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Abstract
To increase their competitive advantage in turbulent marketplaces, contemporary manufac-
turers must show determination in seeking ways to: fulfill buyer orders with quality merchan-
dise; meet deadlines; handle unexpected production disruptions; and lower the total relevant
expense. To tackle the abovementioned challenges, this study explores an economic man-
ufacturing quantity (EMQ) model with machine failure, overtime, and rework/disposal of
nonconforming items; the goal is to find the best fabrication uptime that minimizes total
relevant expenses. Specifically, we consider a production unit with overtime capacity as an
operational feature that is linked to higher unit and setup costs. Further, its EMQ-based pro-
cess is subject to random nonconforming items and failure rates. Extra screening separates
the reworkable nonconforming items from scrap, and the rework is executed at the end of each
cycle of regular fabrication. The failures follow a Poisson distribution, and a machine repair
task starts as soon as a failure occurs; the fabrication of the lot that was interrupted resumes
after the repair has been carried out. A decision model is built to capture the characteristics
of the problem. Mathematical and optimization processes help in determining the optimal
fabrication uptime. A numerical example not only illustrates the applicability of the research
outcomes, but also reveals a diverse set of information about the individual or joint influences
of deviations in mean-time-to-failure, overtime factors, and rework/disposal ratios linked to
nonconforming rates related to the optimal replenishment uptime, total operating expenses,
and various cost contributors; this facilitates better decision making.
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Introduction

The present study explores an EMQ-based sys-
tem featuring machine failure, overtime, and rework/
disposal of nonconforming items. Different from the
simple assumptions of the classic EMQ model (Taft,
1918) which considered the perfect manufac-turing
process with steady fabrication rate, in real manufac-
turing setting, due to unexpected factors, random ma-
chine failure and production of noncon-forming items
are both inevitable. Ignall and Silver (Ignall and Sil-
ver, 1977) examined a two-stage multi-machine pro-
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duction system featuring extra buffer storages and un-
reliable machines. Due to random failures, extra buffer
capacity is added to the system, and a heuristic is pre-
sented to study the effect of this capacity increases
on the outputs of the system. Choong and Gershwin
(Choong and Gershwin, 1987) proposed a decomposi-
tion approach based on the theory of k−1 single-buffer
to approximately measure the performance of limited
transfer lines featuring random process times and un-
reliable equipment. Berg et al. (Berg et al., 1994)
considered unreliable production-inventory systems
featuring random characteristics of the fabrication,
demand, and machine conditions. The level-crossing
method and mathematical analysis were used to ex-
amine various related models. Performance measures
regarding customer service levels, expected stock lev-
els, and machines/repairmen utilizations were calcu-
lated to facilitate managerial decision making. Chelbi
and Daoud (Chelbi and Daoud, 2011) studied a
just-in-time production/inventory system with rou-
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tine preventive maintenance (PM) and random ma-
chine failures. To guarantee the continuous supply
of assembly line during failure occurrence, the buffer
stocks are included. A mathematical model was built,
and it considered the stochastic machine lifetime, fail-
ure repair time, PM schedules, and the renewal pro-
cesses linked to the operation-repair cycles. Based on
this analytical model, the authors determined the op-
timal solutions for buffer stock size and fabrication cy-
cle length that minimize stock holding, shortage, and
maintenance costs. Nourelfath (Nourelfath, 2011) ex-
amined a multiproduct multi-period production sys-
tem featuring stochastic machine failures. Both the
client service level and the fabrication rate were as-
sumed to be random variables due to stochastic fail-
ure. In order to meet a desired/pre-decided service
level, a two-step approach based on the first passage
time theory of the Wiener process was employed to
solve the stochastic capacitated lot-size problem. As
a result, substantial service-level improvements were
gained at minimal expected cost increase. Other stud-
ies (Groenevelt et al., 1992; Chiu, 2010; Al-Bahkali
and Abbas, 2018; He et al., 2018; Zahedi et al., 2019;
Lakehal et al., 2019) investigated the influences of
different aspects of failures on fabrication-inventory
systems.

To ensure the desired product quality, the man-
ufacturers need to identify all nonconforming goods
from their fabricated lots. Extra screening separates
the reworkable items from scrap to reduce the qual-
ity cost via repair of these reworkable goods. Kijima
et al. (Kijima et al., 1988) examined a periodical re-
placement problem, wherein a general replacement is
routinely done at specific scheduled times kT (where
k = 0, 1, . . . ) to bring the system to a better state,
and an urgent repair is initiated whenever an unex-
pected failure occurs. A stochastic model was built
to represent the operations of the proposed system
containing a minimal repair to restore the system
to a functioning state prior to a failure. The results
from numerical analyses of different replacement poli-
cies showed that the difference in policies are insen-
sitive when the system is deteriorating slowly and
the replacement cost is comparatively higher than
the repair cost; and the minimal repair is justified
under these conditions. Vickson (Vickson, 1998) ex-
plored a batch fabrication problem with inspection
of sub-lots for a failure-prone facility. A model was
developed to analyze the proposed problem, and the
optimal solutions are derived for the cases contain-
ing continuous and integer-valued sub-lot sizes. More-
over, the effect of inspection of sub-lot on the con-
ventional economic lot-sizing problem was also inves-
tigated. Buscher and Lindner (Buscher and Lindner,

2007) considered a single-machine fabrication-delivery
problem featuring a rework process and delivery of
finished lot in equal sized shipments. Both fabrica-
tion and rework processes take place on the same
machine. An optimization algorithm was presented
to derive the optimal fabrication, rework, and ship-
ment quantity that minimizes total relevant system
costs. A numerical example with sensitivity analy-
sis illustrated the algorithm and the characteristics
of their proposed model. Sarkar et al. (Sarkar et al.,
2014) examined a single-stage economic production
quantity (EPQ) model with a rework process and the
planned backordering. Three models, each with dis-
tinct distributions of defective rates, namely, uniform,
triangular, and beta distributions, were developed and
studied. The closed-form solutions for these inventory
models were gained, and the numerical examples il-
lustrated their applicability, respectively. Other re-
search (Boorla et al., 2018; Chiu et al., 2018b; Im-
bachi et al., 2018; Matharu and Sinha, 2019; Vascon-
celos et al., 2019; Parnianifard et al., 2019; Afshar-
Nadjafi et al., 2019; Chiu et al., 2019) focused on di-
verse aspects of manufacturing systems with imper-
fect items and their consequent quality improvement
matters.

Moreover, to cope with the timely buyer orders
and/or to smooth fabrication schedules, the over-
time option has often been considered as an effec-
tive strategy. Teny and Kochhar (Teny and Kochhar,
1984) explored a multi-product multi-cell multi-stage
production system with different demand rates and
inventory status of each product, varied availabili-
ties of machines, and dissimilar overtime/undertime
working strategies. Based on the vector space ap-
proach, a mathematical model was developed to ag-
gregate the fabrication plan for the proposed system.
Three numerical examples were provided and through
computational results, the authors showed how their
model could derive the optimal overtime/undertime
working strategies along with the increase/decrease
in the number of outsourced orders. These findings
can facilitate the flexible fabrication decision mak-
ing. Morikawa and Nakamura (Morikawa and Naka-
mura, 1993) studied a lot-sizing problem considering
the overtime fabrication with different setup times.
Based on the simulated annealing approach, a heuris-
tic was proposed to gain the feasible neighborhood
solution under the assumption of unlimited overtime
production. Then, to ease the computation efforts on
the objective function, the problem was converted
into a zero-one programming structure, and the ini-
tial solution obtained from the simulated annealing
approach was entered into a simplex algorithm for de-
riving an improved /revised solution. Finally, such a
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revised solution was compared with that of the La-
grangian relaxation method to specify its merits as
well as limitations. Yang et al. (Yang et al., 2004) ex-
amined a multi-job single-resource scheduling prob-
lem, in which the resource has the option of process-
ing jobs in regular time or overtime modes, where dif-
ferent unit costs linked to various modes. There are
job-specific penalty costs associated with tardy jobs.
The objectives were to minimize overtime expenses
and total weighted tardiness of the problem. An al-
gorithm of pseudo-polynomial time was developed to
find the starting allocation of the regular time and
overtime for the problem. Then, a priority sequenc-
ing rule was used to obtain the initial solution of this
generalized scheduling problem. Lastly, a local search
algorithm and linear programming method were em-
ployed to improve the solution. Computational re-
sults demonstrated that their approach was able to
gain a near-optimal solution within a reasonable com-
puter running time. Mathur and Süer (Mathur and
Süer, 2013) used the math model and genetic algo-
rithm (GA) to simultaneously determine the over-
time capacity, load cells, and sequence of produc-
tion for a real-world textile company. Their system
allowed the overtime usage to reduce the potential
number of tardy jobs; that was a tradeoff between
the added overtime expenses and lost sales due to
tardy jobs. By testing various problem sizes ranging
from 20 to 90 jobs, their study showed that the math
model and GA – the proposed twin mutation strat-
egy could generate the best results in all problem
size. The authors further concluded that the math
model is a favorite method for solving the problem.
Other studies (Kłos and Trebuna, 2017; Chiu et al.,
2018a; Lin et al., 2019) explored the influences of di-
verse aspects of overtime strategies on the produc-
tion planning. As little attention has been paid to
the investigation of joint impacts of the overtime op-
tion, machine failure, and rework/ disposal of defec-
tive items on the EMQ decision, our study aims to fill
the gap.

The proposed EMQ-based system

An economic manufacturing quantity (EMQ) model
with overtime, machine failure, and rework/disposal
of nonconforming items is investigated. Consider that
a product has an annual product demand rate λ that
must be met by the EMQ-based system incorporat-
ing overtime option to reduce fabrication cycle time.
Overtime alternatives can range from a fraction of a
shift to a maximum of three shifts per day. Let α1 rep-
resent the extra percentage of output rate due to over-

time, thus 0 < α1 5 2, and the following overtime-
related variables are defined:

P1A = (1 + α1)P1 , (1)

CA = (1 + α3)C , (2)

KA = (1 + α2)K , (3)

where P1A, KA, and CA denote overtime manufac-
turing/output rate, setup cost, and unit cost; and P1,
K, C, α2, and α3 represent standard manufacturing
rate, setup cost, unit cost, and the linking factors be-
tween KA and K, and between CA and C, respec-
tively. For example, if α1 = 0.4, it means that the
manufac-turing/output rate is 40% more than stan-
dard rate; and if α2 = 0.25, this means the overtime
setup cost is 25% higher than the standard setup cost,
etc. In the production process, because of diverse un-
foreseen factors a random x portion of manufactured
items is found to have defects. No stock-out is allowed,
thus, (P1A– d1A– λ) > 0 must hold (where d1A de-
notes the fabrication rate of defective products, so
d1A = xP1A). Defective products are further identi-
fied as scrap (a θ1 portion, where 0 5 θ1 5 1) and
rework-able items (that is the other (1− θ1) portion).
Rework process starts right after regular fabrication
in each cycle at a rate of P2A (where P2A = (1+α1)P2

and P2 represents standard rework rate). Unit over-
time reworking cost CRA is as follows:

CRA = (1 + α3)CR , (4)

where CR and α3 denote standard unit reworking
cost and linking factor between CRA and CR, re-
spectively. During the rework process, a portion θ2
of the reworked items fails and will be disposed at a
cost CS per item. Thus, overall scrap rate in a cycle
ϕ = θ1 + (1− θ1)θ2 and the production rate of scrap
items during rework d2A = θ2P2A.

The production equipment is subject to random
failure that follows the Poisson distribution with β
as the mean per year. When a breakdown occurs,
the abort/resume control policy is used, under which
policy the failure is immediately under repair. As
soon as the machine is restored the previously in-
terrupted/unfinished lot is instantly resumed. A con-
stant machine repair time tr is assumed (however, if
the practical repair time is going to exceed tr, a rental
machine will be used to avoid further delay in fabri-
cation). Since a random machine failure may either
take place in uptime t1A or does not happen in t1A,
the following two separate situations must be studied,
respectively.
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A machine failure occurs in t1A

That is t < t1A. Fig. 1 exhibits the level of on-hand
perfect stocks in this case. It indicates that at the
time a breakdown occurs, the stock level is at H0. It
continues to grow after the completion of repair time
tr, and reaches H1 and H when regular fabrication
and rework processes end, respectively.

Fig. 1. Level of on-hand perfect stocks in a cycle for the
proposed EMQ-based system with breakdown occurrence,
overtime, and quality-ensured issues (in blue) as compared
to that of a classic EMQ model with quality-ensured issues

(in black)

Additional notations employed in this study are
listed below:
Q – lot size,
β – mean machine failures per year, a random vari-

able that follows Poisson distribution,
t – fabrication time before a random failure occurs

(in years),
M – fixed equipment repairing cost,
h – unit holding cost,
C1 – unit purchase cost for safety stock,
h1 – unit holding cost for reworked item,
h3 – unit holding cost for safety stock,
H0 – on-hand stock level when a breakdown occurs,
H1 – on-hand stock level when replenishment up-

time finishes,
H – on-hand stock level when rework time finishes,
g – the repair time, g = tr,
t1A – replenishment uptime – the decision variable

for an EMQ-based system with breakdown oc-
currence and overtime,

t′2A – rework time in the breakdown occurrence case,
t′3A – depletion time in the breakdown occurrence

case,

T ′A – cycle length in the breakdown occur-
rence case,

I(t) – on-hand perfect stock level at time t,
Id(t) – on-hand defective stock level at

time t,
Is(t) – on-hand scrap item level at time t,
IF (t) – on-hand safety stock level at time t,
TC(t1A)1 – total cost in a cycle for the break-

down occurrence case,
E[T ′A] – the expected cycle length in the

breakdown occurrence case,
t3 – depletion time in EMQ-based sys-

tem without breakdown occurrence,
nor overtime,

E[TC(t1A)]1 – the expected cost in a cycle for the
breakdown occurrence case,

t1 – uptime for an EMQ-based system
without breakdown occurrence, nor
overtime,

t2 – rework time in EMQ-based system
without breakdown occurrence, nor
overtime,

T – cycle length in EMQ-based system
without breakdown occurrence, nor
overtime,

t2A – rework time in EMQ-based system
with overtime, but without break-
down,

t3A – depletion time in EMQ-based sys-
tem with overtime, but without
breakdown,

TA – cycle length in EMQ-based system
with overtime, but without break-
down,

TC(t1A)2 – total cost in a cycle for EMQ-based
system with overtime, but without
breakdown,

E[TA] – the expected cycle length in an
EMQ-based system with overtime,
but without breakdown,

E[TC(t1A)]2 – the expected cost in a cycle for an
EMQ-based system with overtime,
but without breakdown,

E[TCU(t1A)] – the long-run average system cost per
unit time for the proposed EMQ-
based system with overtime, ma-
chine failure, and rework/disposal of
nonconforming items,

T ′A, TA – cycle length for the proposed system
(whether a breakdown occurs or not,
respectively).

Fig. 2 illustrates the level of on-hand safety stock
in the proposed EMQ-based system with breakdown
occurrence, overtime, and quality-ensured issues. It
shows that when a machine failure occurs, the safety
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stock is used to meet product demand during repair
time tr.

Fig. 2. Level of on-hand safety stocks in the proposed
EMQ-based system with breakdown occurrence, overtime,

and quality-ensured issues

Figs. 3 and 4 depict the levels of on-hand defec-
tive and scrap items in the proposed EMQ-based sys-
tem with breakdown occurrence and overtime, respec-
tively. Fig. 3 shows that defective items are stacked to
d1At1A when uptime t1A ends, and the level of defec-
tive items drops to zero at the end of rework timet′2A.
In Fig. 4, it points out that scrap items are piled up
to d1Aθ1t1A when uptime t1A ends, and the level of
scrap items continue to grow to (d1Aθ1t1A + d2At

′
2A)

in the end of rework time t′2A.

Fig. 3. Level of on-hand defective items in the proposed
EMQ-based system with breakdown occurrence, overtime,

and quality-ensured issues

Fig. 4. Level of on-hand scrap items in the proposed EMQ-
based system with breakdown occurrence, overtime, and

quality-ensured issues

The following basic formulas can be observed from
the problem description as well as Figs. 1 to 4:

H0 = (P1A − d1A − λ) t , (5)
H1 = (P1A − d1A − λ) t1A , (6)
H = H1 + (P2A − d2A − λ) t′2A , (7)

t1A =
Q

P1A
=

H1

P1A − d1A − λ
, (8)

t′2A =
xQ (1− θ1)

P2A
, (9)

t′3A =
H

λ
, (10)

T ′A = t1A + tr + t′2A + t′3A , (11)
d1At1A = xP1At1A = xQ , (12)
ϕ(xQ) = θ1xQ+ θ2 [(1− θ1)xQ]

= [θ1 + θ2 (1− θ1)]xQ . (13)

Total cost in a cycle TC(t1A)1 consists of the setup
and variable fabrication costs, the fixed machine re-
pair cost, holding, procurement, delivery costs for
safety stocks, variable rework and disposal costs, hold-
ing costs during rework time, uptime, and depletion
time. So, TC(t1A)1 is as follows:

TC(t1A)1 = KA + CAQ+M + CRAxQ(1− θ1)

+ CSϕxQ+ [h3(λtr)(t+ tr/2) + C1λtr + CTλtr]

+ h1
P2At

′
2A

2
(t′2A)

+ h

H1 + d1At1A
2

(t1A) + (H0tr) + (d1At)tr

+
H1 +H

2
(t′2A) +

H

2
(t′3A)

. (14)

The following E[TC(t1A)]1 – the expected cost in
a cycle for the breakdown occurrence case, can be de-
rived by substituting Eqs. (1) to (13) in Eq. (14),
and applying E[x] to cope with randomness of de-
fective rate:

E [TC(t1A)]1 =(1+α2)K+ [(1+α3)C] (1+α1)P1t1A

+M + C1λg + CTλg

+ (1+α3)CRE[x](1+α1)P1t1A(1−θ1)
+ CSϕE[x](1 + α1)P1t1A + h3λg

(
t+ g

2

)
+ h [(1 + α1)P1 − λ] tg

+
h [(1+α1)P1t1A]

2

2


[1−E[x]ϕ]

2

λ
+
[2E[x]ϕ−1]

(1+α1)P1

+
E[x]2(1−θ1)ϕ
(1+α1)P2


+

[(1+α1)P1t1A]
2
E[x]2

2(1+α1)P2
(1−θ1) [h1(1−θ1)−h]. (15)
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The following [ET ′A] – the expected cycle length
in the breakdown occurrence case, can also be deter-
mined by applying E[x] to cope with randomness of
defective rate:

E[T ′A] =
Q [1− ϕE[x]]

λ
+ tr

=
t1AP1A [1− ϕE[x]]

λ
+ tr . (16)

Machine failure does not occur in production
uptime

In this case, a machine failure does not occur. Fig. 5
shows the level of on-hand perfect stocks in this case.
It indicates that the level of on-hand perfect stocks
continues to grow and reach H1 and H when regular
fabrication and rework processes end, respectively.

Fig. 5. The level of on-hand perfect stocks in an EMQ-
based model with overtime and quality-ensured issues, but
without breakdown occurrence (in blue) as compared to
that of an EMQ-based model with quality-ensured issues

(in black)

Fig. 6 depicts the level of on-hand safety stock in
the proposed EMQ-based system with overtime and

Fig. 6. Level of on-hand safety stocks in the proposed
EMQ-based system without breakdown occurrence

quality-ensured issues. Since machine failure does not
occur, the safety stock remains the same in the entire
cycle time.

Figs. 7 and 8 illustrate the levels of on-hand de-
fective and scrap items in the proposed EMQ-based
system without breakdown occurrence.

Fig. 7. Level of on-hand defective items in the proposed
system without breakdown

Fig. 8. Level of on-hand scrap items in the proposed sys-
tem without breakdown

The following basic formulas can be observed from
Figs. 5 to 8:

H1 = (P1A − d1A − λ) t1A , (17)

H = H1 + (P2A − d2A − λ) t2A , (18)

t1A =
Q

P1A
=

H1

P1A − d1A − λ
, (19)

t2A =
xQ(1− θ1)

P2A
, (20)

t3A =
H

λ
, (21)

TA = t1A + t2A + t3A . (22)

Total cost in a cycle TC(t1A)2 consists of the setup
and variable fabrication costs, holding cost for safety
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stock, variable rework and disposal costs, delivery
cost, holding costs during uptime, rework time, and
depletion time. So, TC(t1A)2 is as follows:

TC(t1A)2 = KA + CAQ+ h3(λtr)TA

+ CRAxQ(1− θ1) + CSϕxQ

+ h1
P2At2A

2
(t2A) + h

[
H1+d1At1A

2
(t1A)

+
H1 +H

2
(t2A) +

H

2
(t3A)

]
. (23)

The following E[TC(t1A)]2 – the expected cost in
a cycle for the no breakdown occurrence case, can
be derived by substituting equations (1) to (4), (12),
(13), and (17) to (22) in Eq. (23), and applying E[x]
to cope with randomness of defective rate:

E [TC(t1A)]2 = (1+α2)K+[(1 + α3)C] (1+α1)P1t1A

+ (1 + α3)CRE[x](1 + α1)P1t1A(1− θ1)

+ CSϕE[x](1 + α1)P1t1A + h3λgTA

+
[(1+α1)P1t1A]

2
E[x]2

2(1+α1)P2
(1− θ1) [h1(1− θ1)− h]

+
h [(1 + α1)P1t1A]

2

2

·


[1− E[x]ϕ]

2

λ
+

[2E[x]ϕ− 1]

(1 + α1)P1

+
E[x]2(1− θ1)ϕ

(1 + α1)P2

 . (24)

The following E[TA] – the expected cycle length in
the no breakdown occurrence case, can also be deter-
mined by applying E[x] to cope with randomness of
defective rate:

E[TA] =
Q [1− ϕE[x]]

λ

=
t1AP1A[1− ϕE[x]]

λ
. (25)

Solution procedure

This study assumes random machine failure follows
a Poisson distributed with mean = β per year. Thus,
time to failure obeys Exponential distribution with
density function f(t) = βe−βt and cumulative density
function F (t) = (1 − e−βt). So, E[TCU(t1A)] – the
long-run average system cost per unit time can be

derived as follows:

E [TCU(t1A)] =


t1A∫
0

E [TC(t1A)]1 · f(t)dt

+

∞∫
t1A

E [TC(t1A)]2 · f(t)dt


/
E[TA], (26)

where E[TA] is

E[TA] =

t1A∫
0

E[T ′A] · f(t)dt+
∞∫

t1A

E[TA] · f(t)dt

=
t1A [(1 + α1)P1] [1− ϕE[x]]

λ
. (27)

By substituting equations (15), (24), and (27) in
Eq. (26), and with extra derivations the following
E[TCU(t1A)] can be gained:

E [TCU(t1A)] =
λ

[1− ϕE[x]]
·

Z1

t1A
+ [(1 + α3)C]

+(1 + α3)CRE[x](1− θ1) + CSϕE[x]

+t1A



(1+α1)P1E[x]2

2(1+α1)P2
(1−θ1) [h1(1−θ1)−h]

+
h(1 + α1)P1

2



[1− E[x]ϕ]
2

λ

+
[2E[x]ϕ− 1]

(1 + α1)P1

+
E[x]2ϕ(1− θ1)

(1 + α1)P2




+
W1

t1A
+W2e

−βt1A +
W3e

−βt1A

t1A

+h3g [1− ϕE[x]]
(
e−βt1A

)



,

(28)

where Z1, W1, W2, and W3 stand for the following:

Z1 =

[
(1 + α2)K

(1 + α1)P1

]
,

W1 =



C1λg

(1 + α1)P1
+

CTλg

(1 + α1)P1

+
M

(1 + α1)P1
+

h3λg
2

2(1 + α1)P1

+
hg

β
+

h3λg

(1 + α1)P1β
− hλg

(1 + α1)P1β

 ,
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W2 =

[
−hg − h3λg

(1 + α1)P1
+

hλg

(1 + α1)P1

]
,

W3 =


− C1λg

(1 + α1)P1
− CTλg

(1 + α1)P1

− M

(1 + α1)P1
− h3λg

2

2(1 + α1)P1
− hg

β

− h3λg

(1 + α1)P1β
+

hλg

(1 + α1)P1β

 .

Convexity of E [TCU (t1A)]

Apply the first- and second-derivative to
E[TCU(t1A)] one obtains:

dE [TCU(t1A)]

dt1A
=

λ

[1− ϕE[x]]
·



−Z1

t21A
− W1

t21A
− βW2e

−βt1A

−W3e
−βt1A

t21A
− W3βe

−βt1A

t1A

+



(1+α1)P1E[x]2

2(1+α1)P2
·

(1−θ1) [h1(1−θ1)−h]

+
h(1 + α1)P1

2



[1− E[x]ϕ]
2

λ

+
[2E[x]ϕ− 1]

(1 + α1)P1

+
E[x]2ϕ(1− θ1)

(1 + α1)P2




−βh3g (1− ϕE[x])

(
e−βt1A

)



(29)

and

d2E [TCU(t1A)]

dt21A
=

λ

[1− ϕE[x]]
·



2Z1

t31A
+

2W1

t31A
+ β2W2e

−βt1A

+
β2W3e

−βt1A

t1A
+

2βW3e
−βt1A

t21A

+
2W3e

−βt1A

t31A
+β2h3g (1− ϕE[x])

(
e−βt1A

)


. (30)

It is noted that the first term λ/(1−ϕE[x]) on RHS
(right-hand side) of Eq. (30) is positive, it follows that
E[TCU(t1A)] is convex if the second term on RHS of

Eq. (30) is also positive. That is if Eq. (31) holds.

y(t1A) =
2
(
Z1 +W1 +W3e

−βt1A
)

−t21Aβ2W2e
−βt1A−t1Aβ2W3e

−βt1A

−2βW3e
−βt1A

−t21Aβ2h3g (1− ϕE[x])
(
e−βt1A

)


> t1A > 0. (31)

Results and discussion

Searching for the optimal t∗1A

Under the condition that Eq. (31) holds, we set the
first-derivative of E[TCU(t1A)] equal to zero to find
the optimal runtime t∗1A.

λ

[1− ϕE[x]]



−Z1

t21A
− W1

t21A
− βW2e

−βt1A

−W3e
−βt1A

t21A
− W3βe

−βt1A

t1A

+



(1 + α1)P1E[x]2

2(1 + α1)P2
·

(1− θ1) [h1(1− θ1)− h]

+
h(1 + α1)P1

2

[
[1− E[x]ϕ]

2

λ

+
[2E[x]ϕ− 1]

(1 + α1)P1

+
E[x]2ϕ(1− θ1)

(1 + α1)P2

]


−βh3g (1− ϕE[x])

(
e−βt1A

)


= 0 (32)

or

t21A



P1(1 + α1)E[x]2

2P2(1 + α1)
(1− θ1) [h1(1− θ1)− h]

−βW2e
−βt1A−βh3g (1−ϕE[x])

(
e−βt1A

)
+
h(1 + α1)P1

2

[
[1− E[x]ϕ]

2

λ

+
[2E[x]ϕ− 1]

(1 + α1)P1
+
E[x]2ϕ(1− θ1)

(1 + α1)P2

]


+t1A

(
−βW3e

−βt1A
)
+
(
−Z1 −W1 −W3e

−βt1A
)


= 0. (33)
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Let v2, v1, and v0 denote the following:

v2 =
P1(1 + α1)E[x]2

2P2(1 + α1)
(1− θ1) [h1(1− θ1)− h]

− βW2e
−βt1A − βh3g(1− ϕE[x])

(
e−βt1A

)
+
h(1 + α1)P1

2

[
[1− E[x]ϕ]

2

λ

+
[2E[x]ϕ− 1]

(1 + α1)P1
+
E[x]2ϕ(1− θ1)

(1 + α1)P2

]
,

v1 = −βW3e
−βt1A ,

v0 = −Z1 −W1 −W3e
−βt1A .

(34)

Eq. (33) becomes

v2(t1A)
2 + v1(t1A) + v0 = 0 (35)

Apply the following square roots solution procedure
to seek t1A∗:

t1A
∗ =

−v1 ±
√
v21 − 4v2v0
2v2

. (36)

Algorithm for seeking t1A∗

Since F (t1A) =
(
1− e−βt1A

)
is the cumulative den-

sity function of Exponential distribution, its comple-
ment e−βt

1A

is over the range of [0, 1]. Also, Eq. (33)
can be rearranged as follows:

e−βt1A =



t21A



P1(1 + α1)E[x]2

2P2(1 + α1)
·

(1− θ1) [h1(1− θ1)− h]

+
h(1 + α1)P1

2
·

[1− E[x]ϕ]
2

λ

+
[2E[x]ϕ− 1]

(1 + α1)P1

+
E[x]2ϕ(1− θ1)

(1 + α1)P2




−Z1 −W1

{
t21A [βW2 + βh3g(1−ϕE[x])]

+t1A(βW3) +W3

} . (37)

Set initially e−βt1A = 0 and e−βt1A = 1, ap-
ply Eq. (36) to obtain the upper bound of up-
time t1AU and lower bound t1AL. Next, use the cur-
rent t1AU and t1AL to calculate the update values
of e−βt1AU and e−βt1AL . Repeat the aforementioned
steps, that is to apply Eq. (36) with the current
e−βt1AU and e−βt1AL to obtain the new set of t1AU

and t1AL, and their corresponding E[TCU(t1AU)] and
E[TCU(t1AL)] (Eq. (28)), until E[TCU(t1AU)] =
E[TCU(t1AU)]. Then, the optimal uptime for the pro-
posed system arrives, i.e., t∗1A = t1AU = t1AL.

Numerical example and discussions

Consider that the following parameters and their
values are associated with an EMQ model with over-
time, stochastic machine failure, and rework/ disposal
of nonconforming items.

Table 1
Parameters used in the numerical example

CA C CRA CR CS CT C1

2.5 2.0 1.25 1.0 0.3 0.01 2.0

KA λ P1A P2A x α1 α2

495 4000 15000 7500 20% 0.5 0.1

β θ1 θ2 ϕ h h1 h3

1 0.3 0.3 0.51 0.8 0.8 0.8

K M P1 P2 g α3

450 2500 10000 5000 0.018 0.25

First, for β = 1.0, the convexity of E[TCU(t1A)]

is tested by using Eq. (31). Set initially e−βt1A = 0

and e−βt1A = 1, by applying Eq. (36) one first ob-
tains t1AU = 0.4747 and t1AL = 0.1100. Then, ap-
ply Eq. (31) with t1AU and t1AL, we confirm both
y(t1AU) = 0.7155 > t1AU = 0.4747 > 0 and y(t1AL) =
0.2932 > t1AL = 0.1100 > 0. Therefore, for β = 1.0,
the convexity of E[TCU(t1A)] is verified. Addition-
ally, for different β values, extra results on convexity
testing are displayed in Table 2 (Appendix). It im-
plies that the proposed study is applicable for a wider
range of mean machine failure rates. To locate t∗1A,
we apply Eq. (36) and the proposed algorithm. It-
erative results for locating t∗1A are shown in Table 3
(Appendix), and the optimal uptime t∗1A = 0.1905
and system cost E[TCU(t∗1A)] = $13, 227.59 arrived.
Moreover, the effect of variations in uptime t1A on
E[TCU(t1A)] is depicted in Fig. 9.

The impact of changes in scrap rates in conjunction
with different defective rates on the optimal system
cost E[TCU(t∗1A)] is demonstrated in Fig. 10. It spec-
ifies that as ϕincreases, the optimal cost E[TCU(t∗1A)]
rises significantly; and as random defective rate x goes
up, optimal cost E[TCU(t∗1A)] increases considerably.

The effect of differences in overtime relevant ratios
P1A/P1 on variable production cost is exhibited in
Fig. 11. It shows that as overtime output ratios in-
crease, the relevant variable cost goes higher, accord-
ingly. Especially, in this example, as overtime option
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Fig. 9. The effect of variations in uptime t1A
on E[TCU(t1A)]

Fig. 10. The impact of changes in ϕ in conjunction with
different x on the optimal E[TCU(t∗1A)]

Fig. 11. The effect of differences in overtime relevant ratios
P1A/P1 on variable production cost

increases by 50% of the regular output rate, the vari-
able cost rises from $8,000 to $10,107, or 26.34% in-
crease in variable cost.

The influence of variations in mean-time-to-failure
1/β on the optimal cost E[TCU(t∗1A)] is illustrated
in Fig. 12. It indicates that as 1/β increases (i.e.,
there is less chance to have a failure occurrence),
E[TCU(t∗1A)] decreases accordingly. Further, it shows

that E[TCU(t∗1A)] declines drastically starting from
1/β ≥ 0.25 (i.e., when mean failure rate per year
β ≤ 4). It also specifies when 1/β = 1 (as assumed in
this example), E[TCU(t1A)] = $13, 228.

Fig. 12. The inference of variations in 1/β
on E[TCU(t∗1A)]

The breakup of E[TCU(t∗1A)] is shown in Fig. 13.
Cost contributors to E[TCU(t∗1A)] are revealed, for in-
stance, a 16.99% of system cost associated with over-
time, a 5.52% is related to random machine failure,
and a 6.24% is quality assurance relevant cost, etc.
A further analysis illustrates the detailed quality cost
components in Fig. 14.

Fig. 13. The breakup of E[TCU(t∗1A)]

Joint impact of variations in scrap rate ϕ and ran-
dom defective rate x on E[TCU(t∗1A)] is presented
in Fig. 15. It shows that as both ϕ and x go up,
E[TCU(t∗1A)] increases radically.

Furthermore, Fig. 16 exhibits the combined effect
of differences in overtime output increase rate α1 and
scrap rate ϕ on the optimal replenishment uptime t∗1A.
It reveals that t∗1A increases slightly as ϕ goes up; and
optimal uptime declines noticeably, as α1 increases.
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Fig. 14. A further breakup of product quality cost

Fig. 15. Joint impact of variations in scrap rate ϕ and
random defective rate x on E[TCU(t∗1A)]

Fig. 16. Combined effect of differences in overtime output
increase rate α1 and scrap rate ϕ on t∗1A

The latter confirms that as overtime is implemented,
the cycle length is significantly reduced.

Joint influence of changes in scrap rate ϕ and over-
time output increase rate α1 on E[TCU(t∗1A)] is de-

picted in Fig. 17. It specifies that E[TCU(t∗1A)] goes
up significantly as both ϕ and α1 increase.

Fig. 18 illustrates the combined impact of varia-
tions in overtime factor α1 and mean-time-to- failure

Fig. 17. Joint influence of changes in scrap rate ϕ and
overtime output increase rate α1 on E[TCU(t∗1A)]

Fig. 18. Combined impact of variations in overtime factor
α1 and time-to-machine-failure 1/β on t∗1A

Fig. 19. Joint effect of differences in 1/β and ϕ on
E[TCU(t∗1A)]
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1/β on t∗1A. It indicates that as 1/β goes up, t∗1A de-
creases; and optimal uptime t∗1A declines significantly
as α1 increases. The latter confirms that replenish-
ment uptime is reduced considerably as more overtime
is implemented.

Moreover, Fig. 19 displays the joint effect of dif-
ferences in mean-time-to-failure 1/β and scrap rate ϕ
on E[TCU(t∗1A)]. It shows that as both 1/β increases
and ϕ decreases, E[TCU(t∗1A)] declines, considerably.

Conclusions

To address core operating goals (e.g., providing
timely and quality merchandise, handling process dis-
ruptions, and lowering overall expenses) of contempo-
rary producers, the present study explores an EMQ-
based problem with overtime, stochastic failure, and
rework/disposal of nonconforming items; the goal is
to find the best fabrication uptime solution that min-
imizes total relevant expenses. A precise model is vis-
ibly constructed (see Figs. 1 to 8) to capture the char-
acteristics of the problem. Mathematical and opti-
mization processes help in determining the optimal
fabrication uptime (refer to Eqs. (1) to (37)). Lastly,
the applicability of research outcome and sensitivity
analyses are provided (see Figs. 9 to 19).

The contribution of this work is three-fold: (i) the
development of a decision support model that enables
investigation of the problem; (ii) the determination
of the optimal replenishment uptime solution to the
problem; and (iii) the discovery of a diverse set of in-
formation about the individual or joint influences of
deviations in mean-time-to-failure, overtime factors,
and rework/ disposal ratios linked to nonconforming

Table 3.

Iterative results from a recursive searching algorithm for t∗1A when β = 1

Iteration # t1AL e−βt1AL E[TCU(t1AL)] t1AU e−βt1AU E[TCU(t1AU)]

– – 1 – – 0 –

1 0.1100 0.8958 $13,454.22 0.4747 0.6221 $13,888.53

2 0.1602 0.8520 $13,249.67 0.2710 0.7626 $13,319.94

3 0.1796 0.8356 $13,230.14 0.2169 0.8050 $13,239.97

4 0.1866 0.8297 $13,227.90 0.1995 0.8191 $13,229.17

5 0.1891 0.8277 $13,227.63 0.1936 0.8240 $13,227.79

6 0.1900 0.8269 $13,227.59 0.1916 0.8256 $13,227.61

7 0.1903 0.8267 $13,227.59 0.1909 0.8262 $13,227.59

8 0.1904 0.8266 $13,227.59 0.1906 0.8264 $13,227.59

9 0.1905 0.8265 $13,227.59 0.1905 0.8265 $13,227.59

rates related to the optimal replenishment uptime, to-
tal operating expenses, and various cost contributors.
Without such an in-depth exploration, various hidden
critical information in this real problem will remain
inaccessible to decision makers of contemporary man-
ufacturers. Future research can investigate the impact
of stochastic demand on the outcomes of the same
problem.
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Appendix

Table 2
Extra convexity tests on E[TCU(t1A)]

β t1AU
y(t1AU)

(see Eq. (31))
t1AL

y(t1AL)

(see Eq. (31))

6 0.4618 1.2507 0.0299 0.0639

5 0.4623 1.0147 0.0354 0.0760

4 0.4631 0.8486 0.0433 0.0936

3 0.4644 0.7385 0.0552 0.1216

2 0.4670 0.6820 0.0748 0.1722

1 0.4747 0.7155 0.1100 0.2932

0.5 0.4898 0.8604 0.1378 0.4711

0.01 1.2889 3.3438 0.1744 2.2178
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