
1Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137057

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 69(3), 2021, Article number: e137057
DOI: 10.24425/bpasts.2021.137057

POWER SYSTEMS AND POWER ELECTRONICS

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abstract. Real time simulators of IEC 61850 compliant protection devices can be implemented without their analogue part, reducing costs and
increasing versatility. Implementation of Sampled Values (SV) and GOOSE interfaces to Matlab/Simulink allows for interaction with protection
relays in closed loop during power system simulation. Properly configured and synchronized Linux system with Real Time (RT) patch, can
be used as a low latency run time environment for Matlab/Simulink generated model. The number of overruns during model execution using
proposed SV and GOOSE interfaces with 50 µs step size is minimal. The paper discusses the implementation details and time synchronization
methods of IEC 61850 real time simulator implemented in Matlab/Simulink that is built on top of run time environment shown in authors
preliminary works and is the further development of them. Correct operation of the proposed solution is evaluated during the hardware-in-the-
loop testing of ABB REL670 relay.

Key words: implementation in real time; power system; protection relays testing; computer simulation; IEC 61850.

IEC 61850 interface for real time power system simulation

Karol KUREK * , Łukasz NOGAL, Ryszard KOWALIK, and Marcin JANUSZEWSKI
Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland

*e-mail: karol.kurek@ien.pw.edu.pl

Manuscript submitted 2020-11-04, revised 2021-01-20, initially accepted
for publication 2021-02-22, published in June 2021

1. Introduction

Digital Real Time Simulation (DRTS) of a power system aims
to model its behavior during transient states and corresponding
current and voltage waveforms in time domain from specific
nodes [1]. The simulation is done mainly in software by solve-
ing the equations of modeled power system. When part of the
simulated system is replaced by real hardware, the Hardware in
the Loop (HIL) simulation is done. The inclusion of additional
hardware under test is done by pulling measurement signals
from the simulation to the device. Binary signals introduced
from the device to the online simulation, allows the tested
device to affect simulation state.

Real time simulators have been evolving since 1991, when
first commercial solution was introduced. Nowadays hardware
architecture used varies from specialized extension boards
formed into racks, capable of parallel processing to nodes
formed on the basis of multipurpose Intel CPUs [1]. Simulan-
tion based on co-processing in FPGA based circuits, enables
very small simulation steps, which is especially vital while
simulating power electronics [2]. FPGA can be used to build
the whole simulator or only the latency critical part of the sim-
ulation [3], which allows to achieve simulation steps as low as
5 µs. The lowest single simulation step during power system
simulation, was noted in [4] by the simulator based solely on
FPGA circuits – 24 ns. Another successful implementation in
literature involves Raspberry PI platform [5] being an affordv-
able alternative.

One of the most common simulation software is Matlab/
Simulink Environment, that is used in one of the commercially
available real time simulators. Other alternatives are Powerfac-

tory and Labview based implementation [6] and proprietary
RSCAD. Real time simulators are mostly run on Windows or
Linux operating systems with some implementations using parts
based on proprietary solutions.

Traditionally real time simulators use analog measurements
and binary signals to interface hardware under test. With the
advancements in the field of digital substations, IEC 61850
interfaces used to generate SV data stream and GOOSE data-
grams are also becoming more common [7]. Commercially
available simulators have successful, closed source imple-
mentations of such interfaces, evaluated in [8] and [9]. Such
implementation can be part of a simulation or be exported to
the external circuits dedicated to this task [8]. FPGA hardware
seems to be ideal for the task of IEC 61850 traffic processing,
because of minimum latency on both input and output. Such
design is introduced in [10] and allows the generation of up to
16 concurrent SV streams.

2. Related work

Implementations of Matlab/Simulink IEC 61850 interfaces
available commercially are closed software with no reports in
the literature. Implementation of SV interfaces to Matlab/Sim-
ulink known from literature, is presented [11, 12]. The imple -
mentations lack GOOSE implementation and time synchroni-
zation in simulation software that allows closed loop testing.

Matlab/Simulink is one of the most common simulation
environments with the capability to execute its models in real
time, therefore it was chosen to implement the interface to
SV IEC 61850‒9-2 LE compliant stream as a s-function block.
To allow the testing of protection in closed loop, GOOSE
interface is implemented as well. Implementation is done in
C libiec61850 open-source library in Linux-RT environment.
Simulation program is compiled used Simulink-Coder and mod-
ified ert-linux target [13]. Time synchronization technique of

http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-1259-112X
mailto:karol.kurek@ien.pw.edu.pl

2

K. Kurek, Ł. Nogal, R. Kowalik, and M. Januszewski

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137057

K. Kurek, Ł. Nogal, R. Kowalik, and M. Januszewski

gram is compiled used Simulink-Coder and modified ert-linux
target [13]. Time synchronization technique of real time simu-
lation, based on operating system IEEE 1588 v2 Precision Time
Protocol (PTP) implementation is proposed. The resulting IEC
61850 interface is used in the simulation of high voltage power
line that allows for hardware-in-the-loop testing of REL 670
over current protection.

3. IEC 61850 Interface implementation

To allow two-way interaction between simulated power sys-
tem and hardware under test, measurements in the form of SV
measurement stream and binary signals in the form of GOOSE
messages need to be introduced into Matlab/Simulink environ-
ment. The mechanisms that allow such integration are Matlab
s-functions. S-functions are the programming interface that al-
lows to introduce user written functions into Simulink environ-
ment in the form of custom blocks. User written code is com-
piled using Matlab mex compiler and can be then imported into
the simulation as a new function block, that has inputs, outputs
and internal configuration parameters.

Being a programming interface means that Simulink delivers
a set of functions that are dedicated to performing specific tasks
at specific moments during execution of s-function block that is
imported into the simulation model. Simulation process of a s-
function broken down to corresponding C interface functions is
shown in Fig 1.

Simulation start

mdlInitializeSizes

mdlInitializeSampleTimes

mdlOutputs

mdlTerminate

Initialization

Simulation
loop

{

Fig. 1. Simulation process of s-function block

The first stage of the execution of s-function is the initializa-
tion in mdlInitializeSizes and mdlInitializSampleTimes C func-
tions. Mentioned functions are executed once at the beginning
of a simulation. During this stage, function block is added to
the simulation model. Input and output signal count, sampling
frequency used in a model, block configuration parameters, ex-
ecution order and memory size for additional variables are de-
termined.

After the initialization stage, the model is executed at the de-
fined simulation step. When S-functions are processed, its C
function mdlOutputs is executed at every simulation step. The
function allows to interact with the rest of the model by its C
language input arguments and return value. Data handed over

to these functions and its return values at C code level are seen
as input and output signals inside the Simulink model.

SV generation block implemented as a s-function is pre-
sented in Fig. 2. The purpose of this block is to generate SV
sample stream with measurement data from selected power sys-
tem point and send it to protection relay under test. Block has 6
signals connected to its input port – 3 phase currents and volt-
ages that are pulled from simulated power system model from
chosen measuring points. Those signals represent the samples
meant to be sent in an SV frame. Before being connected to
input port, sample values have to be conditioned to match data
format specified in IEC 61850-9-2 LE – measurements are sent
as primary currents and voltages expressed as 1mA and 10mV
respectively.

Fig. 2. SV generation simulink block

SV generation block allows the user to set basic parameters
for SV publisher in the form of block configuration parameters,
processed in a mdlInitializeSizes function. These configuration
parameters are network interface name, SVID, destination mul-
ticast address, AppID, Vlan ID and Vlan Priority. At every sim-
ulation step, during the execution of the corresponding mdlOut-
puts function, the block gathers samples from selected measur-
ing points. Using these samples and block configuration param-
eters, SV frame is formed and sent through Ethernet interface.

In this approach, a single SV frame is sent during the execu-
tion of SV generation block mdlOutputs function. This forces
the simulation step to be intact with SV stream frequency, de-
fined in IEC 61850-9-2LE implementation guidelines – 80 sam-
ples per period. Therefore, when using simulation steps that are
different than expected SV generation frequency (e.g., 4 kHz
for 50 Hz power system) rate transition block from Simulink
standard library has to be introduced.

GOOSE subscriber implemented as a s-function block is
shown in Fig. 3. Main purpose of the block is to receive data
from protection relay – trip signals, that are then connected to
circuit breaker inside the simulated power system model. The
block gets the data from received GOOSE messages network
and sets the corresponding state of its output signals. Goose
block Output signals are interpreted as phase trip commands of
IED under test. Internal configuration parameters of GOOSE
subscriber function block are: AppID, network interface name,
source multicast address, dataset, GoCB, host IP and port, vari-
able count, variable offset. These parameters are used during
the initialization phase inside mdlInitializeSizes to properly set
up and start the GOOSE receiver thread.

2 Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137057

real time simulation, based on operating system IEEE 1588 v2
Precision Time Protocol (PTP) implementation is proposed. The
resulting IEC 61850 interface is used in the simulation of high
voltage power line that allows for hardware-in-the-loop testing
of REL 670 over current protection.

3. IEC 61850 Interface implementation

To allow two-way interaction between simulated power system
and hardware under test, measurements in the form of SV mea-
surement stream and binary signals in the form of GOOSE mes-
sages need to be introduced into Matlab/Simulink environment.
The mechanisms that allow such integration are Matlab s-func-
tions. S-functions are the programming interface that allows
to introduce user written functions into Simulink environment
in the form of custom blocks. User written code is compiled
using Matlab mex compiler and can be then imported into the
simulation as a new function block, that has inputs, outputs and
internal configuration parameters.

Being a programming interface means that Simulink deliv-
ers a set of functions that are dedicated to performing specific
tasks at specific moments during execution of s-function block
that is imported into the simulation model. Simulation process
of a s-function broken down to corresponding C interface func-
tions is shown in Fig. 1.

The first stage of the execution of s-function is the initial-
ization in mdlInitializeSizes and mdlInitializSampleTimes C

Fig. 1. Simulation process of s-function block

functions. Mentioned functions are executed once at the begin-
ning of a simulation. During this stage, function block is added
to the simulation model. Input and output signal count, sam-
pling frequency used in a model, block configuration parame-
ters, execution order and memory size for additional variables
are determined.

After the initialization stage, the model is executed at the
defined simulation step. When S-functions are processed, its C
function mdlOutputs is executed at every simulation step. The
function allows to interact with the rest of the model by its C
language input arguments and return value. Data handed over

Fig. 2. SV generation simulink block

i1

i2

i3

u1

u2

u3

send_samples_s

Data Store
Read

Data Store
Read1

Data Store
Read2

Data Store
Read3

Data Store
Read4

send_samples_s

to these functions and its return values at C code level are seen
as input and output signals inside the Simulink model.

SV generation block implemented as a s-function is pre-
sented in Fig. 2. The purpose of this block is to generate SV
sample stream with measurement data from selected power
system point and send it to protection relay under test. Block
has 6 signals connected to its input port – 3 phase currents and
voltages that are pulled from simulated power system model
from chosen measuring points. Those signals represent the sam-
ples meant to be sent in an SV frame. Before being connected
to input port, sample values have to be conditioned to match
data format specified in IEC 61850-9-2 LE – measurements
are sent as primary currents and voltages expressed as 1mA
and 10 mV respectively.

SV generation block allows the user to set basic parameters
for SV publisher in the form of block configuration parameters,
processed in a mdlInitializeSizes function. These configura-
tion parameters are network interface name, SVID, destination
multicast address, AppID, Vlan ID and Vlan Priority. At every
simulation step, during the execution of the corresponding
mdlOutputs function, the block gathers samples from selected
measuring points. Using these samples and block configura-
tion parameters, SV frame is formed and sent through Ethernet
interface.

In this approach, a single SV frame is sent during the
execution of SV generation block mdlOutputs function. This
forces the simulation step to be intact with SV stream fre-
quency, defined in IEC 61850‒9-2LE implementation guide-
lines – 80 samples per period. Therefore, when using simulation
steps that are different than expected SV generation frequency
(e.g., 4 kHz for 50 Hz power system) rate transition block from
Simulink standard library has to be introduced.

GOOSE subscriber implemented as a s-function block is
shown in Fig. 3. Main purpose of the block is to receive data
from protection relay – trip signals, that are then connected to
circuit breaker inside the simulated power system model. The
block gets the data from received GOOSE messages network
and sets the corresponding state of its output signals. Goose
block Output signals are interpreted as phase trip commands of
IED under test. Internal configuration parameters of GOOSE
subscriber function block are: AppID, network interface name,
source multicast address, dataset, GoCB, host IP and port, vari-
able count, variable offset. These parameters are used during
the initialization phase inside mdlInitializeSizes to properly set
up and start the GOOSE receiver thread.

3

IEC 61850 interface for real time power system simulation

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137057

The approach to process received GOOSE messages is
different than in the case of SV generation block. A GOOSE
receiver thread is started in parallel to the simulation, whose
task is to continuously listen for GOOSE messages on net-
work interface. Therefore, GOOSE reception and processing
is independent of simulation step. However, changes of vari-
ables received in GOOSE messages are rewritten to GOOSE
subscriber function block output signals, once every simulation
step inside corresponding mdlOutputs function.

Trip signals received from GOOSE function block, can be
used to control the circuit breaker (CB) inside of a simulation
model and therefore change the simulation state during its exe-
cution – this enables hardware-in-the-loop simulation. CB logic
connected directly to variables read from GOOSE datagram is
presented in Fig. 4 and allows to latch the CB opening signal
after the change of controlling GOOSE variables to zero.

Fig. 4. Circuit breaker logic controlled by GOOSE variables

s1

s2

s3

Data Store
Read6

Data Store
Read7

Data Store
Read8

boolean

boolean

boolean

OR

1

S Q

!QR

false

Constant

S-R
Flip-Flop

DI

Data Type Conversion

Data Type Conversion1

Data Type Conversion2

Logical
Operator

Fig. 3. GOOSE input simulink block

s1

s2

s3

get_goose_s
Data Store

Write

Data Store
Write1

Data Store
Write2

get_goose_s

Fig. 5. Real time simulation cases

the simulation is considered inaccurate and non real time. Both
described situations of real and non-real time simulations are
presented in Fig. 5.

To run power system model in real time, Simulink Coder
is used. It is used to compile the model to single executable
binary that can be executed in real time in many operating
systems defined as Simulink Coder targets. Default Simulink
Coder target dedicated for Linux is Generic Real-Time Target.
Unfortunately, the target generated code is unable to run in
real time on modern Linux kernels and in turn results in code
executing at full speed. Michal Sojka wrote and published ert-li-
nux, alternative target for Simulink Coder [13] that works well
for recent Linux kernels.

Solution of IEC 61850 compliant real time tester proposed
in this paper is based on runtime environment that was a subject
of authors preliminary works shown in the paper [14]. Power
system model containing SV and GOOSE blocks has to be run
in real time with the smallest possible latency to keep the num-
ber of overruns low.

Linux operating system that is used to run Simulink Coder
prepared executable, has to be patched with PREEMPT_RT
patch and further adjusted to achieve the lowest system latency
possible. Linux kernel without latency optimalizations may not
be capable to run real time power system simulations with sim-
ulation step of 50 µs. The sources of latency and correspond-
ing mitigation techniques are described and tested in detail in
[14]. The following list summarizes the methods of latency
optimalizations in Linux operating system, that can be used
to achieve the CPU scheduler microsecond worst case latency
of 4 µs which is sufficient for most real time power system
simulation cases.

Logical CPUs
The CPU feature that allows to address two logical CPUs on
one physical core should be disabled, because of introduced
additional latency.

Frequency scaling
Frequency scaling allows for CPU power conservation at the
expense of time-consuming switching and therefore should be
disabled at hardware level, system wide or in user space.

Real time throttling
By default, Linux real time processes utilize 95% of CPU time
to avoid system locking. This behavior can be changed to the

Execution time Te

Idle time
Te(n-1) Te(n) Te(n+1)

tn tn+1 tn+2tn-1

Execution time Te

Real-time clock

Te(n-1) Te(n+1)
overrun

4. Real time operation

Carrying out the simulation in real time, means the discrete
solving of model equations should happen at definite time on
par with real world clock. When solver does finish before the
deadline being a consequence of sampling frequency, it goes
idle and waits for the next simulation step. The time constraint
is met. When all the work including solving equations and set-
ting hardware, exceeds the simulation step, the overrun hap-
pens. Single overruns are acceptable, but if they happen often

4

K. Kurek, Ł. Nogal, R. Kowalik, and M. Januszewski

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137057

exclusive use of the CPU by writing “–1” value to /proc/sys/
kernel/sched_rt_runtime_usfile lo-cated in procfs.

Core isolation
Single core should be designated to run Simulink Coder exe-
cutable. Selected core should be isolated from: new user space
processes scheduled by the system, hardware interrupt services,
kernel processes.

Processor sleep states
Modern x86 processors implements C states which allows the
CPU to conserve energy during idle states. Switching between
C states introduces latency and should be disabled at hardware
level or system wide (processor.max_cstate=0 can be written
to kernel command line at boot time).

5. Time synchronization

Testing IEC 61850 protection systems, synchronization to
external clock signal is mandatory. Precision Time Protocol
(PTPv2) defined in IEEE 1588 and adopted by IEC 61850 stan-
dard allows the time synchronization through common Ethernet
link. There are two software packages available for PTP support
in Linux: ptpd and linuxptp. Coupled with Network Interface
Controller (NIC) supporting hardware time stamping, the latter
allows for sub microsecond time synchronization. Tests car-
ried out in [14] on two mutually synchronized Linux systems,
shows synchronization accuracy lower than 100 ns when using
PTP mapping directly to network layer 2 (Power profile). This
allows to synchronize the simulator with protocol commonly
used in IEC 61850 protection systems with accuracy conform-
ing to requirements defined in T5 class of IEC 61850 part 5.

Linuxptp software synchronizes NIC and system clock to
external master clock. To achieve synchronous sampling of
Simulink model executing in real time, additional modification
has to be applied to Simulink coder target. The target describes
how model should be executed on the target platform. Code of
ert-linux target, can be inspected and modified to use system
clock being the subject of linuxptp time adjustments due to
openness of the code.

Nanosleep function family, being a Linux Posix Timer
interface offers two main methods of time keeping in user
space: monotonic (CLOCK_MONOTONIC) and real time
(CLOCK_REALTIME). First one measures time from some
unspecified point (usually boot time of the system) and the
second offers the timestamp describing current date and time.
Monotonic method is a right choice when measuring relative
time in a single application. Real time method uses absolute
values of time and reflects time adjustments from Linux time
services which allows for time measurement between multiple
autonomous systems. For the Posix Timer Linux implementa-
tion to offer nanosecond precision, should be used with Time
Stamp Counter CPU register (TSC) as a time source.

Synchronous sampling modification for ert-linux target is
based on the change from monotonic to real time method used
in clock_nanosleep function and measuring the simulation time

as absolute value. Modification has to be applied to tlc files
included in ert-linux. Furthermore, to keep the SV stream in
sync, the zero sample (smpCnt = 0) should always be generated
in the start of a second. Therefore, the resulting application
should always wait and start the simulation on next full second.
The idea of time correction during model execution is shown
in Fig. 6.

Fig. 6. Time synchronization process during the simulation

Get current time

Round to full seconds

Add 2 seconds

Add step size

Check for overrun and
correct if necessary

Simulation start

Simulation step

Simulation end

Timestamps generated from the real time method are a sub-
ject of time correction by PTP process. This ensures the sim-
ulation is always run synchronously to the external clock. The
use of this property can also be used to synchronize multiple
simulation nodes of bigger simulation system.

6. Evaluation

Evaluation of proposed IEC 61850 compliant real time simu-
lator was done in two steps. Firstly, its real time performance
during the execution in Linux-RT environment is evaluated and
then it is used to test ABB REL670 relay in closed loop.

The number of overruns that happen executing a model of
given complexity is considered a measure of real-time simulator
performance. For the sake of evaluation, the model is run on
following hardware/software configuration.
● AMD 3-core CPU 4 Ghz,
● Linux 4.19.59-rt24,
● High resolution timers, TSC time source,
● GCC 5.5.0.

Table 1 shows the results of overrun tests for different cont-
figurations of model and operating systems. The same tests

Table 1
Number of overruns for different system/model configurations

System configuration Single Line Extended model

50 µs 250 µs 50 µs 250 µs

Non optimized – 6 – 15

Latency optimized 0 0 115 0

5

IEC 61850 interface for real time power system simulation

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137057

were run on stock RT kernel and latency optimized kernel (opti-
mizations and their effects are described in [14] and briefly
summarized in Chapter 4). Two power system models were
tested: single line model that consists of a single line and 2
sources and extended model with 6 lines, 4 sources and 2 loads.
Models were equipped with one SV and GOOSE interface.
Every test was repeated with step sizes 50 and 250 µs. Single
test lasted for 5 minutes.

Non optimized system was unable to finish the tests with
step size 50 µs due too many overruns. Latency optimized sys-
tem allows the execution of all test configurations. Overruns
are occasional and happen only in case of extended model and
time step size 50 µs. Introduction of additional SV interfaces,
that created up to 16 streams, resulted in no impact on measured
number of overruns. The results suggest, IEC 61850 interface
can be successfully used in the simulation of more complex
power systems and to generate concurrent SV streams from
multiple simulation nodes while still maintaining low number
of overruns.

Final test involves testing of ABB REL670 over current
function in closed loop, using the proposed simulator architec-
ture. Laboratory setup is shown in Fig. 7.

connected to the common process network. PCM 600 software
was used to adjust the IEC 61850 settings to the ones of imple-
mented function blocks. SV function block delivered SV data to
the protection device, which was confirmed by reading device
measurements. After the actual start of simulation, over current
function tripped which generated GOOSE message. Simulators
GOOSE function block extracted variable values of correspond-
ing trip signals and assigned them to the output port of the
block. Tripping of over-current resulted in the change of state
in the simulated power system and resulted in the clearance
of simulated phase to phase fault. During the simulated fault,
disturbance recording was triggered on the relay side (Fig. 9).
Analysis of presented signals shows proper operation of not
only over-current function but also time synchronization. Cal-
culated tripping time of the relay was 11.6 ms, which is a rea-
sonable value for this device. Loss of synchronization signal at
any end, results in random drift between recorded measurement
signals and change of binary states.

Fig. 9. Disturbance recording obtained during the testing of ABB
REL670 over current function

Fig. 8. Current in phase A during the free run of simulation

Fig. 7. Laboratory setup during ABB REL670 testing

Linux PC
Matlab/Simulink

Meinberg M100

GPS

Switch

PTP
SV, GOOSE

Arbiter

GPS
IED

Cisco �Nexus
3048

1PPS REL670

SV, GOOSE
PTP

Process data including SV, GOOSE and PTP protocol are
sent through Ethernet network using Cisco Nexus switch acting
as a PTP boundary clock. Meinberg M1000 is acting as PTP
master clock. Simulation model is run on Linux PC synchro-
nized to the Cisco switch. REL670 relay because of hardware
limitations, was synchronized to different GPS clock 1PPS
signal. REL670 implements over current function: IEC Defi-
nite time characteristic, threshold at 180% of nominal current,
zero-time delay. Separate trip signals from 3 phases were sent
in GOOSE message back to the simulator. Relay was tested
during phase A-B short circuit in the middle of the line. Figi-
ure 8 shows the phase A current waveform during the fault in
free run.

After the configuration of ABB670 relay in terms of
over-current protection, SV and GOOSE configuration it was

7. Conclusions

Protection relays using SV and GOOSE messages can be eval-
uated using real time simulators implemented mainly in soft-
ware. This allows to build real time simulators on the basis
of Matlab/Simulink software and Linux-RT. The limitation of
such tester is the complexity of simulated power system relative

6

K. Kurek, Ł. Nogal, R. Kowalik, and M. Januszewski

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137057

to processing power of the CPU. Properly time synchronized
Matlab/Simulink power system simulation extended with SV
and GOOSE blocks can be successfully used to evaluate pro-
tection relays in closed loop. Linux RT environment offers
acceptable levels of latency and time synchronization accu-
racy for power system simulation purposes. In order to run
more complex simulation models with lower time step it is
recommended to optimize the operating system for latency by
disabling logical CPUs, frequency scaling, real time throttling,
processor sleep state and maintaining core isolation for the real
time simulation. Simulation run on latency optimized Linux
shows occasional overruns while running with time step size
50 µs and no overruns on step size 250 µs (SV generation
frequency) which is suff icient for IEC 61850-9-2 LE stream
generation. GOOSE interface allows for hardware-in-the-loop
testing – change of simulation state on the basis of GOOSE
variables. Tested system behaved similarly regardless of num-
ber of SV nodes present in the model – inclusion of 16 SV
streams interfaces, resulted in no impact on performance.
Linux PTP system service can be used to constantly adjusts the
simulation clock to external sources which allows for proper
time synchronization when testing protection systems and syn-
chronization of different simulation nodes.

The proposed solution can be used to extend Matlab/
Simulink power system models with real world interfaces to
IEC 61850 compliant protection devices using open source
components. This can be achieved using regular PC hardware
with minimal costs and almost no wiring. The downside of the
solution is its limitation to protection schemes using digital
process data.

References
 [1] M.D.O. Faruque et al., “Real-Time Simulation Technologies for

Power Systems Design, Testing, and Analysis,” IEEE Power En-
ergy Technol. Syst. J. 2(2), 63–73 (2015).

 [2] S. Piróg, R. Stala, and Ł. Stawiarski, “Power electronic converter
for photovoltaic systems with the use of FPGA-based real-time
modeling of single phase grid-connected systems,” Bull. Pol.
Acad. Sci. Tech. Sci. 57(4), 345–354 (2009).

 [3] C. Yang, Y. Xue, X. Zhang, Y. Zhang, and Y. Chen, “Real-Time
FPGA-RTDS Co-Simulator for Power Systems,” IEEE Access
6, 44917–44926 (2018)

 [4] M. Matar and R. Iravani, “The Reconfigurable-Hardware Re-
al-Time and Faster-Than-Real-Time Simulator for the Analysis
of Electromagnetic Transients in Power Systems,” IEEE Trans.
Power Deliv. 28(2), 619–627 (2013).

 [5] M.E. Hernandez, G.A. Ramos, M. Lwin, P. Siratarnsophon, and
S. Santoso, “Embedded Real-Time Simulation Platform for Pow-
er Distribution Systems,” IEEE Access 6, 6243–6256 (2018).

 [6] D.A.M. Montaña, D.F.C. Rodriguez, D.I.C. Rey, and G. Ramos,
“Hardware and Software Integration as a Realist SCADA En-
vironment to Test Protective Relaying Control,” IEEE Trans.
Indust. Appl. 54(2), 1208–1217 (2018).

 [7] C. Dufour and J. Bélanger, “On the Use of Real-Time Simulation
Technology in Smart Grid Research and Development”, IEEE
Trans. Indust. Appl. 50(6), 3963–3970 (2014).

 [8] M. Shoaib and L. Vanfretti, “Performance evaluation of protec-
tion functions for IEC 61850-9-2 process bus using real-time
hardware-in-the-loop simulation approach,” in 22nd Internation-
al Conference and Exhibition on Electricity Distribution (CIRED
2013), 2013, pp. 1–4.

 [9] M.S. Almas, R. Leelaruji, and L. Vanfretti, “Over-current relay
model implementation for real time simulation amp; Hardware-
in-the-Loop (HIL) validation,” in IECON 2012 – 38th Annual
Conference on IEEE Industrial Electronics Society, 2012, pp.
4789–4796.

 [10] D.R. Gurusinghe, S. Kariyawasam, and D.S. Ouellette, “Testing
of IEC 61850 sampled values based digital substation automation
systems,” J. Eng. 2018(15), 807–811 (2018).

 [11] Y. Wu, N. Honeth, L. Nordström, and Z. Shi, “Software MU
based IED functional test platform”, 2015 IEEE Power Energy
Society General Meeting, 2015, pp. 1–5.

 [12] N. Honeth, Z.A. Khurram, P. Zhao, and L. Nordström, “Develop-
ment of the IEC 61850-9-2 software merging unit IED test and
training platform,” in 2013 IEEE Grenoble Conference, 2013,
pp. 1–6.

 [13] M. Sojka, “On generating Linux applications from Simulink.”
[Online]. Available: https://rtime.felk.cvut.cz/~sojka/blog/
on-generating-linux-applications-from-simulink/

 [14] K. Kurek, M. Januszewski, R. Kowalik, and Ł. Nogal, “Imple-
mentation of IEC 61850 Power Protection Tester in Linux Envi-
ronment”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 689‒696 (2020)

https://rtime.felk.cvut.cz/~sojka/blog/on-generating-linux-applications-from-simulink/
https://rtime.felk.cvut.cz/~sojka/blog/on-generating-linux-applications-from-simulink/

	_Ref22646099

