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Acoustic source localization using distributed microphone array is a challenging task due to the influ-
ences of noise and reverberation. In this paper, acoustic source localization using kernel-based extreme
learning machine in distributed microphone array is proposed. Specifically, the space of interest is di-
vided into some labeled positions, and the candidate generalized cross correlation function in each node
is treated as the feature mapped into the hidden nodes of extreme learning machine. During the training
phase, by the implementation of kernel function, the output weights of the classifier are calculated and
do not need to be tuned. After the kernel-based extreme learning machine (K-ELM) is well trained, the
measured generalized cross correlation data are fed into the K-ELM classifier, and the output is the es-
timated acoustic source position. The proposed method needs less human intervention for both training
and testing and it does not need to calibrate the node in advance. Simulation and real-world experimental
results reveal that the proposed method has extremely fast training and testing speeds, and can obtain
better localization performance than steered response power, K-nearest neighbor, and support vector
machine methods.

Keywords: extreme learning machine; acoustic source localization; distributed microphone array; gen-
eralized cross correlation function.

1. Introduction

The position of acoustic source is widely used in
many audio and multimedia applications. It is a chal-
lenging task to localize the acoustic source in rever-
berant and noisy conditions. Distributed microphone
array (DMA) is a promising approach for acoustic
capture and processing systems. Due to the uncon-
strained network structure and flexible deployment,
DMA has been widely used in video conference sys-
tems, speech enhancement, sound source localization,
speaker tracking, security monitor, sniper detection,
etc. (Hengy et al., 2016; Tian et al., 2015; Wan, Wu,
2013; Zhang et al., 2016).

The existing acoustic source localization methods
can be divided into two categories: the indirect and di-
rect methods. The indirect methods usually utilize the
range information between the source and the nodes,
e.g. time difference of arrival (TDOA), direction of

arrival (DOA), and time of arrival (TOA, Canclini
et al., 2015; Kan et al., 2015), then the acoustic source
position is found by geometrical derivation, that is,
by solving a set of equations to compute the inter-
section point in the space. Traditional signal process-
ing methods such as the least square (LS) and maxi-
mum likelihood (ML) can be used to locate the acous-
tic source position, but they strongly rely on the as-
sumptions of signal models and accurate estimations
of TDOA, DOA, and TOA. The key for obtaining an
accurate source position while using these methods is
the exact estimation of the range parameters. They
only work well in relatively moderate environments, i.e.
low reverberation and weak background noise condi-
tions, otherwise their performance will degrade rapidly.
These indirect methods can localize the acoustic source
position by using complex algorithms at the expense
of huge computational cost. In addition, the indirect
methods for acoustic source localization usually need
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to know the node microphone positions in advance,
leading to the cumbersome process of node calibration
(Crocco et al., 2012; Khanal et al., 2013).

The direct methods include received signal strength
(RSS), steered response power (SRP), and neural net-
work methods. The direct acoustic source localization
methods usually divide the space of interest into some
candidate positions. The acoustic source position is es-
timated by searching all the candidate positions and
finding out the one that best explains the measured
data (Ho, 2012; Lim et al., 2015; Nunes et al., 2014).
Compared with the indirect localization methods, the
direct localization method does not need to locate
the nodes in advance, which helps avoid the cumber-
some calculation of node calibration. Nakano et al.
(2009) proposed an artificial neural network (ANN)
method to obtain the position and orientation of an
acoustic source, where the best combination of param-
eters of time difference and microphone positions are
regarded as the input of the ANN, and the position
and orientation of a directional acoustic source are
treated as the output. Zhang et al. (2013) proposed
an acoustic source localization method based on mi-
crophone clustering and back-propagation (BP) net-
work, where the clustering technique is first used to
divide the microphones into several clusters, then the
microphone clusters close to the acoustic source are se-
lected by energy, and finally, the TDOAs in the selected
microphone clusters are fed into the BP network for
source position estimation. These two direct localiza-
tion methods can estimate the acoustic source position,
but need more complex preprocessing for the input of
ANNs. Xiao et al. (2015) proposed a learning-based
approach to estimate the DOA in noisy and reverber-
ant environments by an 8-channel circular array. The
features are first extracted from the generalized cross-
correlation (GCC) vectors, and a multilayer perception
neural network is used to learn the nonlinear mapping
from such features to the DOA. In recent years, re-
searchers investigated a variety of acoustic source lo-
cation methods based on deep learning. The convolu-
tional neural network (CNN) framework is often used
to obtain the source position (Ferguson et al., 2018;
Salvati et al., 2018). In (Vera-Diaz et al., 2018), the
acoustic source is localized based on CNN approach
by directly using the audio signal as the input infor-
mation. These learning-based methods need many pa-
rameters to be tuned, which is cumbersome and takes
a long time to train; moreover, the localization ac-
curacy is not good enough. To overcome the weak-
nesses of huge time consuming and large human inter-
vention in a node, acoustic source localization using
kernel-based extreme learning machine (K-ELM) in
distributed microphone array is proposed in this paper.

Extreme learning machine (ELM) is a single-hidden
layer feedforward neural network (SLFN), where learn-
ing is made without iterative tuning (Huang et al.,

2012). It can be used for classification and regres-
sion. The direct localization methods usually divide
the space of interest into some candidate positions,
and find the one that best explains the measured data.
Acoustic source localization can be viewed as a multi-
classification problem. Considering the fact that ELM
can be used for classification at extremely fast speed,
it is exploited to locate the acoustic source. Different
from the traditional feedforward neural network the-
ories that all the parameters of the network need to
be turned to minimize the cost function, ELM shows
that the hidden node parameters can be initialized ran-
domly and the output weights can be analytically de-
termined by using the least square method (Principi
et al., 2015). The learning speed of the ELM is signifi-
cantly faster than those of traditional learning methods
(Kongsorot et al., 2019). As the hidden layer feature
mapping is unknown in advance, the kernel-based ELM
in (Huang et al., 2012) is used to estimate the acoustic
source position in this paper.

The localization performance can be improved both
in the feature extraction procedure and in the clas-
sifier (Gu et al., 2015). A good feature is important
to obtain better performance. TDOA is a characteris-
tic parameter reflecting the relationship between the
acoustic source and the node. The GCC is a popu-
lar method for calculating the time delay between the
microphones in a node. Generally, the real time delay
corresponds to the largest peak of GCC under ideal
conditions, but may be no longer the largest one due
to the influences of noise and reverberation. As the
GCC contains the information about the position re-
lationship of source and nodes, it is a good feature to
map to the acoustic source position.

In this paper, the extreme learning machine is ex-
ploited to locate acoustic source, and the acoustic
source localization using kernel-based extreme learn-
ing machine in DMA is proposed. Each node in the
DMA is only equipped with one pair of microphones
and does not need to be calibrated in advance. First,
the space of interest is split into some candidate po-
sitions. The candidate GCCs calculated in each node
are concatenated and chosen as a feature to map the
acoustic source position. Then the K-ELM classifier
is trained and the optimal parameters are chosen by
cross-validation. Finally, the measured data is fed into
the trained K-ELM classifier and the output is the esti-
mated acoustic source position. The proposed method
has a lower time consumption and needs less human in-
tervention for training and testing. Besides, it can ob-
tain enough localization accuracy and is robust against
noise and reverberation.

The rest of the paper is structured as follows. Sec-
tion 2 presents the related works of GCC function
and K-ELM. Section 3 describes the proposed acoustic
source localization method using K-ELM. In Sec. 4, the
results of the simulation and real-world experiments



R. Wang et al. – Acoustic Source Localization Using Kernel-based Extreme Learning Machine. . . 69

are presented and discussed. Finally, some conclusions
are drawn in Sec. 5.

2. Generalized cross-correlation function and
kernel-based extreme learning machine

2.1. Generalized cross-correlation function

The generalized cross-correlation function has been
widely used for estimating time difference of arrival,
and it is the basis for many localization algorithms.

Considering the direct path, the signal emitted
from an acoustic source in the presence of noise at
two spatially separated microphones in the i-th node
can be mathematically modeled as (Knapp, Carter,
1976)

⎧⎪⎪⎨⎪⎪⎩

xi,1(t) = s(t) + ni,1(t),
xi,2(t) = αs(t + τ) + ni,2(t),

(1)

where s(t) is the source signal received in the micro-
phone one of the i-th node, α is the attenuation coef-
ficient relative to the first microphone, τ is the time
difference between the two microphones in the i-th
node, and ni,1(t) and ni,2(t) are real, jointly station-
ary noises. Signal s(t) is assumed to be uncorrelated
with noises ni,1(t) and ni,2(t).

The GCC function of the signals recorded by two
microphones in the i-th node is expressed as

R(τ) = 1

2π

+∞

∫
−∞

Ψi,1,2(ω)Xi,1(ω)X∗

i,2(ω)ejωτ dω, (2)

where Xi,1(ω) and Xi,2(ω) denote the Fourier trans-
form of signals xi,1(t) and xi,2(t) recorded by micro-
phones 1 and 2 in the i-th node, respectively; ω is the
angular frequency, and [⋅]∗ stands for the complex con-
jugate operation. The weighting function Ψi,1,2(ω) is
designed to optimize a given performance criteria.

Different functions were proposed in the literature,
and among all of them, the phase transform (PHAT),
defined as

Ψi,j(ω) =
1

∣Xi(ω)X∗

j (ω)∣
, (3)

has been found to perform well for acoustic localiza-
tion in reverberant environments, leading to the GCC-
PHAT method (Knapp, Carter, 1976).

2.2. Brief description of ELM and K-ELM

ELM was originally developed for the feedforward
neural networks (SLFNs) and then extended to the
“generalized” SLFNs. It has been proven to provide
good generalization performance at extremely fast
learning speed (Huang et al., 2006). The following is
a brief description of ELM given by (Huang et al.,
2006).

The ELM architecture is composed of three parts:
input, hidden, and output layers. Different from the
common understanding of learning, the hidden layer
of ELM does not need to be tuned. One of the char-
acteristics of ELM is that all the parameters of the
hidden layer can be randomly generated and can be
independent of the training samples (Huang et al.,
2011). The minimal norm least square method instead
of the standard optimization method was used in the
implementation of ELM (Huang et al., 2006). Assume
there are K arbitrary samples (xj , tj), where xj =
[xj1, xj2, ..., xjm]T ∈ Rm and tj = [tj1, tj2, ..., tjn]T ∈
Rn, here j = 1,2, ...,K; m and n are the number of
input nodes and output nodes, respectively. The stan-
dard ELM with L hidden neurons can approximate
these K samples with zero error such that

L

∑
i=1

βiG(wi, bi,xj) = tj , j = 1,2, ...,K, (4)

where wi = [wi1,wi2, ...,wim]T is the weight vec-
tor connecting the input nodes and the i-th hidden
node, bi is the threshold of the i-th hidden node,
G(wi, bi,xj) is the output of the i-th hidden node in
terms of xj , βi = [βi1, βi2, ..., βin]T is the weight vector
connecting the i-th hidden node and the output nodes.
Equation (4) can be rewritten as

Hβ = T, (5)

where

H = [h(x1), ...,h(xK)]T

=

⎡⎢⎢⎢⎢⎢⎢⎣

G(w1, b1,x1) ⋯ G(wL, bL,x1)
⋮ ⋯ ⋮

G(w1, b1,xK) ⋯ G(wL, bL,xK)

⎤⎥⎥⎥⎥⎥⎥⎦

, (6)

β = [β(x1), ..., β(xK)]T (7)

and
T = [t(x1), ..., t(xK)]T. (8)

As the hidden nodes can be randomly generated,
the only unknown parameter is the output weight vec-
tor between the hidden layer and the output layer,
which can simply be resolved by ordinary least square
directly. The least square solution of the output weight
vectors can be solved as

β̂ = H†T, (9)

where H† is the Moore-Penrose generalized inverse of
matrix H. In order to improve the stability of ELM,
when HHT is non-singular, we can have

β = HT ( I
λ
+HHT)

−1

T (10)
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where λ is a positive value. The corresponding output
function of ELM is

f(x) = h(x)β = h(x)HT ( I
λ
+HHT)

−1

T. (11)

Huang et al. (2012) also studied the kernel-based
ELM. If the hidden layer feature mapping h(x) is un-
known, instead its corresponding kernel K(u, v), the
kernel matrix for ELM is denoted as

Ω = HHT ∶ Ωi,j = h(xi)h(xj) =K(xi,xj). (12)

In this special kernel implementation of ELM, the
feature mapping h(x) does not need to be known to
users. It is assumed as a radial basis function (RBF)
in this work, i.e. K(u, v) = exp(−γ∣∣u − v∣∣2), where γ
is the kernel parameter. The output function of the
kernel-based ELM can be written compactly as

f(x) = h(x)HT ( I
λ
+HHT)

−1

T

=

⎡⎢⎢⎢⎢⎢⎢⎣

K(x,x1)
⋮

K(x,xK)

⎤⎥⎥⎥⎥⎥⎥⎦

T

( I
λ
+Ω)

−1

T. (13)

The kernel function can be applied to train the
kernel-based ELM model when the hidden layer fea-
ture mapping h(x) is unknown. The K-ELM algo-
rithm does not need to consider the number of hidden
nodes and only concerns the selection of the kernel
function and the input data (Cheng et al., 2019). Let
Wk denote the output weight, which is expressed as

Wk = ( I
λ
+Ω)

−1

T. (14)

It can be obtained during the training phase. After
the model training is completed, the trained K-ELM
classifier can be used for online classification. The mea-
sured input data are fed into the classifier and the out-
put can be expressed as

f(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

K (x,x1)
⋮

K (x,xK)

⎤⎥⎥⎥⎥⎥⎥⎦

T

Wk. (15)

As the feature mapping is usually unknown to
users, the kernel-based ELM is suitable to real appli-
cations and is used in this paper.

3. Acoustic source localization using K-ELM

3.1. Problem formulation

In order to estimate the acoustic source position,
the area of interest is divided into some grids. The

goal is to find the position that best explains the GCC
feature concatenated from the nodes.

There are N nodes in a DMA placed around the
region of interest, where each node contains a pair of
synchronized microphones, the intra-node distance Lj
is known, and the node positions may be unknown.
Assume that the coordinate of the unknown source
position is S = [x, y, z]T, the coordinate of the j-th
node is Pj = [xj,0, yj,0, zj,0]T, the h-th microphone in
the j-th node is is Pj,h = [xj,h, yj,h, zj,h]T, the node in-
dex j = 1,2, ...,N ; the microphone index in each node
h = 1,2. The distances from S to Pj,1 and Pj,2 are de-
noted as rj,1 and rj,2, respectively. The acoustic source
and node positions are shown in Fig. 1. The sampling
frequency is fs, the sound speed is c, the received sig-
nal in microphone Pj,h is fj,h(t), and the GCC in the
j-th node is Rj(ω).

Fig. 1. Acoustic source and node microphone positions.

3.2. Localization by K-ELM

The TDOA reflects the relationship between the
acoustic source and node microphone positions.
The GCC used for estimating the TDOA is treated as
a feature to map to the source position. According to
the triangular relationship, the absolute value of the
range difference between rj,1 and rj,2 should be less
than Lj . Hence, the candidate TDOAs should satisfy
the following constraint, i.e.

τ ∈ {−τmax, τmax}, (16)

where τ is the candidate TDOA, and τmax = Ljfs/c
is the maximum possible TDOA of the j-th node.
Accordingly, the GCCs correspond to the candidate
TDOAs at the j-th node satisfying the following con-
straint, i.e.

Rcj ∈ {Rj,τ}, (17)
where Rcj is the set of candidate GCCs at the j-th node,
and Rj,τ is the correlation coefficient corresponding to
the TDOA in set τ . Hence, the 2τmax + 1 correlation
coefficients, i.e., candidate GCCs, contain useful infor-
mation of TDOA. Let us define

Rc = vec ({Rcj}), (18)

where the vec operation denotes the concatenation of
candidate GCCs of all nodes. The concatenated GCCs
Rc is treated as an input and fed into the network.
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The K-ELM based acoustic source localization con-
sists of two phases: offline training and online local-
ization. The acoustic source region of interest is first
divided into some grids, where each grid is labeled
by its coordinate. The set of grid points is denoted
as Sg, and the coordinate of grid points is denoted as
Sgi , i = 1, ..., ∣Sg ∣, where ∣ ⋅ ∣ denotes the cardinality of
a set and the number of the grid points is ∣Sg ∣. The
source localization boils down to finding the most pro-
bable point from all the labeled points. The nodes in
DMA are placed and fixed at some positions. For con-
venience, the nodes are usually placed around the
concerned region.

During the offline training phase, the acoustic
source signals are played at each labeled point in dif-
ferent noise and reverberation conditions. The received
signals from all the labeled positions at the j-th node
are expressed as fgj,h(t), and are treated as training
audio data. The input of the K-ELM is the concate-
nated candidate GCCs calculated from the training
audio data, and the expected output of the K-ELM
classifier is the corresponding coordinate of the acous-
tic source. Multiple candidate GCC vectors calculated

Algorithm 1: Acoustic source localization by using K-ELM.
N nodes of a DMA are placed around the region of interest. The region of interest is divided into some grids, and labeled
by the coordinate Sgi , i = 1, ..., ∣Sg ∣. The training audio data of the received signals from the labeled positions at the j-th
node are fgj,h(t).
Step 1: Construct the training set and choose the kernel parameters.
(1) Calculate the candidate TDOAs of fgj,h(t) under different SNR and reverberation conditions by using GCC function

at each node

R(τ) =
1

2π

+∞

∫
−∞

Ψj,1,2(ω)Xj,1(ω)X
∗

j,2(ω)e
jωτ dω,

where

Ψj,1,2(ω) =
1

∣Xj,1(ω)X∗

j,2(ω)∣
.

Concatenating the candidate GCCs of all nodes, we have
Rc

= vec({Rcj}),
where
Rcj ∈ {Rj,τ}, τ ∈ {−τmax, τmax}, τmax = Ljfs/c, j = 1,2, ...,N ,

(2) Construct the training data set Φg = {pm, tm∣m = 1, ...,M}, where pm = Rc is the m-th column of input matrix P,
tm = Sgm is the m-th column of output matrix T, and M is the number of training samples.

(3) The input of the classifier is Rc, and the output is the corresponding acoustic source position. Let the RBF kernel
K(u, v) = exp (−γ∣∣u−v∣∣2) be the kernel function of K-ELM. Choose the optimal parameters λ and γ by cross-validation
technique.

Step 2: Train K-ELM classifier.
Input: Φg, λ, γ and K(u, v) = exp (−γ∣∣u − v∣∣2).
Output: Wk.
Ω =HHT

∶ Ωi,j = h(xi)h(xj) =K(xi,xj),

Wk
= (

I
λ
+Ω)

−1

T.

Step 3: Online acoustic source localization.
The measured concatenated candidate GCCs x is fed into the trained K-ELM classifier, and the output is the estimated
acoustic source position.

f (x) = [K (x,x1) , ...,K (x,xM)]Wk.

in each node are generated to form a training sam-
ple vector. After that, all the training samples calcu-
lated from the training audio data are treated as input
to feed into the K-ELM model. The training data set
is Φg = {pm, tm∣m = 1, ...,M}, where pm = Rc is the
m-th column of the input matrix P, tm = Sgm is
the m-th column of the output matrix T, andM is the
number of samples in the training set. As the cross-
validation can be used to assess the performance of
the classifier when the trained system is generalized
to an independent data set, the parameters λ and γ
are selected by the cross-validation technique (Stone,
1974). Then, the output weight of K-ELM classifier can
be calculated by Eq. (14). After the K-ELM classifier
has been well trained, it can be used for online source
localization.

During the online localization phase, the concate-
nated candidate GCCs are calculated from the received
audio data and fed into the trained K-ELM classi-
fier. The output of the K-ELM classifier is the esti-
mated source position and can be obtained by Eq. (15).
The detailed steps of acoustic source localization with
K-ELM are summarized in Algorithm 1.
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The extreme learning machine based acoustic
source localization method in a distributed microphone
array can obtain a good localization performance with
an extremely fast learning speed. Moreover, it does not
need to calibrate the node positions of the microphone
array in advance, and is robust against noise and re-
verberation.

4. Experimental results and discussion

In order to evaluate the performance of the pro-
posed acoustic source localization method based on
K-ELM, the simulation and real-world experiments are
carried out to compare different localization methods.
The steered response power is a rather common source
localization method due to its robustness against re-
verberation and noise. The classical steered response
power (C-SRP) method can be implemented in two
steps (Lima et al., 2015):

(1) computation of the GCC function between the sig-
nals acquired by each microphone pair;

(2) exhaustive search for the source location over
a grid of points.

The K-nearest neighbor (KNN) classification is
one of the most fundamental and simple classification
methods, and support vector machine (SVM) is one
of the most popular classifiers. They both have been
widely used in machine learning applications. Hence,
the K-ELM acoustic source localization is compared
with C-SRP, KNN, and SVM methods. Variations of
the simulated data are made with a different number
of training samples, reverberation times, and SNRs.
Besides, the computational times of these compared
methods are given to evaluate the efficiency. The sim-
ulation and real-world experiments are performed and
a discussion of the results is presented in this section.

4.1. Simulation setup

The Image model has been widely used due to
its ability to simulate the indoor sound field (Allen,
Berkley, 1979). Hence, in this simulation, a rever-
berant room of 6× 5× 3 m is simulated with the Image
model. The room setup is shown in Fig. 2, which is
composed of 8 nodes, and each node consists of two mi-
crophones with a known distance of 0.2 m. The source
positions are confined to a 4.5× 3.5 m region in the cen-
ter of the room, and the height of the source is set at
1.6 m. The source positions are divided into two sets:
the training source positions for training the K-ELM
model and the testing source positions to evaluate the
localization performance. The 63 training source loca-
tions are labeled by their coordinates and uniformly se-
lected, such that the space between adjacent locations
is 0.5 m. The training sample set consists of the con-
catenated candidate GCCs from the 63 labeled source

Fig. 2. Acoustic source and node microphone layout.

positions. Besides, there are 63 testing sources with
additional deviations in the same region, where the
deviation of the testing source positions is randomly
generated with a uniform distribution. The positions of
testing source are the sum of training source positions
and the corresponding biases. The sampling frequency
is 48 kHz and the frame size Lf is 1024 samples, about
21 ms. The reverberation time T60 is set from 0.1 s to
0.6 s, and the SNR is set from 5 dB to 30 dB. The
acoustic source is a female voice. All the evaluations
are carried out in MATLAB (2014a) environment run-
ning on an Intel Core i7, 2.2G CPU with 16G RAM.

The root-mean-square error (RMSE), classification
accuracy, and computational time are used to evalu-
ate the performance of the acoustic source localization
methods. Let J denotes the number of testing sources.
The RMSE reflects the difference between the real lo-
cation coordinates x and the estimated location coor-
dinates x̂, and is defined as

RMSE =
¿
ÁÁÀ 1

J

J

∑
j=1

∥xj − x̂j∥2. (19)

The classification accuracy is also used to measure
the localization accuracy of the system. It is treated
as a correct classification while the estimated test-
ing source position is classified into the nearest labe-
led training source position. Assume that the number
of correct classifications is Zr, and the total number of
testing samples is Z. The classification accuracy r is
expressed as

r = (Zr
Z

) ⋅ 100%. (20)

4.2. Synthetic data

The simulated data is synthesized by convolving
clean speech signals with the room impulse responses
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(RIRs) measured from the array based on the Image
method, and the supplementary noises are added to
the received signals in each node. The acoustic source
produces a phonetically rich speech signal of 0.23 s in
each training acoustic source position. The training
data is the candidate GCCs of the received signals in
each node from the labeled source positions. The test-
ing data is the candidate GCCs of the received signals
in each node from the test source positions. In order
to evaluate the performance of the proposed method,
two kinds of training sets are used to train the system,
where one training set includes the candidate GCCs
of received signals in some given SNR cases; the other
training data set includes the candidate GCCs under
different SNRs. As the silence portions are not suitable
to train the K-ELM model, only the GCC vectors ob-
tained from the speech segments are used for training.

4.3. Model construction

In K-ELM, the number of input neurons is equal to
the number of features in the input data, i.e., 440 in our
case. The training set consists of the candidate GCCs
of the received signals from 63 different labeled posi-
tions, and the labeled source coordinates are treated as
output. Hence, the number of output neurons is equal
to the number of classes, i.e., 63 in this experiment.
Since the RBF kernel provides a lower error for the
correct maps (Salvati et al., 2016), it is used as acti-
vation function for K-ELM in all experiments.

According to Huang et al. (2012), the accuracy can
be improved with the regularization factor λ and ker-
nel parameter γ, which can optimize the architecture
of the learning model. Hence, the parameters λ and γ
should be selected properly. The training data are di-
vided into two subsets with 80% of the data for train-
ing and 20% for testing, with no overlap. The cross-
validation technique is used to determine user-specified
parameters λ and γ. Then the best parameter setting
of λ and γ with optimal performance can be selected.
To tradeoff between accuracy and computation time,
the parameters λ and γ are set to λ = 0.2 and γ = 1,
and are used in the next simulation experiments.

The classical steered response power (C-SRP)
method searches the grid of predefined spatial points
to estimate an acoustic source position, as shown in
Fig. 2, where each training source position represents
the spatial point.

The parameters of K-nearest neighbor (KNN) clas-
sification method include the number of nearest neigh-
bors and the type of measure distance. In the following
experiments, the number of nearest neighbors and the
type of measure distance are set to three and 2-norm,
respectively.

The RBF kernel is used for the support vector ma-
chine (SVM) classifier in the subsequent tests. The
likelihood parameter µ and kernel parameter γ are ob-

tained by using a cross-validation technique. Hence,
a good choice is given by setting µ = 0.5 and γ = 1.2
with the cross-validation rates of 80% and 20%. This
setup is used in the following experiments. The SVM
classifier is implemented using ’libsvm’ software pack-
age (Chang, Lin, 2011).

4.4. Comparison of C-SRP, KNN, SVM,
and K-ELM method

To evaluate the performance of the localization
methods in noisy conditions, the experiments of
four methods with a different number M of training
samples when T60 is 0.3 s are carried out, and the lo-
calization results are shown in Figs 3 and 4.

Fig. 3. RMSE of different methods for different SNRs with
T60 = 0.3 s and M = 315.

Fig. 4. RMSE of different methods for different SNRs with
T60 = 0.3 s and M = 630.

By observing Figs 3 and 4, we can see that the
RMSEs of the learning-based localization methods de-
crease with the increasing number of training samples.
When M = 315, the C-SRP method performs slightly
better than KNN method, while when M = 630, the
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RMSE of KNN decreases and is lower than that of C-
SRP method. The K-ELM method can achieve compa-
rable performance with SVM method, and the RMSE
of K-ELM decreases to the boundary gradually.

To evaluate the localization methods in reverber-
ation conditions, when SNR is 15 dB, the compared
methods for different reverberation times and number
M of training samples are executed and the results are
shown in Figs 5 and 6.

Fig. 5. RMSE of different methods for different T60s with
SNR = 15 dB and M = 315.

Fig. 6. RMSE of different methods for different T60s with
SNR = 15 dB and M = 630.

By comparing Fig. 5 and Fig. 6, we can observe
that the RMSE of KNN decreases with the increasing
number of training samples. When the reverberation
time is less than 0.2 s, the C-SRP method can localize
the source position with small error. With the increase
of T60, the localization error becomes larger gradu-
ally. The performance of these learning-based meth-
ods has small fluctuations. Among them, the RMSEs
of K-ELM and SVM are comparable and have similar
trends for different T60s, and they both have better
performance than that of KNN.

The classification accuracy is another metric to
evaluate the localization performance. When T60 =
0.3 s, SNR = 15 dB, andM = 630, the RMSE and test-
ing accuracy for the compared methods are given in
Table 1.

Table 1. RMSE and classification accuracy for the com-
pared methods with T60 = 0.3 s, SNR = 15 dB, andM = 630.

Metric C-SRP KNN SVM K-ELM
RMSE [cm] 29.91 24.81 23.72 23.95

Testing accuracy [%] 66.67 63.49 73.02 69.84

As seen from Table 1, the RMSE of KNN is lower
than that of C-SRP method, and K-ELM outperforms
KNN. Moreover, K-ELM has comparable performance
with SVM. The testing accuracy of K-ELM is slightly
lower than that of SVM and higher than that of C-SRP
and KNN methods.

One advantage of K-ELM with respect to other
methods is its extremely fast training speed. In or-
der to evaluate the execution efficiency of the com-
pared methods, the training time and testing time of
these methods are given in Tables 2 and 3.

Table 2. Training and testing time of the compared
methods with SNR = 15 dB, T60 = 0.3 s and M = 630.

Metric C-SRP KNN SVM K-ELM
Training time [ms] – – 1417.5 389.0
Testing time [ms] 593.7 167.8 54.5 1.1

Table 3. Training and testing time of the compared
methods with SNR = 15 dB, T60 = 0.5 s and M = 630.

Metric C-SRP KNN SVM K-ELM
Training time [ms] – – 1498.8 382.5
Testing time [ms] 592.3 172.2 54.9 1.6

From Tables 2 and 3, it can be seen that, when
SNR = 15 dB and M = 630, among these learning-
based methods, the testing time of KNN is the longest
for different T60s, next is the testing time of SVM, and
K-ELM has a significantly less testing time consump-
tion. In addition, the training time of K-ELM is far
shorter than that of SVM. Hence, the proposed K-ELM
acoustic source localization method can obtain a high
computational speed in real applications.

To evaluate the performance of source localization
methods in noisy and reverberant conditions, the train-
ing samples generated from different SNRs are used for
training the K-ELM system. To obtain good localiza-
tion performance under different scenarios, a source
signal with a length of 0.128 s is used for testing. The
average RMSEs of the compared methods for different
T60s and number M of training samples are shown in
Fig. 7. The simulation results with T60 = 0.3 s are listed
in Tables 4 and 5.
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Fig. 7. RMSEs of the compared methods for different T60s
when the numbers of training samples M are 1890 and

3780.

Table 4. RMSE, testing accuracy and testing time
of the compared methods with T60 = 0.3 s and M = 1890.

Metric C-SRP KNN SVM K-ELM
RMSE [cm] 21.57 22.15 20.36 20.00

Testing accuracy [%] 60.84 67.46 76.98 78.04
Testing time [ms] 3593.5 2353.6 882.6 7.5

Table 5. RMSE, testing accuracy and testing time
of the compared methods with T60 = 0.3 s and M = 3780.

Metric C-SRP KNN SVM K-ELM
RMSE [cm] 21.57 18.60 20.99 19.86

Testing accuracy [%] 60.84 72.22 78.04 78.84
Testing time [ms] 3593.5 5289.4 1764.9 8.6

According to Fig. 7, by using a longer source signal,
the average RMSEs of all the methods decrease. Speci-
fically, the RMSE of C-SRP rises with the increase of
T60. When M = 1890, the RMSE of C-SRP is lower
than that of KNN with T60 < 0.3 s, but higher than
that of KNN with T60 > 0.3 s. When M = 3780, the
RMSE of KNN under different T60s is lower than that
when M = 1890. Compared with SVM, the RMSE of
K-ELM is slightly lower than that of SVM in a diffe-
rent number of training samples and T60s except when
T60 = 0.1 s. The RMSE of SVM with M = 1890 is
slightly lower than that with M = 3780 when T60 is in
the range of 0.2 s to 0.5 s. The RMSE of K-ELM with
M = 1890 is similar to that with M = 3780, and it has
a small fluctuation for different T60s, which shows that
the proposed K-ELM source localization method can
obtain enough localization accuracy when the number
of training samples M is around 1890.

Localization accuracy and time cost are important
measurement indexes for localization methods. From
Tables 4 and 5, we can see that the testing time of KNN
with M = 3780 is almost twice long with M = 1890.

KNN has to calculate similarity sample by sample,
which leads to its large time consumption. Moreover,
the computation time of KNN is proportional to the
number of samples. On the other hand, K-ELM has
the least testing time consumption. By the implemen-
tation of kernel function, the hidden layer mapping
can be unknown and the output weight is easy to cal-
culate and does not need to be tuned. Compared with
SVM, K-ELM method can acquire slightly higher test-
ing accuracy with a significantly shorter testing time.
Considering the localization accuracy and time con-
sumption, K-ELM has a better performance than other
compared methods.

4.5. Real-world experiments

The real-world experiments are carried out in
a conference room of a size of 8× 6× 3 m, where a rect-
angular area of the size of 4.5× 3.5 m is used to conduct
the following experiments as shown in Fig. 8. The lay-
out of the node microphones and the source positions
used for training and testing in real-world experiments
are given in Fig. 9.

Fig. 8. Real-world experimental environment.

Fig. 9. Layout of node microphones and source positions
used for training and testing in real-world experiments.
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The distributed microphone network comprises
seven pairs of microphones (Model: GK-1000) at
the height of 1.2 m, and the intra-node distance is
0.2 m. The acoustic source is a sphere loudspeaker
(Model: BSWA-OS002) driven by a power ampli-
fier (Model: FEILE USB-180M). There are 21 training
source positions which are labeled by their coordinates,
and the space between the adjacent positions is 0.5 m.
Besides, 6 testing source positions are randomly cho-
sen from the area of interest and used for testing. The
parameters λ and γ used in K-ELM are set as λ = 1 and
γ = 10. And the parameters of SVM are set to µ = 1
and γ = 0.05. The number of nearest neighbors and
the type of measure distance parameters in the KNN
method are set to 3 and 1-norm, respectively. The
other configurations are the same as the simulation.
The source signal is taken from the TIMIT database
and the sampling frequency is 48 kHz. The audio sig-
nals for training and testing are collected by a data ac-
quisition card (Model: USB-1608FS-Plus). The signal
with a length of 1.07 s is played by the sound source
at each training position, and the testing audio sig-
nal with a length of 0.21 s is emitted at each testing
position. All the received signals are recorded at each
node microphone. The reverberation time of the con-
ference room is about 0.45 s, which is measured as the
60 dB decay period for the energy of a high-level white
noise signal emitted by a loudspeaker (Model: BSWA-
OS002) after it is shut down. The ambient noise mainly
comes from the power amplifier and the air conditioner,
and the noise level measured by a sound pressure meter
(Model: TES1357) is 42 dB (A-weight).

The localization results in the real-world experi-
ments are depicted in Fig. 10. From the results it can
be seen that the proposed method can localize the
acoustic source successfully in real-world noisy and re-
verberant environments. Compared with other meth-
ods, K-ELM can obtain the smallest RMSE at the
fastest speed.

Fig. 10. Localization results in real-world experiments.

5. Conclusion

The acoustic source localization based on K-ELM
in distributed microphone array is proposed in this pa-

per. The space of interest is first divided into some la-
beled positions, and the candidate GCCs calculated in
each node are concatenated and treated as a feature to
be fed into the K-ELM system, and then mapped into
the source position. The output weight is calculated by
implementing the kernel function and does not need
to be tuned. After the K-ELM model is well trained,
the acoustic source position is estimated by feeding
the measured candidate GCCs into the K-ELM classi-
fier. This method can obtain a good localization perfor-
mance with an extremely fast learning speed. Besides,
it does not need to know the node positions in advance
and is robust against noise and reverberation. Sim-
ulation and real-world experimental results indicate
that compared with C-SRP, KNN, and SVM meth-
ods, the proposed method gives a better performance
in terms of both the computational efficiency and the
localization accuracy. In the future, the multiple sound
source localization methods will be studied. Besides,
the deep neural network and semi-supervised learn-
ing can be used for acoustic source localization. The
multi-modal based sound source location and tracking
by fusing audio and video information is also an im-
portant issue.
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