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1. Introduction

The first definition of the fractional derivative was introduced
by Liouville and Riemann at the end of the 19th century [1–3]
and another one was proposed in the 20th century by Caputo
[1–5]. This idea has been used by engineers for modeling dif-
ferent processes [4,5]. Mathematical fundamentals of fractional
calculus are given in the monographs [1, 3]. The positive frac-
tional linear systems have been investigated in [4, 6–13]. The
positive linear systems with different fractional orders have
been addressed in [7, 8, 13]. The solution to the state equa-
tion of descriptor fractional continuous-time linear systems
with two different fractional orders has been introduced in [8].
The decentralized stabilization of descriptor fractional positive
continuous-time linear systems with delays has been investi-
gated in [14] and the stabilization of positive descriptor frac-
tional discrete-time linear systems with two different fractional
orders by a decentralized controller in [13].

In this paper, the Lagrange–Sylvester formula will be applied
to the computation of state equations of fractional continuous-
time and discrete-time linear systems.

The paper is organized as follows. In Section 2 some pre-
liminaries concerning fractional linear continuous-time and
discrete-time systems are recalled and solutions to the state
linear equations are given. The Lagrange–Sylvester formula is
presented in Section 3. The main result of the paper, the appli-
cation of the Lagrange–Sylvester formula to the computation of
the solutions to state equations of the fractional linear systems is
given in Section 4. Concluding remarks are given in Section 5.

The following notation will be used: ℜ – the set of real num-
bers; ℜn×m – the set of n×m real matrices; In – the n×n identity
matrix; AT denotes the transpose of the matrix A.
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2. Preliminaries

Consider the continuous-time fractional linear system

dα

dtα x(t) = Ax(t)+Bu(t), 0 < α ≤ 1, (1)

where x(t) ∈ ℜn is the state vector; u(t) ∈ ℜm is the input vec-
tor; and A∈ℜn×n,B∈ℜn×m. In this paper the Caputo definition
will be used [1, 3, 4]

dα

dtα f (t) =
1

Γ(n−α)

t∫

0

f (n)

(t − τ)α+1−n dτ,

n−1 < α ≤ n ∈ N = {1,2, . . .},

(2)

where α ∈ ℜ+ is the order of fractional derivative; f (n)(τ) =
dn f (τ)

dτn and Γ(x) =

∞∫

0

e−t tx−1 dt is the gamma function;

Re(x)> 0.
The solution to Eq. (1) has the form [4, 5]

x(t) = Φ0(t)x0(0)+
t∫

0

Φ(t − τ)Bu(τ)dτ , (3)

where

Φ0(t) =
∞

∑
k=0

Aktkα

Γ(kα +1)
, (4)

Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ[(k+1)α]
. (5)

Consider the fractional discrete-time linear system

∆α xi+1 = Axi +Bui , i ∈ Z+ = {0,1, . . .}, 0 < α < 1, (6)
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where

∆α xi =
i

∑
k=0

(−1)k
(

α
k

)
xi−k,

(
α
k

)
=




1 for k = 0
α(α −1) . . .(α − k+1)

k!
for k = 1,2, . . .

(7)

is the α order difference and xi ∈ ℜn, ui ∈ ℜm are the state and
input vectors, A ∈ ℜn×n, B ∈ ℜn×m.

Substituting (7) into (6) we obtain

xi+1 +
i+1

∑
k=1

(−1)k
(

α
k

)
xi−k+1 = Axi +Bui, i ∈ Z+ (8)

and

xi+1 = Aα xi +
i+1

∑
k=2

(−1)k+1
(

α
k

)
xi−k+1 +Bui, i ∈ Z+ , (9)

where Aα = A+αIn.

Theorem 1. [1, 4] The solution to Eq. (9) has the form

xi = Φix0 +
i−1

∑
k=0

Φi−k−1Buk , (10)

where the matrices Φi are determined by the equation

Φi+1 = Aα Φi +
i+1

∑
k=2

(−1)k+1
(

α
k

)
Φi−k+1, Φ0 = In. (11)

Using (11) for i = 1,2, . . . it is easy to show that

Φi = Ai
α − (i−1)

(
α
2

)
Ai−2

α +(i−2)
(

α
3

)
Ai−3

α − . . .

+(−1)i−1
(

α
i

)
In for i = 1,2, . . . (12)

3. Lagrange–Sylvester formula

Consider the matrix A ∈ ℜn×n with the minimal characteristic
polynomial

Ψ(λ ) = (λ −λ1)
m1(λ −λ2)

m2 . . .(λ −λr)
mr , (13)

where λ1, λ2, . . . ,λr are the eigenvalues of the matrix A and
r

∑
i=1

mi = m ≤ n. It is assumed that the function f (λ ) is well-

defined on the spectrum σA = {λ1,λ2, . . . ,λr} of the ma-
trix A, i.e.

f (λk), f (1)(λk) =
d f (λ )

dλ

∣∣∣∣
λ=λk

, . . . ,

f (mk−1)(λk) =
dmk−1 f (λ )

dλ mk−1

∣∣∣∣
λ=λk

, k = 1, . . . ,r (14)

are finite [15, 16].

In this case the matrix f (A) is well-defined and it is given by
the Lagrange–Sylvester formula [15, 16]

f (A) =
r

∑
i=1

Zi1 f (λi)+Zi2 f (1)(λi)+ . . .

+Zimi f (mi−1)(λi), (15)

where

Zi j =
mi−1

∑
k= j−1

Ψi(A)(A−λiIn)
k

(k− j+1)!( j−1)!
dk− j+1

dλ k− j+1

[
1

Ψi(λ )

]

λ=λi

, (16)

and

Ψi(λ ) =
Ψ(λ )

(λ −λi)mi
, i = 1, . . . ,r. (17)

In a particular case when the eigenvalues λ1, λ2, . . . , λn of
the matrix A are distinct (λi �= λ j, i �= j) and

φ(λ ) = Ψ(λ ) = (λ −λ1)(λ −λ2) . . .(λ −λn), (18)

then the formula (15) has the form

f (A) =
n

∑
k=1

Zk f (λk), (19)

where

Zk =
n

∏
i=1
i�=k

A−λiIn

λk −λi
. (20)

It is easy to show [16] that the matrices (16) satisfy the equal-
ities

r

∑
i=1

Zi1 = In, (21)

Zi jZkl = 0 for i �= k, (22)
Zi1Zkl = Zi j for i = 1, . . . ,r, j = 1, . . . ,m, (23)

Zk
i1 = Zi1 for k = 1,2 . . . , i = 1, . . . ,r, (24)

Zi j =
1

( j−1)!
(A− Inλi)

j−1Zi1

for 1, . . . ,r, j = 1, . . . ,m, (25)

In particular case the matrices (20) satisfy the equalities

n

∑
k=1

Zk = In, (26)

ZiZ j = 0 for i �= j, i, j = 1, . . . ,n, (27)

Zk
i = Zi for k = 1,2, . . . , i = 1, . . . ,n (28)
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4. Computation of the solutions to the state
equations of fractional linear systems

4.1. Continuous-time linear systems. In this section, the
Lagrange–Sylvester formula will be applied to compute the so-
lution (3) to Eq. (1). Let the minimal characteristic polynomial
of matrix A has the form (13). Applying the Lagrange–Sylvester
formula (15) to (3) we obtain

x(t) =
r

∑
i=1

Zi1[M
(0)
i1 (λi, t,x0)+M(0)

i2 (λi, t,u)]

+ Zi2

[
M(1)

i1 (λi, t,x0)+M(1)
i2 (λi, t,u)

]
+ . . .

+ Zimi

[
M(mi−1)

i1 (λi, t,x0)+M(mi−1)
i2 (λi, t,u)

]
, (29a)

where Zi j is defined by (16) and

M( j)
i1 (λi, t,x0) =

∞

∑
k=0

tkα

Γ(kα +1)
d jλ k

dλ j

∣∣∣∣
λ=λi

x0 ,

M( j)
i2 (λi, t,u) =

∞

∑
k=0

t∫

0

(t − τ)(k+1)α−1

Γ(kα +1)α

1.5ex] · d jλ k

dλ j

∣∣∣∣
λ=λi

Bu(τ)dτ

(29b)

for j = 0,1, . . . ,mi−1, i = 1, . . . ,r.
The solution (3) to Eq. (1) can be computed by the use of the

following procedure:

Procedure 1.
Step 1. Compute the minimal characteristic polynomial (13)

of the matrix A and its eigenvalues λ1, . . . ,λr and
m1, . . . ,mr.

Step 2. Compute the matrices Zi j defined by (16).
Step 3. Using (29a) compute the desired solution (3) to

Eq. (1).
In a particular case when the minimal characteristic polyno-

mial of the matrix A has the form (18) then the solution (3) to
Eq. (1) is given by

x(t) =
n

∑
i=1

Zk[M0(λk, t,x0)+M(λk, t,u)], (30a)

where

M0(λk, t,x0) =
∞

∑
j=0

λ j
k t jα

Γ( jα +1)
x0 ,

M(λk, t,u) =
∞

∑
j=0

t∫

0

λ j
k (t − τ)( j+1)α−1

Γ[( j+1)α]
Bu(τ)dτ,

(30b)

and Zk is defined by (20).

From (16) the following conclusion follows.

Conclusion 1. The matrices Zi j depend only on the matrix A.

Example 1. Using Procedure 1 compute the solution (3) to
Eq. (1) with the matrices

Case 1. A1 =

[
−2 1

2 −3

]
, B1 =

[
1
2

]
, 0<α < 1, (31a)

Case 2. A2 =

[
−2 1

0 −2

]
, B2 =

[
1
1

]
, 0<α < 1, (31b)

the constant input u(t) = 1 and nonzero initial conditions
x0 = [1, 2]T .

Applying Procedure 1 in Case 1 we obtain:
Step 1. The characteristic (minimal) polynomial of the matrix

A given by (31a) has the form

det [I2λ −A1] =

∣∣∣∣∣
λ +2 −1
−2 λ +3

∣∣∣∣∣

= λ 2 +5λ +4 (32)

and its eigenvalues are: λ1 =−1, λ2 =−4.
Step 2. Using (20) we compute the matrices

Z1 =
1

λ1 −λ2
[A1 − I2λ2] =

1
3

[
2 1
2 1

]
,

Z2 =
1

λ2 −λ1
[A1 − I2λ1] =

1
3

[
1 −1

−2 2

]
.

(33)

Step 3. Using (30b), the matrix B, u and the initial condition
x0 we compute

M0(λ1, t,x0) =
∞

∑
j=0

(−1) jt jα

Γ( jα +1)
x0,

M0(λ2, t,x0) =
∞

∑
j=0

(−4) jt jα

Γ( jα +1)
x0,

M(λ1, t,u) =
∞

∑
j=0

t∫

0

(−1) j(t − τ)( j+1)α−1

Γ[( j+1)α]
Bu(τ)dτ

=
∞

∑
j=0

[
1
2

]
(−1) jt( j+1)α

[( j+1)α −1] Γ[( j+1)α]
,

M(λ2, t,u) =
∞

∑
j=0

t∫

0

(−4) j(t − τ)( j+1)α−1

Γ[( j+1)α]
Bu(τ)dτ

=
∞

∑
j=0

[
1
2

]
(−4) jt( j+1)α

[( j+1)α −1]Γ[( j+1)α]
.

(34)

The desired solution is given by

x(t) = Z1 [M0(λ1, t,x0)+M(λ1, t,u)]

+Z2 [M0(λ2, t,x0)+M(λ2, t,u)] . (35)
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Similarly, applying Procedure 1 in Case 2 we obtain:

Step 1. The characteristic (minimal) polynomial of the matrix
A given by (31b) has the form

det [I2λ −A2] =

∣∣∣∣∣
λ +2 −1

0 λ +2

∣∣∣∣∣= (λ +2)2 (36)

and its eigenvalues are: λ1 = λ2 =−2.
Step 2. Using (16) we compute the matrices

Z11 =
1

∑
k=0

Ψ1(A)(A−λ1I2)
k dk

dλ k

[
1

Ψ1(λ )

]

λ=λ1

=

[
1 0
0 1

]
,

Z12 =
1

∑
k=1

Ψ1(A)(A−λ1I2)
k dk−1

dλ k−1

[
1

Ψ1(λ )

]

λ=λ1

= A−λ I2 =

[
0 1
0 0

]

(37)

since Ψ1(λ ) =
(λ −1)2

(λ −1)2 = 1.

Step 3. Using (30b), the matrix B, u and the initial condition
x0 we compute

M0(λ1, t,x0) =
∞

∑
j=0

(−2) jt jα( j+1)
Γ( jα +1)

x0 ,

M(λ1, t,u) =
∞

∑
j=0

[
1
1

] t∫

0

(−2) j−1(1−2)τ( j+1)α−1

Γ( jα +1)
dτ.

(38)

The desired solution is given by

x(t) = Z11M0(λ1, t,x0)+Z12M(λ1, t,u). (39)

4.2. Discrete-time linear systems. In this section, the Lag-
range–Sylvester formula will be applied to compute the solu-
tion (10) to Eq. (9). Let the minimal characteristic polynomial
of the matrix A have the form (13). Applying the Lagrange–
Sylvester formula (15) to (10) we obtain

xi =
r

∑
k=1

Zk1

[
M(0)

k1 (λk, i,x0)+M(0)
k2 (λk, i,ui)

]

+ Zk2

[
M(1)

k2 (λk, t,x0)+M(1)
(λk, i,u)

]
+ . . .

+Zk mk

[
M(mk−1)

k1 (λk, i,x0)+M(mk−1)
k2 (λk, i,ui)

]

for i = 1,2, . . . , (40a)

where Zk j is defined by (16) and

M( j)
k1 (λk, i,x0) =

[
λ i

k(i−1)
(

α
2

)
λ i−2

k

+ (i−2)
(

α
3

)
λ i−3

k − . . .+(−1)i−1
(

α
i

)]
x0 ,

Mk2(λ j, i,ui) =
i−1

∑
j=0

[
λ i−k−1

k − (i− k−2)
(

α
2

)
λ i−k−2

k

+ (i− k−3)
(

α
3

)
λ i−k−3

k − . . .

+ (−1)i−k−2
(

α
i− k−1

)]
Bu j

for j = 0,1, . . .mk −1, k = 1, . . . ,r .

(40b)

The solution (10) to Eq. (7) (or (9)) can be computed by the
use of the following procedure:

Procedure 2.
Step 1. Compute the minimal characteristic polynomial (13)

of the matrix A and its eigenvalues and m1, . . . ,mr.
Step 2. Compute the matrices Zi j using (16).
Step 3. Using (40a) to compute the desired solution (10) to

Eq. (7).
In a particular case when the minimal characteristic polyno-

mial of the matrix A has the form (18) then the solution (10) to
Eq. (7) is given by

xi =
n

∑
k=1

Zk[M0(λk, i,x0)+M(λk, i,u)], i = 1,2, . . . , (41a)

where

M0(λk, i,x0) =




λ i
k − (i−1)

(
α
2

)
λ i−2

k +(i−2)
(

α
3

)
λ i−3

k

+ . . .+(−1)i−1
(

α
i

)


x0 ,

M(λk, t,u) =
i−1

∑
l=0

[
λ i−l−1

k − (i− l −2)
(

α
2

)
λ i−l−3

k (41b)

+(i− l −3)
(

α
3

)
λ i−l−4

k − . . .

+ (−1)
(

α
i− l −1

)]
Bul

for i = 1,2, . . . , k = 1, . . . ,n,

Example 2. Using Procedure 2 compute the solution (10) to
Eq. (9) with the matrices

A =

[
0.1 0.2
0.05 0.1

]
, B =

[
1
1

]
, α = 0.3,

Aα = A+ Inα =

[
0.4 0.2
0.05 0.4

]
,

(42)

the constant input ui = 1 and nonzero initial conditions
x0 = [2, 2]T .
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Applying Procedure 2 we obtain:
Step 1. The characteristic (minimal) polynomial of the matrix

A given by (42) has the form

det [I2λ −Aα ] =

∣∣∣∣∣
λ −0.4 −0.2
−0.05 λ −0.4

∣∣∣∣∣
= λ 2 −0.8λ +0.15 (43)

and its eigenvalues are: λ1 = 0.3, λ2 = 0.5.
Step 2. Using (42) we compute the matrices

Z1 =
Aα − I2λ2

λ1 −λ2
=

[
0.5 −1

−0.25 0.5

]
,

Z2 =
Aα − I2λ1

λ2 −λ1
=

[
0.5 1

0.25 0.5

]
.

(44)

Step 3. Using (30b), the matrix B, ui = 1 and the initial condi-
tion x0 we compute

M0(λk, i,x0) =

[
λ i

j − (l −1)
(

α
2

)
λ l−2

k

+ (l −2)
(

α
3

)
λ l−3

k − . . .+(−1)i−1
(

α
i

)]
x0,

M(λ j, i,u) =
i−1

∑
l=0

[
λ i−l−1

j − (i− l −2)
(

α
2

)
λ i−l−3

j

+ (i− l −3)
(

α
3

)
λ i−l−4

j − . . .

+ (−1)
(

α
i− l −1

)]
Bul , j = 1,2

(45)

and the desired solution

xi = Z1 [M0(λ1, i,x0)+M(λ1, i,u)]

+ Z2 [M0(λ2, i,x0)+M(λ2, i,u)] . (46)

5. Concluding remarks

The Lagrange–Sylvester formula has been applied to the
computation of the solutions of state equations of fractional
continuous-time and discrete-time linear systems. The solutions
have been given as the finite sums of the components with their
numbers equal to the degrees of the minimal characteristic poly-
nomials of the state matrices of the systems. Procedures for
computations of the solutions have been given and illustrated
by numerical examples of continuous-time and discrete-time
fractional linear systems. The considerations can be extended

to fractional linear systems with delays and to different frac-
tional orders continuous-time and discrete-time linear systems.
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Applying Procedure 2 we obtain:
Step 1. The characteristic (minimal) polynomial of the matrix

A given by (42) has the form

det [I2λ −Aα ] =

∣∣∣∣∣
λ −0.4 −0.2
−0.05 λ −0.4

∣∣∣∣∣
= λ 2 −0.8λ +0.15 (43)

and its eigenvalues are: λ1 = 0.3, λ2 = 0.5.
Step 2. Using (42) we compute the matrices

Z1 =
Aα − I2λ2

λ1 −λ2
=

[
0.5 −1

−0.25 0.5

]
,

Z2 =
Aα − I2λ1

λ2 −λ1
=

[
0.5 1
0.25 0.5

]
.

(44)

Step 3. Using (30b), the matrix B, ui = 1 and the initial condi-
tion x0 we compute

M0(λk, i,x0) =

[
λ i

j − (l −1)
(

α
2

)
λ l−2

k

+ (l −2)
(

α
3

)
λ l−3

k − . . .+(−1)i−1
(

α
i

)]
x0,

M(λ j, i,u) =
i−1

∑
l=0

[
λ i−l−1

j − (i− l −2)
(

α
2

)
λ i−l−3

j

+ (i− l −3)
(

α
3

)
λ i−l−4

j − . . .

+ (−1)
(

α
i− l −1

)]
Bul , j = 1,2

(45)

and the desired solution

xi = Z1 [M0(λ1, i,x0)+M(λ1, i,u)]

+ Z2 [M0(λ2, i,x0)+M(λ2, i,u)] . (46)

5. Concluding remarks

The Lagrange–Sylvester formula has been applied to the
computation of the solutions of state equations of fractional
continuous-time and discrete-time linear systems. The solutions
have been given as the finite sums of the components with their
numbers equal to the degrees of the minimal characteristic poly-
nomials of the state matrices of the systems. Procedures for
computations of the solutions have been given and illustrated
by numerical examples of continuous-time and discrete-time
fractional linear systems. The considerations can be extended

to fractional linear systems with delays and to different frac-
tional orders continuous-time and discrete-time linear systems.
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Applying Procedure 2 we obtain:
Step 1. The characteristic (minimal) polynomial of the matrix

A given by (42) has the form

det [I2λ −Aα ] =

∣∣∣∣∣
λ −0.4 −0.2
−0.05 λ −0.4

∣∣∣∣∣
= λ 2 −0.8λ +0.15 (43)

and its eigenvalues are: λ1 = 0.3, λ2 = 0.5.
Step 2. Using (42) we compute the matrices

Z1 =
Aα − I2λ2

λ1 −λ2
=

[
0.5 −1

−0.25 0.5

]
,

Z2 =
Aα − I2λ1

λ2 −λ1
=

[
0.5 1
0.25 0.5

]
.

(44)

Step 3. Using (30b), the matrix B, ui = 1 and the initial condi-
tion x0 we compute

M0(λk, i,x0) =

[
λ i

j − (l −1)
(

α
2
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k
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(45)

and the desired solution

xi = Z1 [M0(λ1, i,x0)+M(λ1, i,u)]

+ Z2 [M0(λ2, i,x0)+M(λ2, i,u)] . (46)

5. Concluding remarks

The Lagrange–Sylvester formula has been applied to the
computation of the solutions of state equations of fractional
continuous-time and discrete-time linear systems. The solutions
have been given as the finite sums of the components with their
numbers equal to the degrees of the minimal characteristic poly-
nomials of the state matrices of the systems. Procedures for
computations of the solutions have been given and illustrated
by numerical examples of continuous-time and discrete-time
fractional linear systems. The considerations can be extended

to fractional linear systems with delays and to different frac-
tional orders continuous-time and discrete-time linear systems.
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