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grey-scale images, specifically from some statistical or struc-
tural patterns located in pixels co-occurrence. Those features 
are then passed to the Support Vector Machine (SVM) classifier. 
The second approach utilizes the transfer learning of pretrained 
ImageNet models. Both approaches separately demonstrated 
good overall results reaching 80‒90% of weighted F1-score. 
However, their combination is able to yield higher overall 
performance. Results of the developed ensemble system were 
discussed taking into account the quality of the available data  
set and classification metrics.

2. Related Works

The topic of renal cell classification based on Computed 
Tomography (CT) scans has rarely been studied. Due to the 
lack of publicly open benchmark data sets, the results of various 
research papers cannot be objectively compared. However, due 
to the rapid development of deep learning for medical purposes, 
the subject of differencing renal cancer subtypes becomes more 
and more popular among scientific society.

Differentiation between a malignant and benign form of 
renal neoplasm is quite popular in the literature. This binary task 
can be solved through cross-training performed on retrained 
Inception-v3 model [2]. Simple transfer learning of Inception 
architecture applied to recognition between malignant clear cell 
carcinoma and benign oncocytoma on the basis of multiphasic 
CT has yielded sensitivity around 80% [3].

Only a few studies have shown results for the renal lesion 
subtypes differentiation. Convolutional Neural Networks 
(CNN) applied to histopathological images were able to facil-
itate detection of 3 types of renal carcinoma: chromophobe, 

1. Introduction

Recently, deep learning algorithms achieved outperforming 
results in almost any computer vision task. However, through-
out the past decades, scientific society was also successfully 
working on specialised algorithms for feature description of 
images, especially, in specific tasks of medical image recogni-
tion. Combining both approaches might significantly increase 
the robustness of a created system, due to independence in image 
pattern characterisation. This research is aimed to investigate the 
possibility of creating a robust system of renal cell carcinoma 
(RCC) classification through ensemble learning by applying 
both approaches: deep learning and classical textural analysis.

Renal cancer is the 7th most common neoplastic disease in 
the UK according to the UK Cancer Research [1]. Diagnosis is 
hindered due to non-specific symptoms or even symptomless 
growing of tumour mass in the early stages of this disease. 
Nonetheless, early diagnosis and screening translate to extended 
survival rates and opportunities to apply the non-invasive treat-
ment. A new approach is therefore needed for automation of the 
medical imaging examination.

Our research aims at finding a solution for this challeng-
ing problem through multi-feature classifiers, assembled in an 
ensemble with weighted voting. The system will be tested on 
the data set consisting of 8 types of renal neoplastic lesions. 
Features are generated in two distinct manners: textural and 
deep learning methods. Texture features are derived from raw 
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papillary and clear cell carcinomas [4] with results reaching 
94% of accuracy. For comparison, GoogleNet achieved 85% 
accuracy in the same application based on 3-phase CT scans [5].

Morphological, textural and wavelet-based methods were 
used in 4-class renal neoplasm differentiation basing on his-
topathological images [6]. Basic features, such as contrast, 
correlation, energy, homogeneity and entropy, derived from 
Gray-Level Co-occurrence Matrix (GLCM), feeding the Bayes-
ian classifier reached satisfactory performance around 90% of 
accuracy. Textural features have also found multiple appli-
cations in Computed Tomography Texture Analysis (CTTA) 
[7, 8]. Biomarkers for tumour differentiation were obtained 
from simple statistical features of raw image pixel intensities, 
such as average intensity, entropy or skewness.

Deep learning techniques are commonly utilized in lung 
cancer detection tasks since a higher incidence rate of this 
disease encouraged us to create larger data sets. Deep Belief 
Networks, Autoencoders [9] and 3D-CNNs [10, 11] proved to 
achieve state-of-the-art results in this domain.

Scientific society was not only addressing classification task 
but also staging through learnable image histogram-based deep 
neural networks [12] and segmentation with U-net [13, 14].

No study, to our knowledge, has considered the task of clas-
sification of 8 subtypes of renal tumours basing on single-phase 
CT scans. Moreover, no research was intended to combine the 
textural and deep learning methods in a unified ensemble sys-
tem in order to increase robustness in multi-class prediction.

3. Method

This research is dedicated to analysing two separate methods of 
feature generation for renal neoplastic lesions differentiation. 
The first one facilitates textural methods, which gained wide 
popularity in medical imaging processing [15]. Three different 
algorithms had been tested and all of their outputs were passed 
to the SVM classifier. The second approach utilizes the transfer 
learning technique applied to pretrained deep ImageNet models.

Previous works on this topic have confirmed that both 
approaches enable to achieve performance metrics varying from 
80‒89% of F1-score for each of the aforementioned methods 
in 8-class classification problem [16, 17]. Influence of the data 
generation step was discussed, however, a combination of both 
methods was not considered.

3.1. Textural methods. Texture analysis focuses on the char-
acterisation of image patterns on the basis of structural or sta-
tistical properties of raw pixel intensities. It usually performs 
additional preprocessing steps such as transformation into latent 
spaces to increase the readability of input data. Generally, image 
properties such as roughness or smoothness can be described 
by numerical features derived from pixel values with assumed 
neighbourhood pattern.

3.1.1. GLCM features. The first discussed algorithm – Gray-
Level Co-occurrence Matrix (GLCM) [18] was initially pro-
posed in 1973. Nonetheless, it still finds numerous applications 

in medical imaging analysis. Numerical features are computed 
from the co-occurrence matrix hdθ . Its values represent the 
number of co-occurrences of certain intensity values. Vari-
ous hyperparameters of the symmetrical offset definition in 
GLCM were tested and 14 statistical measures were imple-
mented as the input attributes to the classifier. Distances in this 
method were specified as d 2 {1, 2, 3}, angles as θ = π/4 ¢ n for 
n 2 {0, 1, 2, … 7} and such definitions were used in numerical 
experiments. The resulting 3D matrices were vectorized either 
by simple average or by concatenation. Two ensemble mem-
bers, derived from the GLCM method, were proposed.

3.1.2. SFTA features. Segmentation-based Fractal Texture 
Analysis (SFTA) [19] is a representation of fractal algorithms 
[20], which are usually applied to patterns with high local 
complexity. The authors of the algorithm proposed a two-stage 
process of features generation. The first step is the decompo-
sition of the input image into sets of binary images through 
Two-Threshold Binary Decomposition. The final feature vector 
is prepared in the second step by computing the fractal dimen-
sions of the region borders. The initial length of the feature vec-
tor, which is the main hyperparameter of SFTA, is denoted with 
n and is subject to changes. Three proposed ensemble members, 
based on this method, were generated with n 2 {5, 6, 7}.

3.1.3. Unser features. Unser features [21, 22] were originally 
designed to solve the segmentation task. However, the universal 
character of the algorithm turned out to be also suitable to solve 
many other problems, for instance, classification. The princi-
pal operation performed in this algorithm is the application of 
a linear filter to shifted image segments. On the basis of such 
transformation, the classical descriptors can be computed, e.g. 
energy or correlation. Shift step s and filter size m are the only 
parameters in this method. In this research, single ensemble 
member was defined with s = 5 and m = 3.

Feature vectors generated by all these methods were passed 
to SVM classifier [23] with hyperparameters: Gaussian kernel 
(RBF ), C = 1000 and γ  = 1.

3.2. Deep learning models. Rapid development in computer 
vision owes to the implementation of Convolutional Neural 
Networks (CNNs) [24‒26] that automatise the process of 
feature generation and simultaneously perform final predic-
tion (e.g. regression or classification). However, the training 
of such architectures demands very large data sets and high 
computational power, which becomes a major bottleneck in the 
development of deep models.

Fortunately, these disadvantages can be solved with Trans-
fer Learning. Instead of comprehensive training from scratch, 
a model trained on task A is adapted to new problem B. When 
domains of A and B are alike, the weights of initial layers can 
be frozen, which significantly reduces training time. On the 
whole, transfer learning can improve the performance of devel-
oped models and at the same time mitigate the problem of the 
data set's size requirement.

In this research, transfer learning will be applied using five 
different architectures, which won ImageNet Large Scale Visual 
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Recognition Challenge in the past few years: AlexNet [27], 
ResNet-18, ResNet-50 [28], Inception-v3 [29, 30] and Incep-
tion-ResNet-v2 [31].

Preliminary research has shown that deep learning mod-
els obtain the best results when frozen layers are in the initial 
parts of the networks. Adaptation of weights is not only done 
to the fully connected layers responsible for the final classifi-
cation but also to weights of latter convolutional filters. Train-
ing parameters were set as follows: Adam solver, learning rate 
scheduler with initial value 1e-4, size of output layer was equal 
to the number of classes (here 8).

Each of the presented architectures formed an ensemble 
integrated with majority voting. Every ensemble consisted of 
5 to 10 separate predictors to mitigate the problem of getting 
stuck in local minima. Moreover, each member was trained 
using the randomly selected learning data. Two distinct mech-
anisms have provided the independence of ensemble members: 
randomized division of training-validation data sets and diver-
sity of size of fully connected layer appended to the pretrained 
part of the network (in AlexNet only).

3.3. Methodology. The data set was split into 10-fold cross-val-
idation bins and each proposed model, textural and deep, was 
tested in a leave-one-out manner. The performance metrics 
applied in this paper were computed as an average of 10 runs 

of cross-validation. In later discussion, weighted F1-score [32] 
was selected as the most meaningful quality measure.

Key experiments conducted in this research consisted of 
2 major steps. Firstly, all models were trained and separately 
evaluated. Secondly, the best combination of potential ensemble 
members was selected through an extensive search. Predictions 
of chosen models were integrated with weighted voting. As 
a result, a multi-feature ensemble model was built, and subse-
quently, its performance was evaluated. The summary of the 
proposed architecture is presented in Fig. 1.

4. Materials

The multi-feature ensemble model was evaluated on a data-
base consisting of single-phase CT scans of 143 patients with 
8 subtypes of renal neoplastic lesions [33, 34]. Raw images, 
results of histopathological examination and region contours 
were prepared in the laboratory of the Department of Pathology 
at the Military Institute of Medicine (Warsaw, Poland). Detailed 
information about data set distribution can be found in Table 1. 
Among 8 subtypes, there are five malignant subtypes (C, J, M, 
P, U), two benign (A, O) and a renal cyst (T). Although cyst is 
not considered as cancer itself, it might be sometimes misdi-
agnosed with other cancer types.

Fig. 1. General architecture of the classification system
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Table 1 
Renal lesion subtypes – full name, abbreviation and quantities

Renal neoplastic 
lesion (full name)

Number of scan frames 
(no. of patients)

Class 
label

Angiomyolipoma 97 (8) A

Chromophobe Renal Cell 
Carcinoma 253 (20) C

Clear Cell Renal Cell 
Carcinoma 692 (40) J

Multilocular Cystic Renal 
Cell Carcinoma 164 (10) M

Oncocytoma 108 (14) O

Papillary Renal Cell 
Carcinoma 236 (26) P

Urothelial Carcinoma 292 (11) R

Renal Cyst 460 (14) T

The preliminary experiments have shown that the genera-
tion method of the data set has a significant inf luence on the 
overall performance of the system. The fundamental assump-
tion of the classif ication model is that segmentation has been 
already done. Hence, the position and contour of the neoplastic 
lesion are already known. Data preprocessing is divided into 
3 main phases:
● Normalisation. Dicom images have to be transformed to 

unsigned integers of 8 bits (uint8) to match the common 
format used, e.g. in ImageNet models.

● Region of interest (ROI) generation. ROI represents the 
most essential part of a full CT frame and becomes an input 
to the model. Based on previous research [16, 17], one type 
of ROI generation was chosen. 100£100 mm region located 
in contour centre mass is cropped from the raw CT frame. 
The surrounding tissues are not included in the final image. 
Examples representing each class are depicted in Fig. 2.

● Augmentation. Due to a significant disproportion in the 
number of training examples, which is a result of the diver-
sity of cancer incidence rates, augmentation of the data set 
has to be performed to balance the population of classes. 

Only rotation and cropping were used to create additional 
examples of images in order to prevent major distortions 
of image patterns.
The prepared data set is believed to be representative of the 

problem discussed in this study. However, few factors should 
be taken into consideration when the results of experiments are 
discussed. Firstly, the original data set is strongly unbalanced, 
images are rather small and of poor contrast. Therefore, pat-
terns located in raw pixel intensities are rather fuzzy. Secondly, 
there is wide inter-patient diversity within each class. Finally, 
the model response is based on single frames, whereas medical 
specialists usually have access to the full series of scans in 
manually prepared diagnosis.

5. Results and discussion

Summary of proposed individual models and their parameters 
are presented in Table 2. For deep learning models, two major 
parameters are included. The first one is the level (name and 
type) of the cut-off layer, which is the last frozen layer in 
the model architecture that was subject to transfer learning. 
The second one is the number of ensemble members applied 
within this particular network. For instance, res2a_branch2a 
is the last frozen layer in ResNet18 and 5 models were trained 
in parallel.

Table 2 
Parameters of  independent models not associated in an ensemble

Model name Parameters

GLCM (1) aggregation: concatenation, 
d 2 {1, 2}

GLCM (2) aggregation: concatenation, 
d 2 {1, 2, 3}

SFTA(1) n = 5

SFTA(2) n = 6

SFTA(3) n = 7

Unser s = 5, m = 3

Model name Cut-off layer Ensemble size

AlexNet (1) f c6 10

AlexNet (2) f c7 10

AlexNet (3) f c8 5

ResNet18 res2a_branch2a 5

ResNet50 bn3b_branch2b 5

Inception-v3 conv2d_4 5

Inception-ResNet-v2 conv2d_4 5

Initial results of individual members of the multi-feature 
ensemble, without integrating their answers, are presented in 
Table 3. Each entry corresponds to the independent model out-

Fig. 2. Example frames (data inputs) from the preprocessed data set 
(from the upper left corner: A, C, J, M, and below: O, P, R, T)
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come. Performance metrics (accuracy, precision, recall and F1) 
are included beside the abbreviated name of the model. All 
numerical values in the table represent an average of results 
of all classes which were obtained in cross-validation mode.

Results of independent models are varying from 77% to 
90% of F1-score. Unser features combined with SVM and 
ensemble of 10 independently trained AlexNet networks are 
giving comparatively worse results, whereas ensemble of 5 
Inception-ResNet-v2 units is reaching 90.1 ± 1.44% of F1-score 
in 10-fold cross-validation mode. Ensemble technique applied 
individually to Inception-ResNet-v2 eliminates fluctuations of 
performance, resulting from a random choice of training and 
testing data. Thanks to this, the F1-score was increased by 
5‒6pp on average. Although quality measures of performance 
are slightly improved, it should be emphasised that conse-
quently, the computation time is several times higher.

The next step was an extensive search between members to 
obtain the best possible performance. The best-performing com-
bination of models are marked in Table 2 and 3 with light blue 
background. Almost all types of feature generation methods 
took part in the final ensemble model, except ensembles built 
on the basis of AlexNets. At first glance, the algorithms such as 
Unser features, achieved considerably worse results. However, 
its predictions are valuable when models are combined in the 
final global ensemble. All possible combinations of members 
were tested, however, differences of accuracy between most 
combinations of members were negligible, especially, when the 
number of chosen units exceeded 10 members. Detailed infor-
mation about the influence of the number of chosen predictors 
on performance is presented in boxplot form in Fig. 3.

The results of the best combination of initially proposed 
members are presented in Table 4. Combining multiple meth-
ods of feature generation has significantly improved the clas-
sification metrics. The F1-score gains approximately 3.5pp 
with respect to the best individual predictor (an ensemble of 
5 Inception-ResNet-v2 architectures). Final results of 93.66% 
should be considered satisfactory, especially when the com-
plexity of the data set and the fuzziness of patterns are taken 
into account.

Table 4 
Results of multi-feature ensemble model with the best-performing 

combination of models, average of 10-folds 
[in %, mean ± std (median)]

Accuracy Precision Recall F1-score

93.64 ± 1.01 
(93.82)

93.88 ± 0.96 
(94.1)

93.64 ± 1.01 
(93.82)

93.66 ± 1.01 
(93.88)

Application of multi-feature ensemble technique with 
weighted majority voting has remarkably boosted the clas-
sification metrics when multiple independent techniques of 
feature generation are available. Various definitions of func-
tions integrating predictions from independent classifiers 
were tested. All 4 quality metrics (accuracy, precision, recall, 
F1-score) were examined as weights in the weighted voting 
rule. Moreover, various normalization formulas (with Lp norm, 
where p 2 {1, 2, … 5}) were applied. The best results were 
obtained with F1 weights normalized using L5 norm. However, 
the differences in system performance at the application of 
various weighting methods were negligible (below 0.1 per-
centage point).

Detailed information about system misclassifications can 
be found in the confusion matrix presented in Fig. 4. It was 
generated as a sum of confusion matrices for testing data in 

Table 3 
Results of independent models not associated in an ensemble. 
Presented values are an average between classes and 10-fold  

cross validation [in %]

Model name Acc. Prec. Rec. F1

GLCM (1) 81.63 82.01 81.63 81.59

GLCM (2) 82.55 82.97 82.55 82.53

SFTA(1) 88.58 89.09 88.58 88.64

SFTA(2) 88.32 88.82 88.32 88.37

SFTA(3) 88.35 89.14 88.35 88.44

Unser 77.02 77.78 77.02 77.05

AlexNet (1) 77.33 78.15 77.33 77.39

AlexNet (2) 80.44 80.85 80.44 80.36

AlexNet (3) 77.76 78.42 77.76 77.78

ResNet18 84.60 85.01 84.60 84.57

ResNet50 85.02 85.77 85.02 85.12

Inception-v3 89.46 89.83 89.46 89.47

Inception-ResNet-v2 90.06 90.45 90.06 90.10

Fig. 3. Boxplot presenting influence of the number of chosen ensemble 
members on overall performance of the system (weighted F1-scores, 

in [%])
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each fold of cross-validation. The majority of misclassifications 
have been committed in recognition of classes C-J-P and P-R-T, 
which reflects very well the human errors. Nonetheless, classes 
C, M and P are the most difficult in classification. F1 mea-
sure for these classes has reached 91.16%, 91.86% and 90.3%, 
respectively. On the contrary, the best results were obtained for 
classes A, O, T with F1-scores reaching 97.3%, 95.39% and 
95.26%, respectively. Interesting results can be also observed 
in the heatmap of differences between confusion matrices (the 
best individual predictor vs. multi-feature ensemble) depicted in 
Fig. 5. The (ij)th element for i  6= j of the matrix represents the 
difference between the number of errors committed by the best 
individual predictor (Inception-ResNet-v2) and a multi-feature 
ensemble. Therefore, the desired effect is negative elements 
outside the main diagonal and positive numbers on the main 

diagonal (representing exactly correct classifications). For the 
sake of visualisation, the improvements were coloured with 
green and deteriorations with the red colour. The differential 
matrix shows that the application of a multi-feature ensemble 
significantly eliminates most of the errors, especially in the 
classification of examples from classes M and P.

Agreement of member predictions understood as a number 
of deciding votes, broken down into each class is presented 
on boxplot in Fig. 6. The shorter the interquartile range the 
more consistent distribution of ensemble member verdicts. 
The higher the level of the median, the more unanimous the 
final decision is. The maximum of the vertical axis is 9, which 
represents the total number of members in an ensemble. The 
most consistent answers of ensemble members are generated for 
classes A and O, for which only single answers have confidence 
lower than 9 and 7, respectively. Apparently, the ensemble is 
less confident in the prediction of classes with comparatively 
worse results in F1-score (classes C and P).Fig. 4. Confusion matrix of multi-feature ensemble model, aggregated 

for 10 folds of cross validation
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Fig. 5. Difference of confusion matrices between ensemble model and 
the best individual predictor (Inception-ResNet-v2). Colour represents 

direction of change: green – improvement, red – deterioration

Fig. 6. Boxplot presenting confidence of ensemble predictions (con-
fidence = number of deciding votes)
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To summarize, the multi-feature ensemble model has shown 
high efficiency in the task of recognition of 8 subtypes of 
renal lesions. The combination of 2 families of independent 
approaches to feature generation eliminates the vast majority 
of misclassifications. Additional analysis is needed to target the 
reason for the remaining misclassified examples. Presumably, 
there is room for further improvement of the system by apply-
ing different data set generation methods. This line of research 
will be investigated in the nearest future. In conclusion, the 
system in the presented form will fulfil its role, though it makes 
the predictions based on the single frame extracted from the 
CT scan series. By applying the series of CT images it is pos-
sible to take into consideration the additional aspects, such as 
indications of the previous slide as well as the changing size 
of the neoplastic lesion. The smaller the evaluated object, the 
less confident the prediction is.
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6. Conclusions and future work

The paper has proposed an automated computer system able 
to recognise 8 types of renal neoplastic lesions with high 
accuracy. The obtained results exceeded 93.6% of weighted 
F1-score on the testing data not taking part in training, eval-
uated in 10-fold cross validation mode. Generally, our results 
demonstrate a strong positive inf luence of the combination of 
independent types of features on overall system performance. 
The multi-feature ensemble model achieved the observed 
human ratio of mistakes. In addition, the incorrectly classi-
f ied samples corresponded with the same types of data, where 
human experts made the errors the most often. Further analysis 
of misclassif ied examples may lead to new concepts in data 
preprocessing steps, especially regarding ROI extraction and 
data set augmentation.

The obtained results allow applying the system in regular 
hospital practice. Automation of hospital procedures might sig-
nificantly reduce the waiting time for medical consultations, as 
well as decrease the number of renal cancer incidents which are 
diagnosed accidentally in imaging tests for some other diseases.

In the nearest future, few additional directions of research 
will be explored. Previous works indicated the substantial influ-
ence of the data set preparation stage on the final performance 
of the model. Therefore, new methods of ROI generation, espe-
cially the sliding window method will be examined. Further-
more, deblurring and super-resolution might effectively help 
in overcoming the problem of poor contrast and fuzziness of 
input images. Moreover, investigation of resizing techniques 
can improve the quality of data, since the small size of images 
is still a major bottleneck in obtaining better performance of 
the system. 3D-modelling and generative methods (such as 
Generative Adversarial Networks and Variational Autoencod-
ers) applied to data set augmentation will also be investigated. 
Deployment of the model in everyday practice should be pre-
ceded by in-depth research on model explainability. The devel-
oped model should provide the medical specialist with insight-
ful information about patient condition and attract attention to 
certain regions that would simplify and reduce the time of the 
diagnosis process.
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