑖 ≠ 𝑗𝑗 , for the 𝑚𝑚 = 𝑛𝑛 − 1  
the extremum may exist [6]. 
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, (35)

then all the roots of L(s) are real, negative and distinct.
We obtain the derivative of x(t) from the relation (34).
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We assume that the equation (31) has only real, negative 
roots. The sufficient conditions for this are 
 
Theorem 4 [16] 
 
Let 𝐿𝐿(𝑠𝑠) be a polynomial of degree 𝑛𝑛 ≥ 2 with positive 
coefficients. If 
 

{𝑏𝑏𝑖𝑖
2 − 4𝑏𝑏𝑖𝑖−1𝑏𝑏𝑖𝑖+1 > 0,    𝑖𝑖 = 1,2, … , 𝑛𝑛 − 2

𝑏𝑏𝑖𝑖 > 0                      (35) 

 
then all the roots of 𝐿𝐿(𝑠𝑠) are real, negative and distinct. 
We obtain the derivative of 𝑥𝑥(𝑡𝑡) from the relation (34). 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡 = {[𝑏𝑏2 − (𝑛𝑛−1
1 )𝑏𝑏1𝑠𝑠1]𝑠𝑠1 + 𝑏𝑏1𝑠𝑠1 + 𝑠𝑠1[𝑏𝑏2 +

(𝑛𝑛−1
1 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (𝑛𝑛−2

1 )𝑏𝑏2𝑠𝑠1 + (𝑛𝑛−1
2 )𝑏𝑏1𝑠𝑠1

2]𝑡𝑡 +
[𝑏𝑏3 − (𝑛𝑛−2

1 )𝑏𝑏2𝑠𝑠1 + (𝑛𝑛−1
2 )𝑏𝑏1𝑠𝑠1

2]𝑠𝑠1
𝑡𝑡2

2! + 3[𝑏𝑏1 − (𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 +

(𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠1

2 − (𝑛𝑛−1
3 )𝑏𝑏1𝑠𝑠1

3] 𝑡𝑡2

3! + [𝑏𝑏1 − (𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 +

(𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠1

2 − (𝑛𝑛−1
3 )𝑏𝑏1𝑠𝑠1

3]𝑠𝑠1
𝑡𝑡3

3! + (𝑛𝑛 − 1)[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 +
⋯ + 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1] 𝑡𝑡𝑛𝑛−2

(𝑛𝑛−1)! + 𝑠𝑠1[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯ +

𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1] 𝑡𝑡𝑛𝑛−1

(𝑛𝑛−1)!} 𝑒𝑒𝑠𝑠1𝑡𝑡                                                (36) 
 
From the equation 𝑥𝑥(1)(𝑡𝑡) = 0 it is possible to 
determinate 𝜏𝜏2 > 0 using numerical calculations. 
 
Theorem 5 
 
If, the initial conditions of the stable system described by 
(1) are positive 
 
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − ∑ 𝑧𝑧𝑖𝑖 > 0𝑛𝑛−1

𝑖𝑖=1
𝑥𝑥(𝑛𝑛−2)(0) = 1

}                                  (37) 

 
then, they represent the sufficient conditions for the 
existence of the positive extremum of 𝑥𝑥(𝑡𝑡), where 𝑥𝑥(𝑡𝑡)  is 
the solution of equation (1). 
 
Proof 
 
It is evident, because 𝑥𝑥(0) ≥ 0, 𝑥𝑥(𝑛𝑛−1)(0) > 0   and  

lim
𝑡𝑡→∞

𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) = 0 
for the stable system. 
 

4. Conclusions 

If the dynamic system is controlled by Dirac impulse 𝛿𝛿(𝑡𝑡) 
then it is possible to obtain analytical formulae for the 
extremal 𝜏𝜏2 in general from the equation whose degree  
depends on the number of zeroes 𝑧𝑧𝑖𝑖. For  𝑖𝑖 =
0,1,2, … , 𝑛𝑛 − 1  it is possible to obtain the algebraic 
equation of degree appropriately 𝑖𝑖 = 1,2, … , 𝑛𝑛. Contrary 

to the cases when 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑗𝑗  for  𝑖𝑖 ≠ 𝑗𝑗 , for the 𝑚𝑚 = 𝑛𝑛 − 1  
the extremum may exist [6]. 
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We assume that the equation (31) has only real, negative 
roots. The sufficient conditions for this are 
 
Theorem 4 [16] 
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coefficients. If 
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2 − 4𝑏𝑏𝑖𝑖−1𝑏𝑏𝑖𝑖+1 > 0,    𝑖𝑖 = 1,2, … , 𝑛𝑛 − 2

𝑏𝑏𝑖𝑖 > 0                      (35) 

 
then all the roots of 𝐿𝐿(𝑠𝑠) are real, negative and distinct. 
We obtain the derivative of 𝑥𝑥(𝑡𝑡) from the relation (34). 
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From the equation 𝑥𝑥(1)(𝑡𝑡) = 0 it is possible to 
determinate 𝜏𝜏2 > 0 using numerical calculations. 
 
Theorem 5 
 
If, the initial conditions of the stable system described by 
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then, they represent the sufficient conditions for the 
existence of the positive extremum of 𝑥𝑥(𝑡𝑡), where 𝑥𝑥(𝑡𝑡)  is 
the solution of equation (1). 
 
Proof 
 
It is evident, because 𝑥𝑥(0) ≥ 0, 𝑥𝑥(𝑛𝑛−1)(0) > 0   and  
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4. Conclusions 

If the dynamic system is controlled by Dirac impulse 𝛿𝛿(𝑡𝑡) 
then it is possible to obtain analytical formulae for the 
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equation of degree appropriately 𝑖𝑖 = 1,2, … , 𝑛𝑛. Contrary 

to the cases when 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑗𝑗  for  𝑖𝑖 ≠ 𝑗𝑗 , for the 𝑚𝑚 = 𝑛𝑛 − 1  
the extremum may exist [6]. 
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existence of the positive extremum of 𝑥𝑥(𝑡𝑡), where 𝑥𝑥(𝑡𝑡)  is 
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Proof 
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If the dynamic system is controlled by Dirac impulse 𝛿𝛿(𝑡𝑡) 
then it is possible to obtain analytical formulae for the 
extremal 𝜏𝜏2 in general from the equation whose degree  
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to the cases when 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑗𝑗  for  𝑖𝑖 ≠ 𝑗𝑗 , for the 𝑚𝑚 = 𝑛𝑛 − 1  
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then, they represent the sufficient conditions for the 
existence of the positive extremum of 𝑥𝑥(𝑡𝑡), where 𝑥𝑥(𝑡𝑡)  is 
the solution of equation (1). 
 
Proof 
 
It is evident, because 𝑥𝑥(0) ≥ 0, 𝑥𝑥(𝑛𝑛−1)(0) > 0   and  
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𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) = 0 
for the stable system. 
 

4. Conclusions 

If the dynamic system is controlled by Dirac impulse 𝛿𝛿(𝑡𝑡) 
then it is possible to obtain analytical formulae for the 
extremal 𝜏𝜏2 in general from the equation whose degree  
depends on the number of zeroes 𝑧𝑧𝑖𝑖. For  𝑖𝑖 =
0,1,2, … , 𝑛𝑛 − 1  it is possible to obtain the algebraic 
equation of degree appropriately 𝑖𝑖 = 1,2, … , 𝑛𝑛. Contrary 

to the cases when 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑗𝑗  for  𝑖𝑖 ≠ 𝑗𝑗 , for the 𝑚𝑚 = 𝑛𝑛 − 1  
the extremum may exist [6]. 
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4. Conclusions 
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We assume that the equation (31) has only real, negative 
roots. The sufficient conditions for this are 
 
Theorem 4 [16] 
 
Let 𝐿𝐿(𝑠𝑠) be a polynomial of degree 𝑛𝑛 ≥ 2 with positive 
coefficients. If 
 

{𝑏𝑏𝑖𝑖
2 − 4𝑏𝑏𝑖𝑖−1𝑏𝑏𝑖𝑖+1 > 0,    𝑖𝑖 = 1,2, … , 𝑛𝑛 − 2

𝑏𝑏𝑖𝑖 > 0                      (35) 

 
then all the roots of 𝐿𝐿(𝑠𝑠) are real, negative and distinct. 
We obtain the derivative of 𝑥𝑥(𝑡𝑡) from the relation (34). 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡 = {[𝑏𝑏2 − (𝑛𝑛−1
1 )𝑏𝑏1𝑠𝑠1]𝑠𝑠1 + 𝑏𝑏1𝑠𝑠1 + 𝑠𝑠1[𝑏𝑏2 +

(𝑛𝑛−1
1 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (𝑛𝑛−2

1 )𝑏𝑏2𝑠𝑠1 + (𝑛𝑛−1
2 )𝑏𝑏1𝑠𝑠1

2]𝑡𝑡 +
[𝑏𝑏3 − (𝑛𝑛−2

1 )𝑏𝑏2𝑠𝑠1 + (𝑛𝑛−1
2 )𝑏𝑏1𝑠𝑠1

2]𝑠𝑠1
𝑡𝑡2

2! + 3[𝑏𝑏1 − (𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 +

(𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠1

2 − (𝑛𝑛−1
3 )𝑏𝑏1𝑠𝑠1

3] 𝑡𝑡2

3! + [𝑏𝑏1 − (𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 +

(𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠1

2 − (𝑛𝑛−1
3 )𝑏𝑏1𝑠𝑠1

3]𝑠𝑠1
𝑡𝑡3

3! + (𝑛𝑛 − 1)[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 +
⋯ + 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1] 𝑡𝑡𝑛𝑛−2

(𝑛𝑛−1)! + 𝑠𝑠1[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯ +

𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1] 𝑡𝑡𝑛𝑛−1

(𝑛𝑛−1)!} 𝑒𝑒𝑠𝑠1𝑡𝑡                                                (36) 
 
From the equation 𝑥𝑥(1)(𝑡𝑡) = 0 it is possible to 
determinate 𝜏𝜏2 > 0 using numerical calculations. 
 
Theorem 5 
 
If, the initial conditions of the stable system described by 
(1) are positive 
 
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − ∑ 𝑧𝑧𝑖𝑖 > 0𝑛𝑛−1

𝑖𝑖=1
𝑥𝑥(𝑛𝑛−2)(0) = 1

}                                  (37) 

 
then, they represent the sufficient conditions for the 
existence of the positive extremum of 𝑥𝑥(𝑡𝑡), where 𝑥𝑥(𝑡𝑡)  is 
the solution of equation (1). 
 
Proof 
 
It is evident, because 𝑥𝑥(0) ≥ 0, 𝑥𝑥(𝑛𝑛−1)(0) > 0   and  

lim
𝑡𝑡→∞

𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) = 0 
for the stable system. 
 

4. Conclusions 

If the dynamic system is controlled by Dirac impulse 𝛿𝛿(𝑡𝑡) 
then it is possible to obtain analytical formulae for the 
extremal 𝜏𝜏2 in general from the equation whose degree  
depends on the number of zeroes 𝑧𝑧𝑖𝑖. For  𝑖𝑖 =
0,1,2, … , 𝑛𝑛 − 1  it is possible to obtain the algebraic 
equation of degree appropriately 𝑖𝑖 = 1,2, … , 𝑛𝑛. Contrary 

to the cases when 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑗𝑗  for  𝑖𝑖 ≠ 𝑗𝑗 , for the 𝑚𝑚 = 𝑛𝑛 − 1  
the extremum may exist [6]. 
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From the equation x (1)(t) = 0 it is possible to determinate 
τ2 > 0 using numerical calculations.

Fig. 5. Time response of the system for n = 3, s1 = –1, z1 = –1.5, 
z2 = –2.5

Fig. 6. Time response of the system for n = 5, s1 = –1, z1 = –1.5, 
z2 = –2.5

From (30) we have: τ2 = 0.666666665. The extremal value 
is x(τ2) = 1.283542798.

In Fig. 6 the time response of the system is shown, for 
n = 5, s1 = –1, z1 = –1.5, z2 = –2.5.

From (29) and (30) we have τ1 = 0, τ2 = 2.856475152. The 
extremal value is x(τ2) = 0.8005324665.
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Theorem 5. If the initial conditions of the stable system 
described by (1) are positive
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We assume that the equation (31) has only real, negative 
roots. The sufficient conditions for this are 
 
Theorem 4 [16] 
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coefficients. If 
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2 − 4𝑏𝑏𝑖𝑖−1𝑏𝑏𝑖𝑖+1 > 0,    𝑖𝑖 = 1,2, … , 𝑛𝑛 − 2

𝑏𝑏𝑖𝑖 > 0                      (35) 

 
then all the roots of 𝐿𝐿(𝑠𝑠) are real, negative and distinct. 
We obtain the derivative of 𝑥𝑥(𝑡𝑡) from the relation (34). 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡 = {[𝑏𝑏2 − (𝑛𝑛−1
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1 )𝑏𝑏1𝑠𝑠1]𝑡𝑡 + [𝑏𝑏3 − (𝑛𝑛−2

1 )𝑏𝑏2𝑠𝑠1 + (𝑛𝑛−1
2 )𝑏𝑏1𝑠𝑠1

2]𝑡𝑡 +
[𝑏𝑏3 − (𝑛𝑛−2

1 )𝑏𝑏2𝑠𝑠1 + (𝑛𝑛−1
2 )𝑏𝑏1𝑠𝑠1

2]𝑠𝑠1
𝑡𝑡2

2! + 3[𝑏𝑏1 − (𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 +

(𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠1

2 − (𝑛𝑛−1
3 )𝑏𝑏1𝑠𝑠1

3] 𝑡𝑡2

3! + [𝑏𝑏1 − (𝑛𝑛−3
1 )𝑏𝑏3𝑠𝑠1 +

(𝑛𝑛−2
2 )𝑏𝑏2𝑠𝑠1

2 − (𝑛𝑛−1
3 )𝑏𝑏1𝑠𝑠1

3]𝑠𝑠1
𝑡𝑡3

3! + (𝑛𝑛 − 1)[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 +
⋯ + 𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1] 𝑡𝑡𝑛𝑛−2

(𝑛𝑛−1)! + 𝑠𝑠1[𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1𝑠𝑠1 + ⋯ +

𝑏𝑏1(−𝑠𝑠1)𝑛𝑛−1] 𝑡𝑡𝑛𝑛−1

(𝑛𝑛−1)!} 𝑒𝑒𝑠𝑠1𝑡𝑡                                                (36) 
 
From the equation 𝑥𝑥(1)(𝑡𝑡) = 0 it is possible to 
determinate 𝜏𝜏2 > 0 using numerical calculations. 
 
Theorem 5 
 
If, the initial conditions of the stable system described by 
(1) are positive 
 
𝑥𝑥(𝑛𝑛−1)(0) = 𝑛𝑛𝑠𝑠1 − ∑ 𝑧𝑧𝑖𝑖 > 0𝑛𝑛−1

𝑖𝑖=1
𝑥𝑥(𝑛𝑛−2)(0) = 1

}                                  (37) 

 
then, they represent the sufficient conditions for the 
existence of the positive extremum of 𝑥𝑥(𝑡𝑡), where 𝑥𝑥(𝑡𝑡)  is 
the solution of equation (1). 
 
Proof 
 
It is evident, because 𝑥𝑥(0) ≥ 0, 𝑥𝑥(𝑛𝑛−1)(0) > 0   and  

lim
𝑡𝑡→∞

𝑥𝑥(𝑛𝑛−1)(𝑡𝑡) = 0 
for the stable system. 
 

4. Conclusions 

If the dynamic system is controlled by Dirac impulse 𝛿𝛿(𝑡𝑡) 
then it is possible to obtain analytical formulae for the 
extremal 𝜏𝜏2 in general from the equation whose degree  
depends on the number of zeroes 𝑧𝑧𝑖𝑖. For  𝑖𝑖 =
0,1,2, … , 𝑛𝑛 − 1  it is possible to obtain the algebraic 
equation of degree appropriately 𝑖𝑖 = 1,2, … , 𝑛𝑛. Contrary 

to the cases when 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑗𝑗  for  𝑖𝑖 ≠ 𝑗𝑗 , for the 𝑚𝑚 = 𝑛𝑛 − 1  
the extremum may exist [6]. 
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, (37)

then they represent the sufficient conditions for the existence 
of the positive extremum of x(t), where x(t) is the solution of 
Eq. (1).

Proof. It is evident, because x(0) ¸ 0, x(n ¡ 1)(0) > 0 and
lim

t → 1
x(n ¡ 1)(t) = 0

for the stable system.

4. Conclusions

If the dynamic system is controlled by Dirac impulse δ(t) then 
it is possible to obtain analytical formulae for the extremal τ2 in 
general from the equation whose degree depends on the number 
of zeroes zi. For i = 0, 1, 2, …, n ¡ 1 it is possible to obtain 
the algebraic equation of degree appropriately i = 1, 2, …, n. 
Contrary to the cases when si  6= sj, for i  6= j, for the m = n ¡ 1 
the extremum may exist [6].
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