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Abstract. The paper discusses service load measurements (weight of construction materials, small equipment and workers) conducted on 120 
frame scaffoldings all over Poland in 2016‒2018. Despite the fact that the scaffolding should ensure the safety of its users, most accidents on 
construction sites are caused by fall from height. Service loads are one of the elements affecting the safety of scaffolding use. On the basis 
of the studies, maximum load on one platform and maximum load on a vertical scaffolding module for one day were obtained. They were 
treated as the random variables of the maximum values. Histograms and probability density functions were determined for these variables. The 
selection of a probability distribution consisted in the selection of a probability density function by means of fitting curves to the study result 
histograms using the method of least squares. The analysis was performed for distribution Weibull and Gumbel probability density functions 
which are applied for maximum values of random variables. Parameters of these functions can be used for the purposes of the reliability anal-
ysis to calibrate partial safety factors in simulation of service load during the scaffolding failure risk assessment. Besides, the probability of 
not exceeding the standard loads provided for frame scaffoldings for 120 weeks was established on the aforementioned basis. The results of 
the presented research show that in Poland there is a high probability of exceeding the permissible service loads in one year and thus there is 
a high risk of scaffolding damage.
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Abstract. The paper discusses service load measurements (weight of construction materials, small equipment and workers) conducted on 120
frame scaffoldings all over Poland in 2016–2018. Despite the fact that the scaffolding should ensure the safety of its users, most accidents on
construction sites are caused by fall from height. Service loads are one of the elements affecting the safety of scaffolding use. On the basis of the
studies, maximum load on one platform and maximum load on a vertical scaffolding module for one day were obtained. They were treated as the
random variables of the maximum values. Histograms and probability density functions were determined for these variables. The selection of
a probability distribution consisted in the selection of a probability density function by means of fitting curves to the study result histograms using
the method of least squares. The analysis was performed for distribution Weibull and Gumbel probability density functions which are applied for
maximum values of random variables. Parameters of these functions can be used for the purposes of the reliability analysis to calibrate partial
safety factors in simulation of service load during the scaffolding failure risk assessment. Besides, the probability of not exceeding the standard
loads provided for frame scaffoldings for 120 weeks was established on the aforementioned basis. The results of the presented research show that
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1. Introduction

Service (usage) loads, including the weight of construction ma-
terials, small equipment and users, are the principal loads of
construction scaffoldings. Another important load is the action
of wind. Depending on the location, service period and purpose,
scaffolding can also be loaded with temperature, snow, ice, or
inertia forces induced by the movement of scaffolding or other
dynamic actions.

Environmental loads are random processes, both in time and
space. The statistics of the wind velocity field and methods of
selecting them have been described in: [1–3], among others.
Authors of [1] and [3] selected the Weibull probability density
distribution with regard to the maximum wind velocity, while
authors of [2] suggested the Gumbel distribution for the pur-
poses of the distribution of maximum wind velocity values.
On the basis of such distributions, a standard wind velocity is
determined. The value is determined in such a way, that the
wind of a greater velocity than the standard one occurs once
in 50 years. Other characteristics of wind are the power spec-
tral density (PSD) and the correlation function describing the

∗e-mail: e.blazik@pollub.pl

Manuscript submitted 20XX-XX-XX, initially accepted for publication
20XX-XX-XX, published in ZZZZZZZZ 2020.

wind velocity changes at one point in the domain of frequency
and time. In the case of the wind action, the Davenport power
spectral density is used most often, however, the literature men-
tions other functions describing power spectral densities, such
as Harris’s, Lumley’s and Panofsky’s, or Shiotani’s. In the case
of such standards, functions are used to determine the number
of the dynamic load cycles of a structure. Since the wind veloc-
ity creates a field of random processes in a space, a subsequent
set of the wind velocity characteristics contains autocorrelation
and a density function. The functions in question are used for
the purposes of simulation of the wind velocity field in time and
space respectively by means of the WAWS (Weighted Ampli-
tude Wave Superposition) or ARMA (Auto-Regressive Moving
Average) methods.

In the literature one can also find statistical analyses of snow
load. Authors of the paper [4] conducted a statistical analysis
of the thickness of the snow layer in Poland. On that basis they
selected the Gumbel distribution for the purposes of the snow
load density distribution. Similar analyses were described for
Italy in [5] and for Switzerland in [6]. The latter draws focus
on the fact that the Gumbel distribution cannot be applied in
a description of the snow layer thickness in mountain regions.
As in the case of wind, the distributions of the maximum snow
load values are used to determine standard values.

Nowadays, there are not too many publications on statistical
description of service loads available. Statistical load descrip-
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tion is indispensable as far as the structural reliability analysis
is concerned. For this reason, publications of 1970s and 1980s
contained information about the service load probability distri-
bution with regard to all kinds of structures. An exhaustive list
of the probability distribution of all kinds of loads can be found
in [7]. The data was compiled on the basis of the paper [8],
continued in [9], [10]. According to [7], the Gumbel distribu-
tion is the maximum service load probability distribution. In re-
cent years, no publication has seemed to contain any results of
measurements of static service loads. Reliability analyses are
usually based on standard recommendations available, for ex-
ample, in [11] and [12]. Recent service load studies mainly re-
gard dynamic loads, such as the passage of vehicles on bridges
(e.g., [13–16]), loads during earthquakes (e.g., [17,18]) and ex-
plosions (e.g., [19, 20]).

Scaffolding service loads, both static and dynamic ones, have
not been statistically analyzed yet. The standards EN 12811-
1 [21], AS/NZS 1576.1 [22] and 29 CFR 1926 [23] specify re-
strictions on the service load, for example, EN 12811-1 [21]
contains load classes and related maximum platform load val-
ues. In exceptional situations, remarks regarding maximum per-
missible (characteristic) load – different from the standard one
– are attached to the technical documentation during the design
process. Therefore, one could assume that the topic of scaf-
folding loads is closed. Nevertheless, the studies conducted by
the authors, under the project PBS3/A2/19/2015 “Model of the
risk assessment of construction disasters, accidents and danger-
ous occurrences at the workplace using construction scaffold-
ing”, have shown that the common use of scaffolding results
in the fact that such structures are often loaded without taking
into consideration any existing recommendations, while service
loads should be considered a random process in the scaffolding
reliability analysis.

The studies under the project PBS3/A2/19/2015 were con-
ducted on 120 scaffoldings all over Poland. The following tasks
were performed (comp. [24–30]) as part of the studies during
one working week: scaffolding inventories (including detailed
geodesic measurements), damage inventories, service load in-
ventories, wind action measurements, free vibration measure-
ments, measurements of the scaffoldings vibration resulting
from the operation of construction machines, measurements of
forces in supports, bearing capacity studies, the load-bearing
capacity of anchors, measurements of temperature, pressure,
sound pressure levels, lighting, as well as surveys on general
information regarding scaffolding and its users, an analysis of
the compliance with health and safety regulations, a construc-
tion site organisation analysis, scaffolding user surveys, mea-
surements of the user’s energy expenditure and changes in their
other physiological parameters when working on a scaffolding.
On the basis of the results of the studies a potential accident risk
assessment model was constructed, the elements of which were
described in [25–27,30,31]. The results of measurements of ser-
vice loads were used in the aforementioned model to assess the
probability of a scaffolding failure during one working week at
the maximum load determined during the measurements. The
potential of the studies in question is much greater, e.g., they
may be useful for the analysis of the reliability and the usage

safety assessment of a structure. This requires maximum load
probability distributions in relation to one platform, as well as
a total maximum load on a vertical scaffolding module – and
this paper is precisely focused on this problem.

2. Description of research methods

The statistical analysis of scaffolding service load required an
inventory of scaffolding loads. The studies consisted of the
observation of a single scaffolding for five consecutive days
which constitute a working week in Poland. Each day, three
study rounds were performed at the following times: 1st round
– 8.00–10.00, 2nd round – 11.00–13.00, 3rd round – 14.00–
16.00. In each study round, load symbols were put on the scaf-
folding scheme, on subsequent loaded platforms. If there was
a worker on a platform, an arrow accompanied by the letter C
was put there. If there were building materials – an arrow with
an estimate material mass in kilograms. Example diagrams with
inventory results are shown in Fig. 1. In order to determine
weights, the following principles were considered:
• It is assumed that an average weight of the human body is

78 kg, but a construction worker usually wears heavy work
clothes required by health and safety regulations, as well
as uses tools, therefore each arrow with the symbol C was
assigned the weight of 1.0 kN. It is also recommendation
Australian/New Zealand standard AS/ZS 157.1 cite22.

• The weight of building materials was an estimate, and for
this reason when determining it, an approximate value of
the gravitational acceleration equaling 10.0 m/s2 was as-
sumed.

Subsequently, on the basis of the study reports, the following
was determined for each vertical module j of scaffolding k on
particular i-th day:
• maximum load value from among the loads acting on the

platforms in j-module Qi jk,
• maximum value of the load acting at the same moment and

summed up for all the platforms in j-vertical module Pi jk,
• maximum value of a uniformly distributed load on a plat-

form in the j-module, calculated from the following equa-
tion:

qi jk =
Qi jk

l j
, (1)

• maximum value of a uniformly distributed load, summed up
for all platforms of the j-vertical module, calculated from
the following equation:

pi jk =
Pi jk

l j
, (2)

where: the vertical module is a fragment of the scaffolding be-
tween adjacent frames, l j – the length of the j-platform and,
simultaneously, the length of the j-module, which equals the
distance between the frame planes.

The selection of the maximum values of the platform load
in the j-module consisted in selecting the highest value out of
three inventory reports from three measuring rounds on a given
day. For example (Fig. 1), in 1st round no load was determined
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Fig. 1. The view of the scaffolding and sheets of load inventory results on 5th day of the mesurement

in the second module between axes 2–3, in 2nd round – the
load of 1.0 kN was determined, and in 3rd round – the max-
imum platform load amounted to 1.15 kN. Hence, the maxi-

mum platform value for the module in question amounted to
Q52k = 1.15 kN. When determining the maximum load of the
whole vertical module, load values obtained in each inventory
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Since there are not enough data to determine the probability
distribution of random variables pei and qei, according to [32]
probability distribution for random variables determined to be
maximum values in a set, are determined as limited distribu-
tions. On the other hand, the limit form of the maximum value
probability distribution is described by means of one of the
Gumbel, Weibull or Frechet distributions. If it is assumed that
random variables pei and qei are described by means of one
of the following distributions: normal, exponential, log-normal
or steady-state, then the probability distribution of their max-
imum values is described by the Gumbel or Weibull distribu-
tions. These two distributions are also recommended in the pa-
pers [7,33] and [34], as distributions of maximum structure load
values, and for this reason the formula for these two types of
distribution shall be determined further.

Since there will be references to distribution function param-
eters later in the paper, for the clarity of the text, below are
formulas for these distributions. The Gumbel distribution (the
Fisher–Tippett type I distribution) of the maximum values of
random variable x is described by the following formula:

f (x) =
1
�

δ
e

x−
�
λ

�
δ

−e
x−

�
λ

�
δ

(7)

and the cumulative distribution function is described by the fol-
lowing formula:

G(x) = e−e
− x−

�
λ

�
δ

, (8)

where:
�

δ
2
=

6s2
x

π2 , (9)

�

λ = x−0.5772156649
�

δ . (10)

While the Weibull distribution (the Fisher–Tippett type III
distribution) of the maximum values of random variable x is
described by the following formula:

f (x) =
β
δ̃

(
x− λ̃

δ̃

)β−1

e−
(

x−λ̃
δ̃

)β

(11)

and the cumulative distribution function of the distribution:

G(x) = 1− e−
(

x−λ̃
δ̃

)β

, (12)

where:

δ̃ 2 =
s2

x

Γ
(

1+
2
β

)
−
[

Γ
(

1+
1
β

)]2 , (13)

λ̃ = x− δ̃Γ
(

1+
2
β

)
, (14)

Euler’s function

Γ(y) =
∞∫

0

ty−1e−t dt. (15)

In Eqs. (7)–(15) parameter x denotes the average value of
random variable x, and sx signifies the standard deviation of
random variable x.

The formulas describing distribution functions are simpler
and for this reason in most cases the distribution selection con-
sists in approximation of a cumulative distribution function on
the basis of study results (comp. [4, 35]). Here, the selection of
a probability distribution shall consist in the selection of a prob-
ability density function by means of fitting curves to the study
result histograms using the method of least squares. The first
step is the selection of the length of a class interval. When
intervals are too short, graphs “shift” from zero to high val-
ues. With an increase in the length of an interval, graphs be-
come smoother, and at the interval lengths of 0.20 kN/m and
0.25 kN/m can form a basis for approximation of the service
load probability distributions. Figures 2 and 3 show the his-
tograms of random variables, respectively, qe and pe at these
interval lengths.

Fig. 2. Histograms of the service load tests for single platforms

As stated before, distribution equations are selected by means
of the method of least squares. An illustration of the process
with regard to single platform loads is show in Fig. 4. Fig-
ure 4a presents a vertical bar graph based on reduced quan-
tity histograms by diving them by the length of an interval
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round are summed up and then the maximum value is selected.
For example (Fig. 1), with regard to 2nd module, in 1st round no
load was determined, in 2nd round – the load of 1.0 kN was
determined, and in 3rd round – the maximum platform load
amounted to 1.15 kN+1.00 kN = 2.15 kN, i.e., the maximum
load of the whole vertical module was P52k = 2.15 kN.

The studies are error-burdened, as scaffoldings were often
made available only when the contractor decided the scaffold-
ing in question would not be fully used. To eliminate this error,
the days when workers were absent from scaffoldings were ig-
nored. On the other hand, if a worker was at his workplace, they
must have got there. For this reason, from the module with lad-
ders to workplaces the load value of 1.0 kN as the sum of loads
resulting from the weight of the human body and tools and ma-
terial which might have been carried was inserted. The lists for
the scaffolding in Fig. 1, composed of four vertical modules,
were put in Tables 1–2. The columns containing the results of
the service load inventory concerning the module with commu-
nication are bolded.

Table 1
List of the maximum loads of single platforms Qi jk

Qi jk [kN] –
maximum load
of the platform

Module
width

3.07 m 3.07 m 3.07 m 3.07 m

Day
Module j 1 2 3 4

Day i

Monday 1 0.0 2.00 2.10 1.00

Tuesday 2 0.0 1.15 1.00 1.00

Wednesday 3 0.0 2.00 1.00 1.00

Thursday 4 0.0 2.03 2.00 1.00

Friday 5 0.0 1.15 1.15 1.00

Table 2
List of maximum loads in a single vertical module of the scaffolding

Pi jk

Pi jk [kN] – sum of
maximum loads
of the platform

in vertical module

Module
width

3.07 m 3.07 m 3.07 m 3.07 m

Day
Module j 1 2 3 4

Day i

Monday 1 0.0 2.00 2.10 1.00

Tuesday 2 0.0 1.15 1.00 1.00

Wednesday 3 0.0 2.00 1.00 1.00

Thursday 4 0.0 2.03 2.00 1.00

Friday 5 0.0 2.15 1.15 1.00

Service load measurements were performed on 120 frame
scaffoldings all over Poland. In respect to each scaffolding a ta-

ble containing a list of the maximum values of the analysed pa-
rameters was prepared. It was assumed that every number in
a table corresponds to one sample. As a result, 3350 values of
random variables for the maximum platform load values, and
3350 values of random variables for the maximum values of
vertical scaffolding module loads were obtained.

3. Statistical analysis

3.1. Basic statistical characteristics. Random variables qe
and pe were determined in the following way:

qe = qi jk = max (qe1,qe2,qe3, . . . ,qen) , (3)

pe = pi jk = max (pe1, pe2, pe3, . . . , pen) , (4)

where: qei are random variables describing loads on the subse-
quent platforms of a given module on a given day, sampled from
the population of the cumulative distribution function Fq(xq),
pei are random variables describing the sum of platform loads
in a given vertical module on a given day, sampled from the
population of the cumulative distribution function Fp(xp). Ta-
ble 3 presents the basic characteristics of random variables qe
and pe.

Table 3
Basic characteristics of variables qe and pe

Statistical characteristics
Random variable

qe pe

Maximum value [kN/m] 3.33 3.33

Number of observations 3350 3350

Average value [kN/m] 0.31 0.35

Standard deviation [kN/m] 0.32 0.37

Skewness coefficient [/] 3.04 2.64

3.2. Selection of probability distribution function. Quoting
from Castillo et al. [32], the cumulative distribution functions
of the random variables described by means of Eqs. (3) and (4),
can be determined using the following equation:

Gq (xq) = P(qe < xq) =

= P(qe1 < xq) ·P(qe2 < xq) · . . . ·P(qen < xq) =

=
n

∏
i=1

P(qei < xq) = Fn
q (xq) , (5)

Gp (xp) = P(pe < xp) =

= P(pe1 < xp) ·P(pe2 < xp) · . . . ·P(pen < xp) =

=
n

∏
i=1

P(pei < xp) = Fn
p (xp) . (6)
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were put in Tables 1–2. The columns containing the results of
the service load inventory concerning the module with commu-
nication are bolded.

Table 1
List of the maximum loads of single platforms Qi jk

Qi jk [kN] –
maximum load
of the platform

Module
width

3.07 m 3.07 m 3.07 m 3.07 m

Day
Module j 1 2 3 4

Day i

Monday 1 0.0 2.00 2.10 1.00

Tuesday 2 0.0 1.15 1.00 1.00

Wednesday 3 0.0 2.00 1.00 1.00

Thursday 4 0.0 2.03 2.00 1.00

Friday 5 0.0 1.15 1.15 1.00

Table 2
List of maximum loads in a single vertical module of the scaffolding

Pi jk

Pi jk [kN] – sum of
maximum loads
of the platform

in vertical module

Module
width

3.07 m 3.07 m 3.07 m 3.07 m

Day
Module j 1 2 3 4

Day i

Monday 1 0.0 2.00 2.10 1.00

Tuesday 2 0.0 1.15 1.00 1.00

Wednesday 3 0.0 2.00 1.00 1.00

Thursday 4 0.0 2.03 2.00 1.00

Friday 5 0.0 2.15 1.15 1.00

Service load measurements were performed on 120 frame
scaffoldings all over Poland. In respect to each scaffolding a ta-

ble containing a list of the maximum values of the analysed pa-
rameters was prepared. It was assumed that every number in
a table corresponds to one sample. As a result, 3350 values of
random variables for the maximum platform load values, and
3350 values of random variables for the maximum values of
vertical scaffolding module loads were obtained.

3. Statistical analysis

3.1. Basic statistical characteristics. Random variables qe
and pe were determined in the following way:

qe = qi jk = max (qe1,qe2,qe3, . . . ,qen) , (3)

pe = pi jk = max (pe1, pe2, pe3, . . . , pen) , (4)

where: qei are random variables describing loads on the subse-
quent platforms of a given module on a given day, sampled from
the population of the cumulative distribution function Fq(xq),
pei are random variables describing the sum of platform loads
in a given vertical module on a given day, sampled from the
population of the cumulative distribution function Fp(xp). Ta-
ble 3 presents the basic characteristics of random variables qe
and pe.

Table 3
Basic characteristics of variables qe and pe

Statistical characteristics
Random variable

qe pe

Maximum value [kN/m] 3.33 3.33

Number of observations 3350 3350

Average value [kN/m] 0.31 0.35

Standard deviation [kN/m] 0.32 0.37

Skewness coefficient [/] 3.04 2.64

3.2. Selection of probability distribution function. Quoting
from Castillo et al. [32], the cumulative distribution functions
of the random variables described by means of Eqs. (3) and (4),
can be determined using the following equation:

Gq (xq) = P(qe < xq) =

= P(qe1 < xq) ·P(qe2 < xq) · . . . ·P(qen < xq) =

=
n

∏
i=1

P(qei < xq) = Fn
q (xq) , (5)

Gp (xp) = P(pe < xp) =

= P(pe1 < xp) ·P(pe2 < xp) · . . . ·P(pen < xp) =

=
n

∏
i=1

P(pei < xp) = Fn
p (xp) . (6)
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round are summed up and then the maximum value is selected.
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must have got there. For this reason, from the module with lad-
ders to workplaces the load value of 1.0 kN as the sum of loads
resulting from the weight of the human body and tools and ma-
terial which might have been carried was inserted. The lists for
the scaffolding in Fig. 1, composed of four vertical modules,
were put in Tables 1–2. The columns containing the results of
the service load inventory concerning the module with commu-
nication are bolded.
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List of the maximum loads of single platforms Qi jk

Qi jk [kN] –
maximum load
of the platform

Module
width

3.07 m 3.07 m 3.07 m 3.07 m

Day
Module j 1 2 3 4

Day i

Monday 1 0.0 2.00 2.10 1.00

Tuesday 2 0.0 1.15 1.00 1.00

Wednesday 3 0.0 2.00 1.00 1.00

Thursday 4 0.0 2.03 2.00 1.00

Friday 5 0.0 1.15 1.15 1.00
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List of maximum loads in a single vertical module of the scaffolding

Pi jk

Pi jk [kN] – sum of
maximum loads
of the platform

in vertical module
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Monday 1 0.0 2.00 2.10 1.00

Tuesday 2 0.0 1.15 1.00 1.00

Wednesday 3 0.0 2.00 1.00 1.00

Thursday 4 0.0 2.03 2.00 1.00

Friday 5 0.0 2.15 1.15 1.00

Service load measurements were performed on 120 frame
scaffoldings all over Poland. In respect to each scaffolding a ta-

ble containing a list of the maximum values of the analysed pa-
rameters was prepared. It was assumed that every number in
a table corresponds to one sample. As a result, 3350 values of
random variables for the maximum platform load values, and
3350 values of random variables for the maximum values of
vertical scaffolding module loads were obtained.

3. Statistical analysis

3.1. Basic statistical characteristics. Random variables qe
and pe were determined in the following way:

qe = qi jk = max (qe1,qe2,qe3, . . . ,qen) , (3)

pe = pi jk = max (pe1, pe2, pe3, . . . , pen) , (4)

where: qei are random variables describing loads on the subse-
quent platforms of a given module on a given day, sampled from
the population of the cumulative distribution function Fq(xq),
pei are random variables describing the sum of platform loads
in a given vertical module on a given day, sampled from the
population of the cumulative distribution function Fp(xp). Ta-
ble 3 presents the basic characteristics of random variables qe
and pe.

Table 3
Basic characteristics of variables qe and pe

Statistical characteristics
Random variable

qe pe

Maximum value [kN/m] 3.33 3.33

Number of observations 3350 3350

Average value [kN/m] 0.31 0.35

Standard deviation [kN/m] 0.32 0.37

Skewness coefficient [/] 3.04 2.64

3.2. Selection of probability distribution function. Quoting
from Castillo et al. [32], the cumulative distribution functions
of the random variables described by means of Eqs. (3) and (4),
can be determined using the following equation:

Gq (xq) = P(qe < xq) =

= P(qe1 < xq) ·P(qe2 < xq) · . . . ·P(qen < xq) =

=
n

∏
i=1

P(qei < xq) = Fn
q (xq) , (5)

Gp (xp) = P(pe < xp) =
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Table 1 
List of the maximum loads of single platforms Qi jk

Qi jk [kN] – maximum load of 
the platform

Module width

3.07 m 3.07 m 3.07 m 3.07 m

Day Day i
Module j

1 2 3 4

Monday 1 0.0 2.00 2.10 1.00

Tuesday 2 0.0 1.15 1.00 1.00

Wednesday 3 0.0 2.00 1.00 1.00

Thursday 4 0.0 2.03 2.00 1.00

Friday 5 0.0 1.15 1.15 1.00

Table 2 
List of maximum loads in a single vertical module  

of the scaffolding Pi jk

Pi jk [kN] – sum of maximum 
loads of the platform in 

vertical module

Module width

3.07 m 3.07 m 3.07 m 3.07 m

Day Day i
Module j

1 2 3 4

Monday 1 0.0 2.00 2.10 1.00

Tuesday 2 0.0 1.15 1.00 1.00

Wednesday 3 0.0 2.00 1.00 1.00

Thursday 4 0.0 2.03 2.00 1.00

Friday 5 0.0 2.15 1.15 1.00
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Since there are not enough data to determine the probability
distribution of random variables pei and qei, according to [32]
probability distribution for random variables determined to be
maximum values in a set, are determined as limited distribu-
tions. On the other hand, the limit form of the maximum value
probability distribution is described by means of one of the
Gumbel, Weibull or Frechet distributions. If it is assumed that
random variables pei and qei are described by means of one
of the following distributions: normal, exponential, log-normal
or steady-state, then the probability distribution of their max-
imum values is described by the Gumbel or Weibull distribu-
tions. These two distributions are also recommended in the pa-
pers [7,33] and [34], as distributions of maximum structure load
values, and for this reason the formula for these two types of
distribution shall be determined further.

Since there will be references to distribution function param-
eters later in the paper, for the clarity of the text, below are
formulas for these distributions. The Gumbel distribution (the
Fisher–Tippett type I distribution) of the maximum values of
random variable x is described by the following formula:

f (x) =
1
�

δ
e

x−
�
λ

�
δ

−e
x−

�
λ

�
δ

(7)

and the cumulative distribution function is described by the fol-
lowing formula:

G(x) = e−e
− x−

�
λ

�
δ

, (8)

where:
�

δ
2
=

6s2
x

π2 , (9)

�

λ = x−0.5772156649
�

δ . (10)

While the Weibull distribution (the Fisher–Tippett type III
distribution) of the maximum values of random variable x is
described by the following formula:

f (x) =
β
δ̃

(
x− λ̃

δ̃

)β−1

e−
(

x−λ̃
δ̃

)β

(11)

and the cumulative distribution function of the distribution:

G(x) = 1− e−
(

x−λ̃
δ̃

)β

, (12)

where:

δ̃ 2 =
s2

x

Γ
(

1+
2
β

)
−
[

Γ
(

1+
1
β

)]2 , (13)

λ̃ = x− δ̃Γ
(

1+
2
β

)
, (14)

Euler’s function

Γ(y) =
∞∫

0

ty−1e−t dt. (15)

In Eqs. (7)–(15) parameter x denotes the average value of
random variable x, and sx signifies the standard deviation of
random variable x.

The formulas describing distribution functions are simpler
and for this reason in most cases the distribution selection con-
sists in approximation of a cumulative distribution function on
the basis of study results (comp. [4, 35]). Here, the selection of
a probability distribution shall consist in the selection of a prob-
ability density function by means of fitting curves to the study
result histograms using the method of least squares. The first
step is the selection of the length of a class interval. When
intervals are too short, graphs “shift” from zero to high val-
ues. With an increase in the length of an interval, graphs be-
come smoother, and at the interval lengths of 0.20 kN/m and
0.25 kN/m can form a basis for approximation of the service
load probability distributions. Figures 2 and 3 show the his-
tograms of random variables, respectively, qe and pe at these
interval lengths.

Fig. 2. Histograms of the service load tests for single platforms

As stated before, distribution equations are selected by means
of the method of least squares. An illustration of the process
with regard to single platform loads is show in Fig. 4. Fig-
ure 4a presents a vertical bar graph based on reduced quan-
tity histograms by diving them by the length of an interval

Bull. Pol. Ac.: Tech. 69(1) 2021 5
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Fig. 3. Histograms of the service load tests for vertical scaffolding
modules

∆qe = 0.2 kN/m. The points of the values of gi at the vortices
of the graph constitute the basis for fitting a graph of the equa-
tion describing a probability distribution. In this case it is the
Gumbel distribution described by the Eq. (7). In the drawing in
question also the points of the values of function fi, determined
in relation to the midpoints of particular class intervals i, were
marked. Figure 4b shows the distribution of subsequent points
in relation to variable xi, further referred to as fitting points, of
the coordinates (gi, fi) around the straight line y = x+b. Square
of Pearson’s coefficient R2 was calculated for each result of the
distribution selection from the following formula (comp. [36]):

R2 =

[
n

∑
i=1

(gi −g)
(

fi − f
)]2

n

∑
i=1

(gi −g)2
n

∑
i=1

(
fi − f

)2
, (16)

where: fi and gi – the values of the sought function and the val-
ues obtained in the studies for variablexi, f and g – the average
values of functions f and g for set of points n. If the distri-
bution equation considered the study points located exactly on
the curve, the fitting points would be precisely located on the
straight line y = x+ b, and the value of coefficient R2 would
equal 1.0. The further the fitting points are located from the
straight line y = x+b, the more the value of the coefficient R2

decreases, and the fitting is less precise and reliable.

a)

b)

Fig. 4. The Gumbel distribution equation selection: a) probability dis-
tribution, b) the system of the points of the coordinates (gi, fi) in rela-

tion to the straight line of the equation y = x+b

The values of the function parameters are listed in Table 4
and 5. The values of coefficients R2 are quite high in all the
cases. Also, the values of the average random variables calcu-
lated based on curves approximate the values obtained in the
studies. Only in one case the relative error exceeds the value of
5% and equals 9%. The values of standard deviations are bur-
dened with the relative error to a higher degree – in one case it
reaches 54% and concerns the fitting of the probability distri-
bution functions with regard to the interval of 0.25 kN/m. The
values of standard deviations are less error-burdened at the class
interval length of 0.20 kN/m than the ones determined for the
interval of 0.25 kN/m, therefore, the functions fitting the his-
tograms at the class interval length of 0.2 kN/m were deemed
the final study result. Moreover, comparing the values of the
standard deviations obtained for different distributions, it is ob-
vious that the values of the standard deviations for the Gumbel
distribution with the error of 19% for variable qe and 24% for
variable pe are closer to the values obtained in the studies. Ad-
ditionally, the Gumbel distribution is a limiting distribution for
random variables characterised by more often occurring distri-
butions. The mentioned results are arguments in favour of the
Gumbel distribution as better describing the maximum service
load distribution of scaffolding. Similar conclusions regarding
the type of a probability distribution function for maximum
values of service loads during construction were given in pa-
per [37].
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Table 4
Results of the selection of the Gumbel probability distribution coefficients

Random Interval length ∆qe
�

λ
�

δ R2 xd sxd Error Error

variable [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]
|xd − x|

x
|sxd − sx|

sx

qe
0.20 0.2033 0.2019 0.9799 0.3198 0.2589 0.0316 0.1909

0.25 0.2502 0.1161 0.9977 0.3172 0.1489 0.0232 0.5347

pe
0.20 0.1929 0.2178 0.9829 0.3187 0.2794 0.0894 0.2449

0.25 0.2568 0.1357 0.9919 0.3351 0.1740 0.0426 0.5297

Table 5
Results of the selection of the Weibull probability distribution coefficients

Random Interval length ∆qe
�

λ
�

δ β R2 xd sxd Error Error

variable [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]
|xd − x|

x
|sxd − sx|

sx

qe
0.20 –0.0844 0.4472 1.8780 0.9866 0.3130 0.2180 0.0097 0.3188

0.25 –0.0415 0.4003 2.1363 0.9598 0.3127 0.1759 0.0087 0.4503

pe
0.20 –0.0875 0.4974 2.0150 0.9533 0.3536 0.2277 0.0103 0.3846

0.25 –0.0533 0.4595 2.2098 0.9665 0.3535 0.1955 0.0100 0.4716

3.3. Summary of the study results. The results of the selec-
tion of probability density functions are Gumbel and Weibull
distributions which are shown in Fig. 5. An example application
of the results is in determination of the probability of exceeding

a)

b)

Fig. 5. Probability density distributions of scaffolding service loads for
120 scaffolds during one weeks of their operation: a) of single plat-

forms, b) of vertical scaffolding modules

service load according to three standards: European EN 12811-
1 [21], Australian and New Zealand AS/NZS 1576.1 [22], and
American 29 CFR 1926 [23]. This information is important,
amongst others, in the process of designing scaffoldings using
the methods of structure reliability and failure risk assessment.
A list of permissible service loads for platforms for the most
commonly used scaffoldings according to the above-mentioned
standards is given in Table 6.

The probability that a platform or entire scaffolding vertical
module load do not exceed permissible service load is deter-
mined as the values of the cumulative distribution function for
this load and, also, located in Table 6. In the calculations the
cumulative distribution functions described by the formulas of
the Gumbel distribution (8) and the Weibull distribution (12)
were used. The results were obtained on the basis of loads in-
ventories performed during one working week (usually 5 days)
for 120 scaffoldings. As proven in paper [37], the probability
of occurrence of the maximum service load and thus not ex-
ceeding the permissible service load depends on the duration of
construction. For the k-scaffolding this will mean the time of
its exploitation Tsk, which in this paper is calculated in weeks.
The second parameter, which influences the probability of not
exceeding the permissible values of the service load on con-
struction sites in the given region, is the number of scaffolding
Ns. The formula, describing the probability of not exceeding the
limit value and taking into account both parameters, will take
the form:

Pac (Ns) =
Ns

∏
k=1

P̃
Tsk
120 , (17)

where P̃ – the probability of not exceeding the limit values for
120 scaffolding for the service life of each scaffolding equal to
one working week.
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Table 4
Results of the selection of the Gumbel probability distribution coefficients
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λ
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δ R2 xd sxd Error Error

variable [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]
|xd − x|

x
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Table 5
Results of the selection of the Weibull probability distribution coefficients

Random Interval length ∆qe
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λ
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δ β R2 xd sxd Error Error
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x
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0.20 –0.0875 0.4974 2.0150 0.9533 0.3536 0.2277 0.0103 0.3846

0.25 –0.0533 0.4595 2.2098 0.9665 0.3535 0.1955 0.0100 0.4716

3.3. Summary of the study results. The results of the selec-
tion of probability density functions are Gumbel and Weibull
distributions which are shown in Fig. 5. An example application
of the results is in determination of the probability of exceeding

a)

b)

Fig. 5. Probability density distributions of scaffolding service loads for
120 scaffolds during one weeks of their operation: a) of single plat-

forms, b) of vertical scaffolding modules

service load according to three standards: European EN 12811-
1 [21], Australian and New Zealand AS/NZS 1576.1 [22], and
American 29 CFR 1926 [23]. This information is important,
amongst others, in the process of designing scaffoldings using
the methods of structure reliability and failure risk assessment.
A list of permissible service loads for platforms for the most
commonly used scaffoldings according to the above-mentioned
standards is given in Table 6.

The probability that a platform or entire scaffolding vertical
module load do not exceed permissible service load is deter-
mined as the values of the cumulative distribution function for
this load and, also, located in Table 6. In the calculations the
cumulative distribution functions described by the formulas of
the Gumbel distribution (8) and the Weibull distribution (12)
were used. The results were obtained on the basis of loads in-
ventories performed during one working week (usually 5 days)
for 120 scaffoldings. As proven in paper [37], the probability
of occurrence of the maximum service load and thus not ex-
ceeding the permissible service load depends on the duration of
construction. For the k-scaffolding this will mean the time of
its exploitation Tsk, which in this paper is calculated in weeks.
The second parameter, which influences the probability of not
exceeding the permissible values of the service load on con-
struction sites in the given region, is the number of scaffolding
Ns. The formula, describing the probability of not exceeding the
limit value and taking into account both parameters, will take
the form:

Pac (Ns) =
Ns

∏
k=1

P̃
Tsk
120 , (17)

where P̃ – the probability of not exceeding the limit values for
120 scaffolding for the service life of each scaffolding equal to
one working week.
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Table 6
The probability of not exceeding the permissible service load on 120 scaffoldings during one working week

The name of standard EN 12811-1 AS/NZS 1576.1 29 CFR 1926

The name of a load category 3rd class medium duty medium duty

Permissible service load 2.0 kN/m2 4.4 kN/platform 2.39 kN/m2

Permissible service load per meter of a platform length
for width equals 0.7m 1.4 kN/m 1.68 kN/m

for length equals 3.0m 1.47 kN/m

Platform load
Gumbel distribution 0.99733977 0.99811854 0.99933476

Weibull distribution 0.99992646 0.99996889 0.99999809

Vertical module load
Gumbel distribution 0.99608993 0.99716314 0.99891737

Weibull distribution 0.99988739 0.99995342 0.99999742

Figure 6 shows the probability of exceeding the permissi-
ble service load according to three standards depending on the
number of scaffoldings Ns, assuming that the average time of
exploitation is Ts = 12 weeks. On the horizontal axis, scaffold-
ings are counted in thousands. The order of scaffolding num-
ber results from the estimation of the number of scaffoldings
which are assembled annually in Poland. According to the data
of The General Office of Building Control in 2015–2019 [38],

a)

b)

Fig. 6. The probability of exceeding the permissible service load for
the statistical population of scaffoldings at the assumption average ex-
ploitation time Ts = 12 weeks and depending on the size of this popu-

lation: a) for single platforms, b) for vertical scaffolding modules

in one year in Poland there were put into operation an av-
erage of 30 242 objects as: multi-family buildings, collective
housing buildings, hotels and accommodation buildings, public
buildings, industrial and warehouse buildings, transport infras-
tructure facilities. This means that in Poland much more than
30 000 scaffoldings are assembled annually, because they are
assembled on all the listed facilities under construction and, ad-
ditionally, are used for renovation and construction works that
do not require formal notification about the ending of construc-
tion. Unfortunately, for the number of scaffoldings of tens of
thousands there is a high probability of exceeding the permis-
sible service loads. Therefore, the approach of American reg-
ulations [23], according to which the load bearing capacity of
scaffolding platforms should be four times greater than the per-
missible service load, is justified.

4. Conclusion

Due to the technological development the construction work
methods change, and as a result, these affect the construction
scaffolding load. Furthermore, scaffoldings became higher and
of more sophisticated geometry. Service loads are one of the el-
ements affecting the safety of scaffolding use. For this reason,
the reliability analysis as a scaffolding design method should
continue to be developed. This requires parameter distributions
describing the condition and load of a scaffolding.

The paper presents methodology of scaffolding service load
measurements. On the basis of the measurements conducted on
120 frame scaffoldings all over Poland, the probability den-
sity of maximum service loads was determined as Gumbel’
and Weibull’s functions. Having compared the 1st and 2nd or-
der statistical moments, one can conclude that the probability
density description by means of Gumbel’s function is closer
to the study results. Unfortunately, the results of the presented
research show that in Poland there is a high probability of ex-
ceeding the permissible service loads and thus there is a risk of
scaffolding damage.

However, considering that it was the first study of this type,
the scaffolding service load measurements should be contin-
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ued in the future to increase the statistical sample. Despite the 
aforementioned reservation, the functions determined in the 
paper can be used for the purposes of the reliability analysis to 
calibrate partial safety factors and in simulation of service load 
during the scaffolding failure risk assessment.
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