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Elastic instability of steel I-section members has been investigated with regard to axial compression, major axis 

bending as well as compression and major axis bending, based on the Vlasov theory of thin-walled members. 

Investigations presented in this paper deal with the energy method applied to the flexural-torsional buckling 

(FTB) problems of any complex loading case that for convenience of predictions is treated as a superposition of 

symmetric and antisymmetric components. Firstly, the review of energy equation formulations is presented for 

the elastic lateral-torsional buckling (LTB) of beams, then the most accurate beam energy equation, so-called the 

classical energy equation formulated for bisymmetric I-section beams is extended to cover also the beam-column 

out-of-plane stability problems, referred hereafter to FTB problems. Secondly, for the simple end boundary 

conditions, the shape functions of twist rotation and minor axis displacement are chosen such that they cover 

both symmetric and antisymmetric lateral-torsional buckling modes in relation to two lowest eigenvalues of the 

beam LTB in major axis bending. Finally, the explicit form of the general solution is presented being dependent 

upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the load 

factor  where the lower k index identifies the load case. 
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1.  INTRODUCTION 

The inelastic buckling strength of real steel members (members with realistic measures of material 

and geometric imperfections) is nowadays presented in the form of equations in which the elastic 

buckling solution of the perfect elastic member is an important model parameter. In order to relate 

the member inelastic resistance to the member upper bound limit, the member elastic buckling 

stress resultants are normalized with use of the respective section plastic resistances that correspond 

to the formation of a plastic hinge under a single stress resultant action effect or under multiple 

stress resultant action effects. The reference is made hereafter to Eurocode 3, Part 1-1 [5] for:        

(1) the column buckling resistance (clause 6.3.1), (2) the LTB resistance of beams under major axis 

bending (cf. the so-called General case of LTB assessment according to clause 6.3.2.2) and (3) the 

FTB resistance of beam-columns under combined compression and major axis bending (cf. the so-

called General method of clause 6.3.4). The latter case of the member flexural-torsional buckling 

resistance is that encompassing the former two cases of buckling resistances being the extreme 

situations of the member buckling under compression and major axis bending, respectively. The 

elastic FTB problem is that of a general nature for the practical assessment of inelastic buckling 

resistance of real beam-columns, therefore it is the subject of investigations in this paper. 

Fig. 1. Coordinate system used in beam theory 

The use of energy methods in buckling problems is widely studied by Trahair [13]. Different 

approaches for the evaluation of proper equations of the elastic lateral-torsional buckling of beams 

was studied by Pi at al. [10] and Torkamani and Roberts [14]. The coordinate system referred to and 

used hereafter is that given in Fig. 1. Two energy equations were confronted in [10] in relation to 
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different description of displacement field approximations. The so-called alternative energy 

equation for LTB of beams subjected to in-plane distributed load  acting in the range from 

to  of the member length, and at the distance  for the section shear centre, as well as to 

concentrated forces  acting at the distance  from the member axis origin, and at the distance 

 from the section shear centre, was written down in the following form:  

(1.1) 

  

where: 

E, G – Young modulus and Kirchhoff modulus of steel, Iz, Iw, IT – minor axis moment of inertia, warping 

constant and Saint Venant torsion constant, – x-coordinate dependent prebuckling major axis 

bending stress resultant, A – cross-sectional area, L – element length, σ – prebuckling stress, – minor axis 

flexural displacement (along y-axis), – mean twist rotation, – symbol of variation of the variable in the 

following parenthesis. 

The results from Eq. (1.1) were compared in [10] with those obtained from the utilization of the so-

called classical energy equation used for the linear eigenproblem analysis (LEA):

(1.2) 

  

Eq. (1.1) leads to an overestimation of the buckling load, sometimes unacceptable from engineering 

applications point of view, if compared with that from Eq. (1.2). In FTB analysis of beam-columns 

by the energy method, Eq. (1.2) is therefore used with the extension accounting for the influence of 

prebuckling axial stress resultant. Eq. (1.2) is dependent linearly upon the prebuckling stress 

resultant My, therefore it leads to an approximation of the buckling state within the linear buckling 

analysis (LBA) and formulated in the form of linear eigenproblem analysis (LEA). 

Cuk and Trahair [4], and Gizejowski et al. [6] presented elastic buckling solutions for beam-

columns under unequal end moments. Bijak solved the elastic buckling problems of beams [1] and 

beam-columns [2] using a modified Bubnov-Galerkin method. Many practical solutions for 

contemporary design applications have been collected by Trahair et al. [17]. The effect of 
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prebuckling flexural displacements on the elastic FTB behaviour is discussed by Mohri et al. [8,9] 

using conventional Bubnov-Galerkin method. With use of the energy method, the stability region of 

beam-columns with bisymmetric cross-sections and under combined loading represented by the 

axial force, uniformly distributed transverse loads and end bending moments was studied by Van 

Binh et al. [15]. Different aspects related to the formulation of buckling eigenproblems have been 

recently discussed by Gizejowski and Uziak [7]. 

The classical energy equation is widely utilized in the finite element formulation that is not limited 

to the elastic range only but also to inelastic out-of-plane buckling problems of beams and beam-

columns, e.g. refer to Bradford et al. [3]. More recently, out-of-plane problems of elastic and 

inelastic buckling were formulated within the framework of nonlinear buckling analysis (NBA), e.g. 

Pi and Trahair [12, 13], Pi and Bradford [11]. These aspects are not considered in the present study. 

Elastic FTB problems are dealt with in this study using the classical energy method. Single loading 

and combined loading cases for members with simple boundary conditions are dealt with. The 

general solution is obtained by splitting any arbitrary asymmetric loading case into two 

components, symmetric and antisymmetric, in order to conveniently obtain the buckling limit curve 

relationship under the maximum moment and the compressive force. The symmetric and 

antisymmetric bending moment equations are set to be dependent upon the load factor  where the 

lower k index identifies the load case: k = M for unequal end moments, k = q for span uniformly 

distributed loads and k = Q for span concentrated loads. The developed general solution 

encompasses coefficients that are listed for different loading cases and compared with results 

available in literature, wherever available. 

2. PROBLEM FORMULATION 

2.1. CLASSICAL ENERGY EQUATION AND ITS GENERAL SOLUTION 

The classical energy conservation equation that provided a basis for the modern finite element 

method of FTB analysis is a simple extension of Eq. (1.2). It has been presented by Trahair [16]:

(2.1) 
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where: 

– prebuckling axial stress resultant, i0 – polar radius of gyration accounting for the Wagner 

effect.

In the following, the simple member kinematic boundary conditions are dealt with, for which the 

twist rotation and transverse translations along section principal axes are fully restrained at both 

ends, while the flexural deflections about both section principal axes and warping are there allowed. 

The buckling twist rotation and minor axis flexural displacement are globally represented by 

trigonometric sinus functions, satisfying natural boundary conditions and approximating the LTB 

buckled shapes under symmetric Mys and antisymmetric Mya components of the x-coordinate 

dependent bending moment equation My. It has been proven in [16] that for solving the LEA elastic 

buckling problems of I-section beams under unequal end moments, the mean twist rotation  is the 

exact half-wave sine function while the profile of minor axis displacements  changes shape from 

that of the exact half-wave for the equal and opposite end moments (uniform bending), to that of a 

wave one for the equal end moments of the same direction (antisymmetric bending). Hence, such

trigonometric sinus shape functions widely used in literature are also adopted hereafter:  

(2.2) 

(2.3) 

where: 

ξ – dimensionless coordinate equal to x/L, a1, a2 and a3 – unknown buckled shape constants. 

Substituting Eqs. (2.2) and (2.3) to Eq. (2.1), the matrix LEA representation of the stability energy 

based equation is obtained:  

(2.4) 

where: 

a – vector of the unknown buckled shape constants (aT
 is that vector transposed):

, 
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Kop – out-of-plane stability stiffness matrix being the sum of the constitutive component K and the initial 

stress component Kσ, the latter dependent upon the reference values of prebuckling stress resultants N0 and 

My0 as well as in-plane loads qzi,0 and Qzj,0, αcr – critical load factor. 

The stiffness matrix components are of the following form:  

- component :

- component :

  

For nonzero values of the buckled shape constants, the critical load factor is calculated from the 

condition of equating the determinant of the out-of-plane stability stiffness matrix Kop to zero. For 

hand calculations, it is more convenient to operate on the out-of-plane stability stiffness, instead on 

the stiffness matrix components, in order to directly derive the relationship between My,max and N. It

describes directly the stability limit curve, instead evaluating the critical load factor αcr and then 

finding the pair of critical values of My,max = αcrMy0,max and N = αcrN0. The stability limit curve gives 

the critical values of a single stress resultant for two extreme points of that curve, namely N = Nz for 

My,max = 0 and My,max = Mcr for N = 0, where Nz is the minor axis flexural critical force and Mcr is 

the critical moment of lateral-torsional buckling. Expanding the determinant of the out-of-plane 

stiffness matrix Kop and notifying that for adopted shape functions , one can 

obtain:  

(2.5) 

where for load cases of end moments and/or span loads applied at the shear centre: 
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– diagonal terms are structured from the constitutive stiffness components: 

  

  

 = 

  

– nonzero off-diagonal terms are those related to the initial stress resultant stiffness components: 

  

and – maximum absolute values of symmetric and antisymmetric moment components, 

scaling the elementary action field moment effects, – symmetric moment 

integral, – antisymmetric moment integral, Nza – second lowest 

bifurcation load equal to 4Nz.

Rearranging Eq. (2.5) for load cases of end moments and/or span loads applied at the section shear 

centre, the following general relationship is obtained:  

(2.6) 

It has to be notified that for n symmetric and m antisymmetric moment components, the integrals 

constituting the off-diagonal terms of the out-of-plane stiffness matrix Kop are the summation of n

integrals for symmetric moments  and m integrals for antisymmetric moments .

Introducing the maximum first order moment My,max and regarding that the critical moment Mcr,0 for 

the uniform bending is given by:  

(2.7) 

Eq. (2.6) takes the form:
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(2.8a)      

or in the shortened form, similar to that obtained for the lateral-torsional buckling of beams: 

  

(2.8b) 

where: 

– maximum absolute value of the combined action moment effect scaling the field moment effects, 

– coefficient representing the effect of out-of-plane buckling under compressive 

force on the LTB buckling moment, Cbc – factor converting arbitrary moment gradient cases into an 

equivalent uniform moment case. 

The equivalent uniform moment factor Cbc depends upon the moment distributions  and 

. Moreover, it is varying with the minor axis critical force utilization ratio N/Nz as given 

below:  

(2.9a) 

or in the shortened form, by using the factors Cbs for the conversion of  and Cba for the 

conversion of :

(2.9b) 

where: 

,  and , – conversion factors for the 

symmetric and antisymmetric moment diagram components. 
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When span loads are applied away from the section shear centre, the term  of the stiffness 

matrix  in Eq. (2.5) needs to include additional term Kop,F related to distributed and/or 

concentrated loads:  

(2.10) 

where: 

– term related to the uniformly distributed load (UDL) 

over the entire length of the member; – term related to the 

concentrated loads (CLs) applied at the xQj = ξQjL coordinate (summation needed for multiple concentrated 

loads). 

Substituting Eq. (2.10) to Eq. (2.5) and rearranging, as it has been done earlier, Eq. (2.8b) becomes 

the following one:  

(2.11) 

or in the form of Eq. (2.8b) in which for a single type of the span load: 

(2.12) 

where:  

– coefficient dependent upon the in-span load distribution, – term defined in

Eq. (2.10) as  or , – dimensionless coordinate of load application away from the 

section shear centre, h – section depth, – maximum moment generated by the symmetric in-span 

load component.  
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2.2. PRACTICAL APPLICATIOS AND VERIFICATION 

In this subchapter, some important load cases are dealt with. Eq. (2.9b) is used to present the 

particular solutions for unequal end moments and for span uniformly distributed loads of unequal 

values in two half-lengths as well as concentrated loads of unequal values in two span half-lengths, 

as it is shown in Table 1. 

Table 1. Loading cases considered 

Loading case Component Loading component

M

symmetric

antisymmetric

q

symmetric

antisymmetric

Q

symmetric

antisymmetric

For load cased considered herein, the maximum moment coordinate ξmax and the maximum moment 

itself , the maximum moment factors ,  as well as the dimensionless bending 

moment equations ,   for symmetric and antisymmetric components are presented in 

Table A in the Appendix.
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Let us first consider the very basic load case of unequal end moments, indicated by symbol M in 

Table 1, for which . For this load case, Cuk and Trahair [4] presented the following 

relationship for the conversion factor:

(2.13a) 

where:  

Cbs = 1, Cba = 2.50 – conversion factors for symmetric (uniform) and antisymmetric bending moment 

components, , – coefficients dependent upon the moment gradient ratio. 

Recently, Gizejowski at al. [6] developed a refinement to Eq. (2.13a) that gives the following 

relationship:

(2.13b)

in which Cba = 2.64, instead of 2.50 like in Eq. (2.13a). 

Eqs. (2.13a,b) are different from that presented herein by Eq. (2.9b). The difference is not only 

related to the format of the conversion factor equation but also to the form of components related to 

antisymmetric bending. Using Eq. (2.9b) and the direct integration of conversion factors, one can 

get , therefore  as in Eqs. (2.12a,b), but for the 

moment component related to antisymmetry ,

therefore , instead of 2.50 or 2.64 mentioned above. 

Figure 2 shows the comparison of  as a function of the moment gradient ratio  and the critical 

force utilization ratio . Solid lines indicates the present solution with , dashed line 

the solution of Gizejowski et al. [6] and finally dotted line indicates that of Cuk and Trahair [4]. For 

 (uniform bending), all three solutions coincide and are identical with the closed form 

solution. The comparison is therefore made for nonuniform bending cases in Fig. 2 for both 

(in-plane moment applied over one support) and  (in-plane moments of the same value 
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and direction, applied over both supports). It is clearly visible that the solutions represented by Eqs. 

(2.13a,b) are different from that of Eq. (9a). The differences become more pronounced when the 

moment gradient ratio travels from positive to negative values, with the greatest difference for 

. 

Fig. 2. Comparison of equivalent uniform moment factors for unequal end moments

The presented above solving procedure for a single load component (symbol in Table 1), giving one 

symmetric component and one antisymmetric component of the bending moment diagram, remains 

the same for more complex load cases, composed of several load components. Bijak [2] solved the 

flexural-torsional buckling problem of beam-columns under unequal end moments combined with 

UDL, using differential equilibrium equations and the modified Bobnov-Galerkin method. Such a 

more complex load case is a combination of load cases M and q indicated in Table 1. It consists of 

two symmetric moment components MyM,s(ξ) = MyM,s and Myq,s(ξ) = Myq,s,max ξ (1 – ξ), and one 

antisymmetric moment component MyM,a(ξ) = MyM,a(1 – 2ξ). Using the developed energy method, 

one can get: 

.
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where Myq,s,max = μMyM, and the positive sign of μ is referred to MyM,s,max and Myq,s,max being of the same sign.

Integrating the elementary conversion factors into 1/Cbc according to Eq. (2.9b), the resultant 

conversion factor may be drawn independently in two ranges of μ. Fig. 3 shows the graphs for these 

two ranges of μ > 0 in Fig. 3a and μ < 0 in Fig. 3b.

a) b)

Fig. 3. Comparison of the moment conversion factor 1/Cbc for combined load cases M and q; a) symmetric 

components of the same signs (μ > 0), b) symmetric components of the opposite signs (μ < 0) 

Conversion factors Cbs and Cba are calculated for all single load cases indicated in Table 1 by 

symbols q and Q, using moment relationships given in Table A in the Appendix, and carrying out 

the integration in several ranges of ξ variable, whereas indicated. The results of present study are 

shown in Table 2 for all the end moments and span shear centre load cases considered. To the best 

authors’ knowledge, the results in darkened cells have not been reported earlier in literature. 

Mohri et al. [8] solved the stability problems for loads shown in Table 1 but only for the cases 

giving the symmetric bending moment diagram (for  as indicated in the present 

study). The general solution presented in [8] is dependent upon two coefficients:  being the 

bending moment diagram conversion factor and  being the factor associated with the 

span load acting away from the section shear centre. These coefficients account for the effect of 

prebuckling deflections through k1 and the effect of N on the in-plane behaviour through G(N). 

Constants  and  are dependent upon the load case. One can notice that the former one may be 

ELASTIC FLEXURAL-TORSIONAL BUCKLING OF STEEL I-SECTION MEMBERS... 647



 

directly compared with Cbs of the present study (cf. Table 2). The conclusion is that for span shear 

centre loads, giving the symmetric moment diagrams (zero values of  factors), solutions 

presented in this study practically coincide with those predicted in earlier studies. 

Table 2. Conversion factors 

Symbol of

load case

Cbs for symmetric component Cba for antisymmetric component

Present study Mohri at al. [8] Present study

M 1.00 1.00 2.78

q 1.15 1.13 1.43

Q1 1.38 1.36 0.00

Q2a 1.12 1.10 1.74

Q2b 1.05 1.05 1.81

Figure 4 shows the comparison of  for all the load cases considered in Table 1 as a function of 

two parameters, namely the load ratio  (respectively , and ) and the critical force 

utilization ratio . Solid lines indicates the M-case, dashed line the q-case and finally dotted 

and dotted-dashed lines indicate the Q-cases. 

Fig. 4. Comparison of equivalent uniform moment factors for in-span shear centre loads 

The off-shear load effect has been widely discussed in literature [16,17]. In this paper, the load 

height effect is introduced via the conversion factor, cf. Eq. (2.12). It is clear that the effect of off-
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shear-centre span load plays either stabilizing or destabilizing role for buckling of beams and beam-

columns, depending upon the sign of zF and the direction of the span load. In Fig. 5, the conversion 

factors are compared for unequal end moments and UDL of equal values at both member half-

lengths, different proportion of moments MyM,max and Myq,max being of negative and positive signs 

and different placement of off-shear centre UDL loads.  

Exemplary IPE 360 steel section is considered for the member of 6000 mm in length. The following 

parameters are used: ; ; ;

. Results of the calculated conversion factor are shown in Fig. 6 for , in 

Fig. 7 for  and in Fig. 8 for . Solid lines represent the top flange UDL while dashed 

line – bottom flange UDL and the results for the shear centre UDL are shown by dotted lines. 

Fig. 5. Comparison of equivalent uniform moment factor for equal and of the same direction end moments, 

and span UDL applied away from the shear centre 

For end moments producing the antisymmetric moment diagram and span UDL, one can observe 

that for the shear centre load the curve is symmetric with regard to the vertical axis of μ = 0. When 

the load is applied to the top flange, the negative μ values are associated with the negative sign of qz

and the negative sign of zq. As a result, the obtained values of 1/Cbc are lower than those obtained 

for the shear centre load and the bottom flange load, in the latter case being of the highest value 

(destabilizing effect). For positive values of μ and the top flange UDL, the sign of zq remains the 

same but qz has now the positive sign. As a result, the obtained values of 1/Cbc are higher than those 

obtained for the shear centre load and the bottom flange load, in the latter case being of the lowest 

value (stabilizing effect). Moreover, it is observed that the destabilizing effect becomes the same as 

the stabilizing one for positive and negative μ of the same absolute value. 
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For a single end moment and span UDL (Fig. 6), one can observe that for the shear centre load the 

curve is no longer symmetric with regard to the vertical axis of μ = 0. The influence of the span 

UDL applied away from the shear centre is in this case similar to that of equal end moments of the 

same direction (cf. Fig. 5). For μ < 0 and the top flange UDL, values of 1/Cbc are lower than those 

obtained for the shear centre load and the bottom flange load, the latter being of the highest value 

(destabilizing effect). For μ > 0 and the top flange UDL, the obtained values of 1/Cbc are higher 

than those obtained for the shear centre load and the bottom flange load, in the latter case being of 

the lowest value (stabilizing effect). Moreover, it is observed that the destabilizing effect is no 

longer of that producing the stabilization for positive and negative μ of the same absolute value. 

Fig. 6. Comparison of equivalent uniform moment factor for one end moment and span UDL applied away 

from the shear centre 

Fig. 7. Comparison of equivalent uniform moment factor for equal and of the opposite direction end 

moments, and span UDL applied away from the shear centre 
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For equal and opposite end moments and span UDL (Fig. 7), one can observe that for the shear 

centre load the curve and the influence of the span UDL applied away from the shear centre in this 

case is similar to that of a single end moment (cf. Fig. 6). 

3. SUMMARY AND CONCLUSIONS 

A linear stability model for the flexural-torsional buckling of beam-columns was presented. The 

formulation is based on the classical energy equation, presented in the form of LEA and solved 

analytically for different load cases presented in Table 1. The novelty of present study yields from 

the fact that any complex load case composed of end moments and span loads is represented by a 

combination of symmetric and antisymmetric components, therefore the field moment MyM(ξ) due 

to applied end moments is a sum of symmetric and antisymmetric components, MyM,s(ξ) and 

MyM,a(ξ) respectively, and the filed moment due to applied span loads Fzk (Fzk symbol refers to 

components qzi and Qzj) is also a sum of symmetric and antisymmetric components, MyF,s(ξ) and 

MyF,a(ξ) respectively. The field moments are presented as functions of load factors 

describing the moment diagrams asymmetry under single loads of end moments, span UDL and 

span CL, the last two unequal in both half-lengths. Moment dependent conversion factors Cbs

(referred to the symmetric moment components) and Cba (referred to the antisymmetric moment 

components) have been evaluated for single load cases. Factors Cbs were compared to those existing 

in the literature and a good agreement have been shown. To the best authors’ knowledge, factors 

Cba have not yet been presented in the literature for span loads. 

More complex load cases were also dealt with on the example of unequal end moments and span 

UDL over the entire member length. Two different span load signs were considered, namely 

positive when its direction coincides with the positive direction of the z-axis (the bending moment

is of the opposite sign to that produced by end moments) and negative when the load is directed 

oppositely. The effect of load height was also investigated showing that the off-shear load has either 

destabilizing effect or stabilizing effect on the critical moment. This was conveniently looked at 

through the observations of the influence of load sign and load height coordinate sign on the 

resultant moment conversion factor 1/Cbc. 

The developed elastic buckling interaction curves N-My play an important role in the buckling 

resistance assessment of imperfect members using the so-called General method (GM) introduced 

in the clause 6.3.4 of current Eurocode 3 [5]. This method has been effectively used only for simple 

member loads since the general solution for elastic buckling interaction equation of beam-columns 
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under compression and major axis bending was not widely investigated in the literature. The present 

study is a starting point for further investigations into the improvement of herein developed 

solution, replacing the linear eigenproblem formulation (LEA) by its nonlinear eigenproblem 

counterpart (NEA). 
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Appendix

Table A. Description of bending moment equations for load cases from Table 1 

Symbol k
indicating

load case*)
ξmax Range

M 0

1

q

Q1

1

0 � -

Q2a

1

Q2b

1

*) Q1 – load Qz applied at xQ = L/2 (symmetric load case with no antisymmetric component)

   Q2a – load applied at xQ = L/3 and applied at L-xQ = 2L/3

   Q2b – load applied at L/4 and load applied at L-xQ = 3L/4
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Table B. Description of bending moment equations for the combination of unequal end moments 

and uniformly distributed load over the whole member length 

ξmax  0  

Range    0   

    

 
 

  

  0  

  1  

  
 

 
   

    

  1  
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GIĘTNO-SKRĘTNE WYBOCZENIE SPRĘŻYSTE DWUTEOWYCH ELEMENTÓW STALOWYCH NIESTĘŻONYCH 

POMIĘDZY SKRAJNYMI PODPORAMI 

Słowa kluczowe: element stalowy, przekrój dwuteowy bisymetryczny, zachowanie sprężyste, zwichrzenie, klasyczne 
równanie energii, wyboczenie giętno-skrętne

STRESZCZENIE: 

Na podstawie teorii prętów cienkościennych Własowa w artykule przedstawiono zagadnienia stateczności sprężystej 

stalowych elementów o przekrojach dwuteowych bisymetrycznych, poddanych ściskaniu i zginaniu względem osi 

większej bezwładności przekroju. Ponieważ rozwiązanie ścisłe zagadnienia zwichrzenia oraz wyboczenia giętno-

skrętnego elementów ściskanych i zginanych można wyznaczyć tylko w odniesieniu do prostych przypadków obciążeń, 

w przypadkach bardziej złożonych obciążeń wykorzystuje się metody przybliżone − zarówno analityczne jak 

i numeryczne. Badania przedstawione w pracy dotyczą analitycznej metody energetycznej odniesionej do dowolnego 

złożonego przypadku obciążenia, który traktuje się jako superpozycję symetrycznej i antysymetrycznej części 

obciążenia. 

W pierwszej kolejności przedstawiono różne sformułowania, tak zwane alternatywne i klasyczne, równań dotyczących 

energii odkształcenia i obciążenia w wypadku zwichrzenia sprężystego belek zginanych. Dokładniejsze klasyczne 

równanie energii sformułowane dla belek zginanych o przekroju dwuteowym bisymetrycznym rozszerzono o wpływ 

siły podłużnej ściskającej w celu rozwiązania problemu giętno-skrętnego wyboczenia elementów ściskanych

i zginanych oraz przedstawiono w postaci funkcji pochodnych kąta skręcenia  i przemieszczenia liniowego v.

Następnie, po przyjęciu funkcji kształtu kąta skręcenia  oraz przemieszczenia v tak, aby obejmowały postacie 

zwichrzenia belki odpowiadające symetrycznemu i antysymetrycznemu rozkładowi momentu zginającego, 

wyprowadzono macierzowe kryterium utraty stateczności pręta w ujęciu liniowego problemu wartości własnych (LEA).

Ostatecznie przedstawiono jawną postać rozwiązania liniowego problemu wartości własnych zależną od symetrycznej 

i antysymetrycznej części momentu zginającego. Otrzymane rozwiązanie porównano z wynikami uzyskanymi z innych 

badań i stwierdzono dobrą zgodność.

Opracowane krzywe stateczności sprężystej elementów ściskanych i zginanych odgrywają ważną rolę w ocenie 

nośności wyboczeniowej nieidealnych elementów ściskanych i zginanych przy użyciu tak zwanej metody ogólnej

(z ang. General Method), wprowadzonej w eurokodzie stalowym EN 1993-1-1:2005. Metodę tę stosuje się skutecznie 

tylko w przypadku prostych obciążeń prętów, ponieważ ogólne rozwiązanie równania stateczności sprężystej 

elementów ściskanych i zginanych nie było szeroko badane w literaturze. Artykuł jest punktem wyjścia do dalszych 

badań nad ulepszeniem opracowanego rozwiązania, polegającym na zastąpieniu liniowej formuły problemu wartości 

własnych (LEA) jej odpowiednikiem wynikającym z nieliniowego problemu wartości własnych (NEA).  
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