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Precise measurement of the sound source directivity not only requires special equipment, but also
is time-consuming. Alternatively, one can reduce the number of measurement points and apply spatial
interpolation to retrieve a high-resolution approximation of directivity function. This paper discusses
the interpolation error for different algorithms with emphasis on the one based on spherical harmonics. The
analysis is performed on raw directivity data for two loudspeaker systems. The directivity was measured
using sampling schemes of different densities and point distributions (equiangular and equiareal). Then,
the results were interpolated and compared with these obtained on the standard 5○ regular grid. The
application of the spherical harmonic approximation to sparse measurement data yields a mean error of
less than 1 dB with the number of measurement points being reduced by 89%. The impact of the sparse
grid type on the retrieval error is also discussed. The presented results facilitate optimal sampling grid
choice for low-resolution directivity measurements.
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1. Introduction

The directivity of a sound source is one of its most
important characteristics, and its determination is ne-
cessary for accurate predictions of sound wave pro-
pagation. However, analytical formulae for the sound
source directivity have only been derived for simple
sources such as multipoles or for sources with high
levels of symmetry (e.g., a piston vibrating in an in-
finite baffle (Rayleigh, 1945) or the outlet of an un-
baffled cylindrical wave-guide (Sinayoko et al., 2010;
Snakowska, Jurkiewicz, 2010)). Knowledge of the
directivity enables the calculation of the field inside
a duct and the radiation impedance (Snakowska
et al., 2017). Furthermore, shaping the sound source
directivity has been the subject of research concerning
reductions in environmental noise, especially aircraft
noise (Joseph et al., 1999). For more complex source
geometries, the sound source directivity has to be de-

rived by means of numerical or experimental methods
(Duan, Kirby, 2012; Lidoine et al., 2001).

Directivity measurements are commonly performed
for electroacoustic sound sources such as loudspeaker
systems or columns. Once the directivity has been de-
termined, computer models of these sources can be
created and later imported to acoustic simulation soft-
ware. The model quality impacts the reliability of the
simulation results, which is why it is important to de-
scribe these models accurately. Currently, most acous-
tical simulation software require input directivity data
to have a resolution of 5○ in both the horizontal and
vertical planes, which results in a total of over 2500
measurement points (CLF, 2004; AES, 2008). Perform-
ing measurements at such a large number of points is
very time-consuming, even when an automatic micro-
phone positioning system is used.

One way of shortening the process is to measure
the sound distribution over a sparse grid of points and
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interpolate the results. This approach can only be used
when the interpolation error is negligible for intended
application. The procedure described above is common
in head-related transfer function (HRTF) measure-
ments, which involve human subjects and thus can-
not last too long (Nishino et al., 1999). Sound source
measurements do not carry such restraints; however,
long-lasting measurement processes increase the risk of
changes in environmental conditions such as tempera-
ture or humidity. When there is no dedicated micro-
phone positioning system, performing sufficiently high-
resolution measurements is even more difficult. Fur-
thermore, the final sound receiver is very often a hu-
man, whose hearing system is imperfect and insensitive
to very small changes in volume. Thus, the question
arises of whether it is worth trading some of the accu-
racy for a reduction in measurement time.

In the case of HRTFs, one of the most popular inter-
polation methods is to express the data in the spherical
harmonic (SH) domain1. The first experiments utili-
zing this method were conducted more than 20 years
ago (Evans et al., 1998), but the topic is still preva-
lent in current research. Over the years, more specific
subjects have been considered, such as extending the
mathematical model to represent distance-dependent
HRTFs (Zhang et al., 2010), proper sampling scheme
choice (Zhang et al., 2012), or loudness stability when
using a limited set of SH (Ben-Hur et al., 2019). The
main advantage of this approach comes from the con-
tinuity of the basis functions over the sphere, which
translates to an infinite resolution. SH have also been
used to express and analyze the directivity of various
sound sources, such as loudspeaker arrays (Pasqual,
2014) or musical instruments (Shabtai et al., 2017).
Mobley utilized SH coefficients in the interpolation of
the directivity of aircraft noise, but the interpolation
was performed for changing throttle settings rather
than variations in space (Mobley, 2015). Hargreaves
provided a very brief analysis of the accuracy of map-
ping a specific sound source directivity to the SH do-
main (Hargreaves et al., 2019).

Even though SH are commonly used to express the
sound source directivity, the precision of this method,
to the best of our knowledge, has not yet been thor-
oughly investigated. This paper aims to fill this knowl-
edge gap by providing an in-depth analysis of error
obtained when applying spherical harmonic approxi-
mation to sparse measurement data instead of per-
forming high-resolution measurements. For this reason,
two exemplary sound sources were measured on dif-
ferent measurement grids: equiangular (standard) and
equiareal (regarded as the most efficient when trans-
forming the data into the SH domain (Zhang et al.,
2012)). The obtained errors are compared with those

1It is important to note that expressing data in the spheri-
cal harmonic domain in most cases leads to approximation, not
interpolation. See Subsec. 4.1.2 for more detailed explanation.

given by alternative interpolation methods, namely the
nearest neighbor, linear, and spline methods and a cus-
tom algorithm based on barycentric weights.

2. Theoretical background

Spherical harmonics are basis functions defined in
the spherical coordinate system that assign a value
to any pair of azimuth and inclination2 angles (φ ∈
[0,2π), θ ∈ [0, π]). They can be defined as both com-
plex- and real-valued functions. A complex basis is
useful for describing complex directivity, i.e., including
phase information. Here, the focus is put solely on the
magnitude, and thus the real basis is used. A real SH
of degree l and order m is defined as:

Y ml (φ, θ)≡
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where Pml is the associated Legendre function and Cml
is the normalizing factor, defined as:

Cml ≡
¿
ÁÁÀ2l + 1

4π

(l − ∣m∣)!
(l + ∣m∣)! , (2)

making the basis not only orthogonal but also or-
thonormal.

One can decompose any real spherical function
(such as the sound source directivity) f(φ, θ) into a set
of coefficients Flm, so that the following equation is
satisfied:

f(φ, θ) =
∞

∑
l=0

l

∑
m=−l

FlmY
m
l . (3)

In practical applications, the function f(φ, θ) is not
explicit and only a set of discrete values for certain
directions is known. For computational purposes, the
number of basis functions has to be limited. Assuming
sampling in K directions Ωk ≡ (φk, θk) and using all
the SH up to degree and order N (later referred to as
SH of maximum order N), Eq. (3) can be rearranged
into the discrete form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y 0
0 (Ω1) . . . Y NN (Ω1)
⋮ ⋱ ⋮

Y 0
0 (ΩK) . . . Y NN (ΩK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

F00

⋮
FNN

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

f(Ω1)
⋮

f(ΩK)

⎤⎥⎥⎥⎥⎥⎥⎦

. (4)

2Vertical angle in acoustics is usually referred to as elevation
angle ranging from −π/2 at the bottom to π/2 at the top; how-
ever, SH are commonly defined using inclination angle ranging
from 0 at the top to π at the bottom. We decided to use the latter
to avoid potential confusion caused by different SH formulae.
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Solving Eq. (4) yields a set of Flm coefficients, un-
ambiguously describing the spherical function f(φ, θ).
The SH approximation of this function can be retrieved
by a simple summation of the SH, with the coefficients
serving as weights:

fSHA(φ, θ) =
N

∑
l=0

l

∑
m=−l

FlmY
m
l . (5)

3. Data preparation

3.1. Choice of exemplary sound sources

Although many commercial sound sources files are
publicly available, bespoke measurements were per-
formed for this study for two reasons. First, this ap-
proach guarantees that no smoothing or any other
postprocessing has been applied. Second, it allows for
the use of custom sampling schemes.

To examine the influence of individual directivity
patterns on the interpolation accuracy, two exemplary
sound sources were chosen. Both incorporated two-way
active loudspeaker systems of similar, relatively small
size (approx. 20× 13× 13 cm). However, they had dif-
ferent applications: the first system (hereafter referen-
ced as loudspeaker system A) was a professional stu-
dio monitor, whereas the second one (loudspeaker sys-
tem B) was part of a low-budget stereo system. Due to
their differences in quality, the directivity characteris-
tics varied significantly (Fig. 1).

Fig. 1. Directivity balloons for the 16 kHz 1/3 octave band
for loudspeaker system A (left) and loudspeaker system B

(right).

3.2. Sampling schemes

3.2.1. Equiangular grid

Equiangular grids have always been the most com-
mon type for describing the directivity of electroacous-
tic transducers, be they sound sources or receivers.
These grids comprise points lying on the crossings of
equally spaced parallels and meridians. This is the cur-
rent standard for the sound source directivity mea-
surements (AES, 2008), and is commonly used in
loudspeaker file formats such as GLL or CLF (CLF,
2004). An equiangular grid is both relatively sim-
ple in terms of arranging measurements and provi-
des regularly sampled data, which are easier to pro-
cess. The hierarchical structure means that coarser-

resolution grids can be obtained by simple subsam-
pling. Therefore, only one 5○-resolution measurement
was performed per sound source, and then 10○ and 15○

data were extracted from the original measurements.
The main disadvantage of an equiangular grid is

its unequal distribution of points on the sphere. While
the angular difference is constant, the distance between
horizontally adjacent points becomes smaller as the el-
evation angle increases. This results in heavy oversam-
pling near the poles and much lower sampling density
near the equator. The effective resolution is thus un-
equal and varies depending on the elevation angle.

3.2.2. Equiareal grid

An alternative to an equiangular grid is an equia-
real grid, i.e., a grid where the sampling points are the
centers of zones of equal area. This provides a more
uniform representation of a spherical function, avoid-
ing oversampling near the poles.

Equiareal or almost-equiareal grids are often used
in HRTF measurements or simulations, especially in
SH-related research. Recently, Lebedev’s sampling
scheme has become popular due to its computational
advantages (Brinkmann, Weinzierl, 2018; Ben-
Hur et al., 2019), and some other designs have been
examined to take advantage of its utility (Zhang et al.,
2012). None of them, however, provides perfectly equal
area partitioning for an arbitrary number of sampling
points, and thus another sampling scheme design algo-
rithm was chosen.

The equiareal grid was constructed based on Leo-
pardi’s algorithm of the unit sphere partitioning
(Leopardi, 2006). This algorithm was published with
an associated MATLAB toolbox that allows the center
points of equal area zones to be extracted (Leopardi,
2005). Using this toolbox, two grids were designed for
the purpose of this research: one with 614 points and
one with 266 points, corresponding to the number of
sampling points in equiangular grids of 10○ and 15○

resolution, respectively3 (Fig. 2).

Fig. 2. Partitioning of the unit sphere into 266 equal zones
using Leopardi’s Recursive Zonal Equal Area Sphere Par-

titioning Toolbox (Leopardi, 2005).

3The number of points was calculated acknowledging the fact
that there is only one point per pole, as at the poles the actual
direction does not change with the change of the horizontal an-
gle.
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3.3. Measurement arrangement

The directivity measurements were performed in
the anechoic chamber at AGH UST. The chamber is
equipped with a microphone positioning system and
a turntable connected to a control system that allows
measurements to be automatically taken at any point
on a hemisphere around the sound source (Felis et al.,
2012). The microphone was located 2 m away from the
sound sources, which is enough to consider the direc-
tivity characteristics far-field.

As both of the measured loudspeaker systems were
left–right symmetric, they were placed on their side,
as shown in Fig. 3, so that the results could be mir-
rored to obtain the full-sphere directivity from a single
hemisphere measurement. The default coordinate sys-
tem was preserved, and thus the poles were located at
the sides of the source, whereas usually they lie at the
front and the back. This difference, however, should
not substantially influence the reliability of the inter-
polation accuracy assessment.

Fig. 3. Visualization of a loudspeaker system mounted on
the turntable. The black circles symbolize the loudspeakers,
of which the smaller one would be above the larger one
when the loudspeaker system is in its normal position.

The loudspeaker systems were placed on a layer of
sound-absorbing foam mounted on the turntable. The
foam had the sound absorption coefficient of close to
1 starting from the 1 kHz octave band. Thus, the re-
sults for lower frequencies may have been distorted by
reflections from the turntable, and were therefore ex-
cluded from the analysis. Directivity patterns for low
frequencies are usually close to omnidirectional and
pose less of a challenge for interpolation algorithms.

4. Computations

4.1. Spherical harmonic approximation

In this study, computations were performed using
a MATLAB toolbox developed by Politis as part of
his doctoral dissertation (Politis, 2016). The tool-
box generates SH up to a certain maximum order and
solves Eq. (4) in the least-squares sense using the fol-
lowing formula:

F = Y+f, (6)

where + denotes the Moore–Penrose pseudoinverse op-
eration and F, Y, and f denote the respective matrices
from Eq. (4).

The computations were carried out using logarith-
mic directivity values. Since the fitting is performed
in least-squares sense, it seems reasonable to minimize
the errors in decibels, not in linear values, otherwise
there would be large relative errors for directions of
weaker sound radiation (e.g. on the back of loudspeaker
systems).

4.1.1. Weights for equiangular grid

Equations (4) and (6) assume that data from all the
measurement points contribute equally to determining
the Flm coefficients. While this is justified for equiareal
grids, points on equiangular grids are not distributed
evenly, and are thus associated with zones of different
areas. For these grids, the data from points located
near the equator should be more important than very
densely arranged points near the poles. Otherwise, the
resulting approximation would be well mapped near
the poles, at the expense of low accuracy near the
equator. This can be avoided by introducing weights
to the least-squares solver. Equation (4) then takes the
form:

(YTW Y)F = YTW f, (7)

where T denotes matrix transposition and W is a di-
agonal matrix with weights for consecutive directions:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(Ω1) 0 . . . 0

0 w(Ω2) ⋮

⋮ ⋱ 0

0 . . . 0 w(ΩK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

To obtain the optimal reproduction of a spherical
function, the weights should be proportional to the
area of the zones corresponding to each of the sam-
pling points. The area of these zones varies along the
inclination angle, and for the unit sphere the weights
can be approximated as:

w(Ωk) = ∆φ sin θk∆θ, (9)

where ∆φ and ∆θ are the azimuth and inclination an-
gle resolutions, respectively, in radians. The given for-
mula is not appropriate for the poles (sin θk = 0). In-
stead, the weights can be approximated as the area of
the circle limited by the parallel at which the incli-
nation angle is equal to half the inclination resolution
(Fig. 4):

wp = π (sin
∆θ

2
)
2

. (10)

The given formulae for weights refer to approxi-
mated areas, assuming that the approximation error is
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Fig. 4. Distribution of points and their respective zones
near the pole on an equiangular grid of 15○ resolution. The
zone corresponding to the pole is approximated as a cir-
cle of the area given by Eq. (10), and the other zones are
approximated as trapeziums with areas given by Eq. (9).

negligible in the field of acoustics. The exact values
can be obtained by means of Neumann quadrature
and are of greater interest in applications requiring
much higher precision, such as in geophysics (Sneeuw,
1994).

4.1.2. Determining maximum order of spherical
harmonics

In research on similar topics, the number of sam-
pling points is usually determined based on the maxi-
mum order of SH, which is chosen according to the de-
sired maximum spatial frequency (Zhang et al., 2012;
Brinkmann, Weinzierl, 2018; Ben-Hur et al.,
2019). Here, the question is inverted – what is the ap-
propriate maximum order of SH given a certain sam-
pling scheme?

In theory, the least-squares solver can deal with any
number of basis functions. If the number of functions is
lower than the number of sampling points (an overde-
termined system), the solver will try to minimize the
error between the original data and the approximation.
Otherwise, the values at the sampling points will be
preserved and the data between them will be interpo-
lated. The latter case, however, is prone to overfitting,
and thus an overdetermined system is a more reliable
choice, even though it does not keep the original data
intact.

With SH often referred to as a 2D equivalent of
Fourier series, some analogy for equiangular grids can
be made regarding Nyquist’s sampling theorem. As an
example, a grid of 15○ angular resolution results in
360○/15○ = 24 points around the sphere in either the
horizontal or vertical plane. To avoid the aliasing phe-
nomenon, the maximum spatial frequency should be
less than half of that, i.e., no more than 11 cycles per
full rotation. The spatial frequency over the azimuthal
and inclination angles corresponds directly to the SH
order and degree, respectively, so in the case of 15○

resolution, the maximum allowed order should be 11.
Likewise, for 10○ resolution, the maximum order can
be no greater than 17. The same maximum order lim-

its of 11 and 17 were adopted for the equiareal grids
consisting of 266 and 614 points, respectively.

4.2. Alternative interpolation methods

Interpolation on the sphere can be handled as the
2D interpolation of a periodic function f(φ, θ).
The choice of algorithms acting as references for the
spherical harmonics approximation (SHA) was based
on solutions known from HRTF interpolation, which
has been more widely investigated than sound source
directivity interpolation.

The most basic interpolation method is the nearest
neighbor (NN) approach, whereby values for all the
desired points are simply copied from the closest points
on the original grid. No extra calculations are needed
beside rounding to the nearest data point, which is why
NN is sometimes referred to as naive and can serve as
a basic reference method. NN can be applied to both
regular and irregular grids; how the nearest point is
determined will change, but the core idea remains the
same.

Data from a regular grid have the same properties
as a digital image, and there are thus plenty of inter-
polation algorithms, with bilinear, bicubic, and spline
methods being the most popular. One-dimensional
versions of linear and spline interpolation have been
successfully applied in the median plane of HRTFs
(Nishino et al., 1999), and thus their 2D extensions
were chosen for comparison with the proposed method.

Interpolation algorithms for irregular grids are
more complex, as they require more universal defini-
tions. Referring to HRTFs once again, the problem of
choosing an appropriate interpolation algorithm was
tackled in a recently developed robust spatial sound li-
brary, 3D Tune-In Toolkit (Cuevas-Rodriguez et al.,
2019). The authors of this toolkit acknowledged the
advantages of SHA, but they were discouraged by po-
tential problems when using custom grids (the library
allows for importing bespoke sets of HRTFs). Instead,
they decided to use an algorithm based on barycentric
weights, which is a simplification of an interpolation
method introduced by Gamper for distance-dependent
HRTFs (Gamper, 2013). The algorithm constructs
a triangle around the interpolated point using the three
nearest points, and then calculates a value based on the
data at the triangle vertices, taking into account the
distance from each vertex to the interpolated point.
The algorithm can be used for any point distribution4,
but is potentially less effective than SHA Cuevas-
Rodriguez et al., 2019).

4For some of the interpolated points lying on the equator, the
three nearest points all lied on the equator as well and therefore
no triangle could be formed. For these points, interpolation was
performed only basing on the two nearest points and the algo-
rithm was scaled one dimension down.
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4.3. Measure of error

As measurement data are only available in certain
discrete directions, the approximation or interpolation
error can only be determined in a limited number of di-
rections. The contribution of these points to the mean
error has to be considered in a similar way as for the
approach to obtaining the coefficients Flm (see Sub-
sec. 4.1.1). The mean error measure is based on the
area-weighted spatial standard deviation introduced
by Leishman to describe the omnidirectionality of
a sound source for a given frequency band in the form
of a single value (Leishman et al., 2006). The stan-
dard deviation is replaced by the root-mean-square er-
ror to give the area-weighted root-mean-square error
(AWRMSE):

AWRMSE =

¿
ÁÁÁÁÁÁÁÀ

K

∑
k=1

wk (fa(Ωk) − fr(Ωk))2

K

∑
k=1

wk

, (11)

where fa(Ωk) are computed values (obtained by ap-
proximation or interpolation on sparse measurement
results), fr(Ωk) are reference values (obtained by mea-
surements on a finer grid), and wk are the weights de-
fined in Eqs (9) and (10). Both fa(Ωk) and fr(Ωk) are
given in decibels.

5. Accuracy of the directivity retrieval

5.1. Maximum-order-based analysis

Spherical harmonic approximation was applied to
each of eight sparse datasets (2 sound sources× 2 sam-
pling densities× 2 grid types) to obtain values on the
5○ equiangular grid. Computations were carried out
for each 1/3 octave frequency band in the range of
1–16 kHz and each possible maximum order of SH
ranging from 3 to 11 or 17, depending on the sparse
grid resolution. Figure 5 shows the results for all the
experimental setups.

In general, as expected, a higher maximum order of
SH produces a lower error. Sometimes, minor overfit-
ting occurs, but only for the highest maximum orders
of SH. AWRMSE varies significantly depending on the
original directivity patterns, which vary for different
sound sources (compare Figs 5a and 5b). The patterns
also change with frequency, tending to take increas-
ingly complex shapes with each consecutive frequency
band, which results in higher error values.

The plots that differ only in the grid type (Figs 5a
and 5c) have similar shapes, yet for the equiareal grid,
all the AWRMSE values are higher. For lower maxi-
mum orders of SH, using more densely sampled data
only improves the accuracy slightly (compare Figs 5b
and 5f). The higher resolution, however, allows for effi-

cient use of higher-order SH. In contrast, exceeding the
imposed maximum order limit results in large numeri-
cal errors for regular grids and overfitting for irregular
ones.

5.2. Comparison with alternative methods

The alternative interpolation algorithms described
in Subsec. 4.2 were applied to each of the datasets, and
the AWRMSE values for each dataset were calculated.
To present the results conveniently, the AWRMSE
values were averaged over all the analyzed frequency
bands, and these mean values (denoted as AWRMSEµ)
were subjected to further analysis. In this section,
AWRMSEµ is a single value that represents the avera-
ge error of the data on the 5○ – resolution equiangu-
lar grid obtained from a given sparse grid, for a given
sound source, and using a given method. The results
for both loudspeakers are presented in Fig. 6.

When using the averaged AWRMSE values, the
general trend of decreasing the error as the maximum
order of SH increases is even more prominent. However,
even when using the highest maximum orders, the al-
ternative interpolation methods still provide better ac-
curacy, except for the NN algorithm. As the simplest
solution to any interpolation problem, NN was con-
sidered as a benchmark in the comparison, and SHA
outperforms it even for lower maximum orders (start-
ing from 4–8, depending on the dataset).

When precision is the highest priority, the best in-
terpolation algorithms are the barycentric method (for
equiareal grids) and the linear or spline approach
(for equiangular grids). The difference in accuracy be-
tween these methods and SHA is small. Excluding the
results for NN, the absolute AWRMSEµ values for all
methods are below 1 dB for the sparser grids and be-
low 0.5 dB for the denser ones. Considering that 1 dB is
widely acknowledged as the just-noticeable difference
in human sound level perception (Fastl, Zwicker,
2006), this seems like a reasonable trade-off for reduc-
ing the number of measurement points by almost 89%
(sparser grids) and 76% (denser grids)5.

Even though SHA resulted in slightly higher mean
retrieval errors, it does not mean that this method
is necessarily worse than the alternatives. Using ba-
sis functions has several advantages, with the clearest
being the infinite resolution without the need for addi-
tional computation; once the coefficients for SH have
been determined, data for any direction can be easily
obtained. Additionally, the benefits of expressing the
sound source directivity in the SH domain have been
proven by numerous studies using this technique, some
of which have been cited in this paper.

5This trade-off should not be applied for commercial pur-
poses. Authors do not intend to encourage anybody to publicly
share interpolated directivity data in formats such as GLL or
CLF, which are meant to represent true measurement data.
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a) b)

c) d)

e) f)

g) h)

Fig. 5. Bar plots of AWRMSE values for SHA depending on maximum SH order and frequency band for different setups:
a) loudspeaker system A, 15○ equiangular grid, b) loudspeaker system B, 15○ equiangular grid, c) loudspeaker system A,
266-points equiareal grid, d) loudspeaker system B, 266-points equiareal grid, e) loudspeaker system A, 10○ equiangular
grid, f) loudspeaker system B, 10○ equiangular grid, g) loudspeaker system A, 614-points equiareal grid, h) loudspeaker

system B, 614-points equiareal grid.
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a)

b)

Fig. 6. Comparison of SHA with alternative interpolation methods at both analyzed resolutions: sparser on the left and
denser on the right. Black lines (denoted in the legend as “reg") denote results obtained from regular equiangular grids (15○

resolution on the left and 10○ on the right), whereas gray lines (denoted as “eqa”") denote results obtained from equiareal
grids with the same number of points as the corresponding equiangular grids (266 and 614, respectively): a) loudspeaker

system A, b) loudspeaker system B.

The interpolation of data from the 266-points
equiareal grid yielded much larger errors than inter-
polation from the other datasets. This discrepancy
was also apparent when using the alternative methods
(NN for the regular grids performed much worse than
NN for the equiareal grids, the barycentric method per-
formed much worse than the linear or spline approach).
This effect occurred for both loudspeaker systems, but
only for the sparser of the equiareal measurements. As
the grids for both 266 and 614 points were designed in
the same way, it can be assumed that the data were
measured and processed correctly. Such results might
occur when some of the determined 266 points do not
efficiently represent their respective zones, despite us-
ing the correct algorithm. What makes this explana-
tion even more probable is that the discrepancy in the
AWRMSEµ values is much lower for low maximum SH
orders: in this case, the potential presence of outliers
would have less of an impact on the results, as the low-
order SH allow for retrieval of only a general shape of
the directivity pattern. This issue emphasizes the im-
portance of an appropriate choice of sampling points.

With the exception of the NN algorithm for the
denser grids, the equiangular approach generally
leads to smaller errors than the equiareal one. This is
particularly interesting for SHA, where not only was
the algorithm expected to benefit from a more equal
distribution of sampling points, but also regular grids

require more advanced computations using weighted
least-squares. Additionally, the applied weights were
not exact, but approximated (see Subsec. 4.1.1).

6. Cross-scheme evaluation

To examine more closely the effects of the sampling
scheme choice on the accuracy of the retrieved results,
a cross-scheme evaluation was performed. All possible
pairs were formed from the available sparse datasets
and the data were resampled by means of SHA. The
procedure was exactly the same as described in the pre-
vious section, save for the reference function and cor-
responding weights in Eq. (11). The mean AWRMSE
values (AWRMSEµ) for these resampled data are pre-
sented in Table 1.

The main finding of the comparison is that for ev-
ery pair of grids the resampling error is lower when
going from an equiareal grid to an equiangular one
than the other way around. This might suggest that
the SH representations obtained using the equiareal
sampling schemes are closer to the actual directivity
functions than the equivalents using the equiangular
schemes. This idea might seem to contradict the con-
clusions from the previous section, but it is important
to bear in mind that those computations were focused
on obtaining the best accuracy on the 5○ equiangular
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Table 1. Cross-scheme evaluation results in the form of
AWRMSEµ [dB]. X → Y indicates that data measured on
grid X were resampled by means of SHA to obtain values
on grid Y, and vice versa; 15○ and 10○ denote the equian-
gular grid resolution; 266 and 614 denote the number of

points in the equiareal grids.

X Y
Loudspeaker system A Loudspeaker system B
X→ Y Y→ X X→ Y Y→ X

15○ 266 1.03 0.92 1.09 0.98
10○ 614 0.62 0.61 0.62 0.61
15○ 614 0.72 0.59 0.71 0.58
10○ 266 0.99 0.96 1.02 1.00
15○ 10○ 0.66 0.54 0.70 0.57
266 614 0.93 0.96 0.96 0.99

grid, not necessarily the best continuous representa-
tion.

There is a significant difference between the results
for pairs going to or from the 266-point equiareal grid
and the results for the remaining pairs. The potential
reason for this was discussed in Subsec. 5.2. However,
the subject of the error magnitude depending on the
direction remains open and will be considered in future
research.

7. Conclusions

The results presented in this paper show that spher-
ical harmonics (SH) can be successfully used to in-
crease the resolution of a sparsely measured sound
source directivity. When using a proper number of
basis functions (choosing the right maximum order
of SH), data with a 5○ resolution can be retrieved with
a mean error of less than 1 dB for a 15○-resolution mea-
surement, and less than 0.5 dB for a 10○-resolution
measurement. The results are significantly better than
those achieved by the naive nearest neighbor interpola-
tion, and are comparable with those obtained by means
of more advanced 2D interpolation algorithms such as
spline methods or an algorithm based on barycentric
coordinates. At the same time, spherical harmonic ap-
proximation offers some other benefits over these more
advanced methods, such as the infinite resolution of
the results or reduced amount of memory required to
store the data.

The accuracy of the directivity retrieval depends
heavily on the distribution of the sampling points.
A comparison of the resampling errors between va-
rious grids using SH leads to the conclusion that there
is no single best sampling scheme; if the goal is to
obtain data on the standard 5○-resolution equiangu-
lar grid, interpolation from another, sparser equian-
gular grid will yield better results than interpolation
from a grid with the same number of points that are

distributed more evenly in terms of the distance be-
tween adjacent points. However, if the goal is to ob-
tain the best continuous representation of the direc-
tivity, the latter approach will be more efficient.
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